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ABSTRACT DNA damage response pathways are crucial for protecting genome stability in all eukaryotes.
Saccharomyces cerevisiae Dna2 has both helicase and nuclease activities that are essential for Okazaki
fragment maturation, and Dna2 is involved in long-range DNA end resection at double-strand breaks. Dna2
forms nuclear foci in response to DNA replication stress and to double-strand breaks. We find that Dna2-GFP
focus formation occurs mainly during S phase in unperturbed cells. Dna2 colocalizes in nuclear foci with
25 DNA repair proteins that define recombination repair centers in response to phleomycin-induced
DNA damage. To systematically identify genes that affect Dna2 focus formation, we crossed Dna2-GFP
into 4293 nonessential gene deletion mutants and assessed Dna2-GFP nuclear focus formation after
phleomycin treatment. We identified 37 gene deletions that affect Dna2-GFP focus formation, 12 with fewer
foci and 25 with increased foci. Together these data comprise a useful resource for understanding Dna2
regulation in response to DNA damage.
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The maintenance of the genome stability is an essential process in living
cells. DNA lesions perturb cellular DNA replication and transcription
processes, and failure to repair damaged DNA can lead to mutagenesis,
tumorigenesis, and lethality. To combat DNA damage, cells activate
DNA damage response mechanisms to arrest cell cycle progression,
detect DNA lesions, amplify the DNA damage signal, and execute DNA
repair (Rouse and Jackson 2002; Harrison and Haber 2006).

Dna2 is a conserved DNA-specific ATPase present in organisms
from yeast to humans. Dna2 has both helicase and nuclease activities
that are essential for Okazaki fragment maturation (Budd and Camp-
bell 1997), and it plays a crucial role in repairing DNA double-strand
breaks (Zhu et al. 2008) and in telomere and mitochondrial DNA
maintenance (Choe et al. 2002; Duxin et al. 2009; Budd and Campbell

2013; Ronchi et al. 2013). Depletion of Dna2 causes incomplete DNA
replication and genomic instability (Budd and Campbell 1995; Liu
et al. 2000), and the ATPase and nuclease activities of Dna2 are es-
sential for cell survival (Lee et al. 2000; Budd et al. 2000; Budd et al.
1995; Formosa and Nittis 1999). Overexpression of Dna2 has been
detected in a variety of cancers and is associated with poor patient
outcome (Strauss et al. 2014; Peng et al. 2012).

DNA double-strand breaks occur upon exposure to exogenous
agents, such as ionizing radiation, or indirectly through replication fork
collapse at DNA damage sites. If left unrepaired, double-strand breaks
can cause genomic instability, cell death, and tumorigenesis (Mehta and
Haber 2014; Jackson and Bartek 2009). Dna2 participates in DNA repair
by homologous recombination (HR). In HR, Sae2 and the MRX
(Mre11-Rad50-Xrs2) complex initiate DNA resection at the double-
strand break, whereas long-range DNA resection is catalyzed either by
Exo1 or by Dna2 in collaboration with the Sgs1/Top3/Rmi1 helicase-
topoisomerase complex (Mimitou and Symington 2008; Zhu et al.
2008). The resulting 39 single-stranded DNA is coated by Replication
Protein A (RPA), which serves as a substrate for Rad51 filament
formation (mediated by Rad52, Rad55-Rad57, and Rad54) and as
a primer for subsequent DNA synthesis following strand invasion at
a homologous DNA sequence that serves as a template for repair
(Sugiyama and Kowalczykowski 2002; Sung 1997; Chen et al. 2013).
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Dna2 has recently been shown to be a target of different post-
translation regulation pathways. In fission yeast, Dna2 is phosphory-
lated by the checkpoint effector kinase Cds1 during replication stress,
and phosphorylation is essential to stabilize stalled replication forks
and to prevent reversal of arrested forks (Hu et al. 2012). In budding
yeast, Dna2 is a direct target of Cdk1 and Mec1 kinases, and Dna2
itself directly stimulates Mec1 kinase activity (Chen et al. 2011; Kumar
and Burgers 2013; Kosugi et al. 2009). Dna2 is also regulated by the
SUMO pathway (Makhnevych et al. 2009). Previous studies indicate
that Dna2 forms nuclear foci during DNA damage and DNA repli-
cation stress (Lisby and Rothstein 2009; Makhnevych et al. 2009;
Tkach et al. 2012). Here we characterize the formation of Dna2 foci
in response to double-strand DNA breaks and apply a genome-wide
screen to systematically identify gene deletion mutants that change
Dna2 focus formation levels.

MATERIALS AND METHODS

Strains and media
Strains used in this study are listed in Supporting Information, Table S1
and are derivatives of BY4741 (Brachmann et al. 1998). Low-fluorescence
media [yeast nitrogen base supplemented with 5 g/l ammonium
sulfate, 2% (w/v) glucose, 150 mg/l methionine, 20 mg/l histidine,
100 mg/l leucine, and 20 mg/l uracil] was used for high-throughput
screening.

The DNA2-yEmCherry strain was constructed by transforming
JTY5 with a PCR product containing yEmCherry::CaURA3 and targeted
to DNA2 (Dna2-mOrr-fw and Dna2-mOrr-rv primers; Table S2).
The template for the PCR, pKT-yEmCherry-CaURA3, was constructed
by replacing mCherry sequences in the plasmid pKT-mCherry-CaURA3
with yEmCherry sequences amplified from pNEB31 (Silva et al. 2012)
with primers yEmRFP_F and yEmRFP_R (Table S2). The plasmid pKT-
mCherry-CaURA3 was constructed by replacing GFP in the plasmid
pKT209 (Sheff and Thorn 2004) with mCherry, and was a kind gift
from Mike Cox in Brenda Andrews’ laboratory.

Microscopy and image analysis
For analysis of Dna2-GFP nuclear foci, GFP fusion proteins that
colocalized with Dna2-yEmCherry, and Dna2-GFP foci in gene
deletion backgrounds, cultures were grown to saturation in YPD,
diluted into fresh YPD to OD600 = 0.1, and grown for 2 hr at 30�
before treating with 5 mg/ml phleomycin for 2 hr. Eleven z slices with
a 0.4 mm step size were acquired using Volocity imaging software
(PerkinElmer) controlling a Leica DMI6000 microscope with the fluo-
rescein isothiocyanate, Texas Red, and differential interference
contrast filter sets (Quorum Technologies). Dna2-yEmCherry foci,
ORF-GFP foci, and colocalizing foci were counted in at least 100 cells.
Functions of the proteins tested for colocalization with Dna2 were
annotated with GO-Slim terms downloaded from the Saccharomyces
Genome Database (www.yeastgenome.org; accessed on 4 April 2015)
and GO functions from GeneMANIA (www.genemania.org; accessed
on 3 April 2015) (Montojo et al. 2014). Protein interactions for the

proteins tested for Dna2 colocalization were downloaded from Gene-
MANIA using data from BioGRID (www.thebiogrid.org) small-scale
studies.

Identification of Dna2 focus regulators
DNA2-GFP (AYY3) was crossed with an array of 4293 strains
(Costanzo et al. 2010) from the haploid nonessential yeast gene deletion
collection (Giaever et al. 2002) using synthetic genetic array meth-
odology (Baryshnikova et al. 2010). The resulting strains, expressing
Dna2-GFP in the context of deletion of individual nonessential genes,

n Table 1 Frequencies of Dna2-GFP focus formation in G1, S, and
G2/M cells

Unbudded (G1) Small Budded (S) Large Budded (G2/M)

Control Phleomycin Control Phleomycin Control Phleomycin

1.7 0 24.2 53.1 9 63.8

The percent of cells in each morphological class containing a Dna2-GFP focus is
indicated.

Figure 1 Dna2-GFP focus formation in G1 and asynchronous cells. (A)
Logarithmic phase asynchronous cells or cells arrested in G1 were
exposed to phleomycin (5 mg/ml) and imaged by confocal microscopy
to detect Dna2-GFP foci. (B) The number of Dna2-GFP foci per cell
was quantified for the G1-arrested and asynchronous cells. At least
100 cells were analyzed in three independent experiments, and the
percent of cells with at least one Dna2-GFP focus is plotted for each.

n Table 2 Proteins that colocalize with Dna2-yEmCherry during
treatment with phleomycin

ORF-GFP Protein

Protein-GFP
Colocalized with

Dna2-yEmCherry (%)

Dna2-yEmCherry
Colocalized with
Protein-GFP (%)

YGR042W Ygr042w 55 46
YML032C Rad52 54 51
YJL090C Dpb11 41 63
YDR499W Ddc2 40 76
YNL218W Mgs1 38 36
YAR007C Rfa1 37.5 71
YPL024W Rmi1 37.5 18.7
YDR004W Rad57 36.7 48.6
YLR234W Top3 36 21
YDL059C Rad59 32 21
YGL163C Rad54 30 30
YPL194W Ddc1 29 45.4
YBR073W Rdh54 28.5 42.8
YJL092W Srs2 28.5 9.5
YPL153C Rad53 28.2 20
YJL047C Rtt101 28 7
YNL312W Rfa2 26.2 64
YLR135W Slx4 26 46
YHR154W Rtt107 22.4 46.1
YMR190C Sgs1 22 15.3
YDR076W Rad55 20.8 22
YEL091C Mms21 11 14.2
YER116C Slx8 5.8 3.3
YNL250W Rad50 3 3.2
YMR224C Mre11 2.1 1.4
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were grown and imaged after treatment with phleomycin or with
vehicle as a control, as described previously (Tkach et al. 2012).
Briefly, the haploid strains were grown to saturation overnight
in minimal media and further sub-cultured to mid-log phase (�16
hr growth time) in low fluorescence media. Cells were transferred to
384-well slide plates to a final density of 0.045 OD600 ml21 and in-
cubated at 30� for 2 hr in low fluorescence medium (control) or low
fluorescence medium plus 5 mg/ml phleomycin. Images from four
fields per well were acquired in the green (405/488/640 primary di-
chroic, 540/75 emission band-pass filter, 800 ms exposure) and red
channels (405/561/640 primary dichroic, 600/40 emission band-pass
filter, 2000 ms exposure) on an EVOTEC Opera confocal microscope
system (PerkinElmer). The complete set of images from the high-
throughput screen is available from the Yeast Resource Center Public
Image Repository (Riffle and Davis 2010) at http://images.yeastrc.org/
yimit-2015. The images were scored by visual inspection for strains
that exhibited decreases in Dna2-GFP foci in phleomycin or increases
in Dna2-GFP foci in the untreated samples, relative to control. Pos-
itives were examined in low throughput as indicated above. The num-
ber of Dna2-GFP foci per cell was quantified by visual analysis of at
least 100 cells, in duplicate. We assessed whether the mean number of
Dna2-GFP foci per cell in each mutant was detectably different from
wild-type by applying a two-tailed t-test, assuming equal variance.
The network of genes that affect Dna2 focus formation was drawn
in Cytoscape (www.cytoscape.org) and overlaps with other data sets
were assessed using a hypergeometric test in R. GO term enrichment
was analyzed with the GO Term Finder (go.princeton.edu) using the
deletion collection screened as the "universe," and p-values corrected
for multiple testing are reported.

For gene deletions with a decreased fraction of cells with Dna2-GFP
foci, the total GFP fluorescence and nuclear GFP fluorescence were

measured after segmenting 10 cells and nuclei for each mutant in ImageJ
(http://imagej.nih.gov/ij/). Nuclear focus intensity was measured by seg-
menting 15–20 individual foci and measuring the GFP fluorescence in
ImageJ. Unbudded (G1) cells were excluded from the analysis. We
assessed whether the mean GFP fluorescence intensity per cell, the mean
nuclear GFP fluorescence intensity per cell, and the mean nuclear focus
GFP fluorescence intensity in each mutant were detectably different
from wild-type by applying a two-tailed t-test, assuming equal variance.

Drug sensitivity:
To assay phleomycin sensitivity, cultures were grown overnight at 30�
in YPD. Cultures were diluted to an OD600 of 1, serially diluted 10-fold,
spotted on YPD medium with or without 2.5 or 5 mg/ml phleomycin,
and grown for 2–3 d at 30� before imaging.

Data availability
Strains are available upon request. The complete set of images from
the Dna2-GFP focus screen is available from the Yeast Resource
Center Public Image Repository at http://images.yeastrc.org/yimit-2015.

RESULTS AND DISCUSSION

Dna2 forms nuclear foci in S and G2 phases
Dna2, like many DNA damage response proteins, forms nuclear foci
in response to double-strand breaks and DNA replication stress (Lisby
and Rothstein 2009; Makhnevych et al. 2009; Tkach et al. 2012; Chen
et al. 2011). In addition to being regulated by DNA damage, the
intracellular localization of Dna2 is connected to cell cycle phase via
CDK phosphorylation. In G1 arrested cells Dna2 is mainly cytoplas-
mic, whereas during S, G2, and M phases Dna2 displays a nuclear

Figure 2 Colocalization of Dna2
with DNA repair and DNA dam-
age response proteins. (A)
Colocalization of the indicated
ORF-GFP with Dna2-yEmCherry
was measured by confocal fluo-
rescence microscopy after
phleomycin treatment. The per-
cent of cells with colocalizing
foci is plotted. (B) Representa-
tive images of proteins that
colocalize with Dna2. Cells
expressing Dna2-yEmCherry
and the indicated ORF-GFPs
were imaged after phleomycin
treatment. Scale bar is 5 mm.
(C) Network of the 25 proteins
that colocalize with Dna2 after
phleomycin treatment. Thick-
ness of the edges corresponds
to the fraction of cells display-
ing colocalization. Gene func-
tion is indicated by node color.
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localization (Kosugi et al. 2009). To investigate the cell cycle distribu-
tion of Dna2 foci in unperturbed cells and cells with double-strand
DNA breaks, we quantified Dna2-GFP foci in unbudded (G1), small
budded (S), and large budded (G2) cells in both asynchronous cultures
and cultures treated with phleomycin. Phleomycin, an antibiotic of the
bleomycin family, causes free radical–mediated DNA damage, includ-
ing double-strand breaks (Moore 1988; Sleigh 1976). In unperturbed
cells, Dna2 foci were mainly found in S phase in 24% of small budded
cells (Table 1), suggesting that Dna2 foci can arise during DNA rep-
lication. Following 2 hr of treatment with phleomycin, Dna2 foci were
found in small budded and large budded cells, but rarely in unbudded
(G1) cells (Table 1). We arrested cells in G1 with mating pheromone
and treated the arrested cells with phleomycin (Figure 1, A and B),
confirming that Dna2 foci do not form efficiently during G1 phase.
These results are in agreement with the established roles of Dna2 in
Okazaki fragment maturation (in S phase) and roles in double-strand
break repair (DNA resection during G2/M phase).

Dna2 colocalizes with proteins that form Rad52 repair
centers at double-strand breaks
In response to double-strand breaks, a number of DNA repair and
checkpoint proteins relocalize from diffuse nuclear distribution to
distinct sub-nuclear foci. The recombination repair protein Rad52
forms foci that colocalize with double-strand breaks (Lisby et al.
2003; Lisby et al. 2001), and some repair proteins are known to
colocalize in foci with Rad52 (Lisby et al. 2004). Not all proteins
that form nuclear foci colocalize with Rad52, however (Tkach et al.
2012; Gallina et al. 2015). To systematically analyze proteins that
colocalize with Dna2 in response to phleomycin, we fused Dna2 to
yeast-enhanced monomeric Cherry (yEmCherry) (Keppler-Ross
et al. 2008; Silva et al. 2012) and crossed it to 55 GFP-tagged
ORF strains, including 27 proteins that we found to form nuclear
foci in DNA replication stress (Tkach et al. 2012) and an additional
28 proteins reported to form nuclear foci in DNA damage (Gasior
et al. 1998; Melo et al. 2001; Frei and Gasser 2000; Lisby et al. 2004;
Srikumar et al. 2013; Denervaud et al. 2013). Among the 55 pro-
teins, 25 colocalize with Dna2 detectably, with the extent of coloc-
alization ranging from 55% (Ygr042w) to 2% (Mre11) (Table 2,
Figure 2, and Table S3).

We plotted a network of the proteins that colocalize detectably
with Dna2 foci (Figure 2C), with edge thickness corresponding to the
percent of foci that colocalize with Dna2 foci, and with Gene Ontology
process term indicated for each. Consistent with the roles of Dna2 in
DNA replication and double-strand break repair, we found that most
of the 25 proteins that colocalize with Dna2 in phleomycin have
connections to repair of double-strand breaks. All the representatives
of the RAD52 epistasis group that were tested colocalized with Dna2,
with Rad52 found with Dna2 at the highest frequency (54% of Dna2
foci contain Rad52). Of particular interest, Ygr042w showed a similarly
high frequency of colocalization with Dna2, consistent with a recent
report that the fission yeast homolog, Dbl2, colocalizes with recom-
bination repair foci (Yu et al. 2013), suggesting that Ygr042w could
play a role in recombination repair. Dna2 functions in the resection
step of double-strand break repair in concert with Sgs1/Top3/Rmi1
(Zhu et al. 2008) and colocalized frequently with each of the members
of the complex (Figure 2C). Dna2 also colocalized frequently with the
ssDNA binding protein RPA, a regulator of resection (Niu et al. 2010;
Cejka et al. 2010; Chen et al. 2013). Dna2 showed only a weak coloc-
alization with the MRX complex (Mre11, Rad50, Xrs2), consistent
with two-step resection models in which ends resected initially by
MRX/Sae2 are handed off to Dna2 (Mimitou and Symington 2011).

As previously suggested for MRX and Rad52 (Lisby et al. 2004), the
weak colocalization of Dna2 and MRX detected could reflect proteins
that are in the same repair center but that are not associated with the
same DNA end, because multiple DNA ends can associate with a sin-
gle Rad52 focus (Lisby et al. 2003). DNA damage checkpoint proteins
colocalize with Dna2 robustly, including the Mec1 activators Dpb11,
Ddc1, and Ddc2, and the effector kinase Rad53 (Figure 2C). We found
that complex members tended to show similar frequencies of coloc-
alization (Rfa1/Rfa2, Sgs1/Top3/Rmi1, MRX, RFC, Rtt107/Slx4,
Rad55/57) (Figure 2C and Table S3).

We analyzed the extent of protein–protein interactions among
the 25 proteins that colocalize with Dna2 foci, and among the 28
proteins that form nuclear foci but do not colocalize detectably with
Dna2 foci following phleomycin treatment (Figure 3). We noted
that the proteins that colocalized with Dna2 form a dense network
of protein–protein interactions (5.04 interactions on average),
whereas the protein–protein interactions among the proteins that
did not colocalize with Dna2 are sparser (1.75 interactions on av-
erage). Additionally, proteins that colocalize with Dna2 foci for the
most part are annotated on GO processes involved in DNA repair,
DNA replication, and DNA damage response. The proteins that did
not colocalize with Dna2 foci are involved in some distinct pro-
cesses, notably RNA catabolism, suggesting that some of these pro-
teins form nuclear foci with functions that are distinct from Rad52
repair centers. Consistent with this possibility, Cmr1 was recently
shown to form a distinct intranuclear compartment that also con-
tains four additional proteins that fail to colocalize with Dna2
(Pph3, Apj1, Hos2, and Dus3) (Gallina et al. 2015). Together
our data indicate that Dna2 foci colocalize with a subset of repair
and checkpoint proteins that likely define the canonical Rad52

Figure 3 Dna2 focus protein–protein interaction network. The pro-
teins that were tested for Dna2 focus colocalization are represented
as nodes colored according to function, with the 25 proteins detected
at the Dna2 focus on the left and the 28 proteins not found in Dna2
foci on the right. Edges correspond to protein–protein interactions
curated by BioGRID, with interactions between Dna2 focus proteins
in red, interactions between non-Dna2 focus proteins in blue, and
interactions that bridge the two groups in green.
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double-strand break repair foci (Gasior et al. 1998; Lisby et al. 2001,
2004; Yu et al. 2013).

Identification of genes affecting Dna2 focus formation
To systematically identify the genetic requirements for Dna2 focus
formation, we screened a collection of 4293 haploid nonessential gene
deletion mutants (Costanzo et al. 2010; Giaever et al. 2002) in the
absence and presence of phleomycin. Dna2-GFP foci were visualized
by high-throughput confocal microscopy and scored by visual inspec-
tion. All images from the screen are available from the Yeast Resource
Center Public Image Repository (Riffle and Davis 2010) at http://
images.yeastrc.org/yimit-2015. Forty-seven genes were identified that
affected Dna2-GFP focus formation, either by increasing focus forma-
tion in untreated cells (32 genes) or by decreasing focus formation in
phleomycin-treated cells (15 genes) (Table S4). These positives were

reimaged in low throughput before and after treatment with phleo-
mycin for 2 hr, and foci in the resulting images were quantified. We
confirmed that 12 mutants showed a decrease (P , 0.05) in the
fraction of cells with a Dna2-GFP focus following phleomycin treat-
ment, relative to wild-type (Figure 4A), and that 25 mutants had an
increased (P , 0.05) fraction of cells with Dna2 foci relative to wild-
type (Figure 4A). We identified three classes of mutants with increased
Dna2 foci: those with increased spontaneous foci only (11), those with
increased spontaneous and increased phleomycin-induced foci (7),
and those with increased phleomycin-induced foci only (7) (Figure
4A). There are likely additional mutants in the deletion collection that
cause increased Dna2 foci in phleomycin only, because this class was
not scored in our primary screen.

The 25 gene deletions that conferred increased Dna2 foci were
strongly enriched for genes involved in DNA repair and DNA damage

Figure 4 Identification of genes
that affect Dna2-GFP focus for-
mation. (A) The fraction of cells
with Dna2-GFP foci in 12 gene
deletions with fewer Dna2 foci
after treatment with phleomycin
and in 25 gene deletions with
increased Dna2 foci either in
untreated cells or after treatment
with phleomycin is plotted for
two replicates. (B) The 37 con-
firmed genes that affect Dna2
foci abundance are organized in
a network with nodes colored
according to function. Edges are
in red for gene deletions with
fewer foci and in green for gene
deletions with increased foci. (C)
Dna2-GFP fluorescence intensity
after treatment with phleomycin
is plotted for whole cells (dark
blue; n = 10) and nuclei (light
blue; n = 10). Horizontal bars
indicate the median Dna2-GFP
fluorescence in each compart-
ment for each mutant. Horizontal
lines mark the median Dna2-
GFP fluorescence in each com-
partment for wild-type. (D)
Dna2-GFP nuclear focus inten-
sity after treatment with phleo-
mycin is plotted for each mutant
(n = 12 to 20) and wild-type.
Horizontal bars indicate the me-
dian focus intensity for each
mutant, and the horizontal line
marks the median focus intensity
for wild-type.
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response (Figure 4B) (P = 2·10217 and P = 5·10216). We compared
these genes to those identified in a recent "constitutive RNR3 expres-
sion" screen (Hendry et al. 2015) and found significant overlap (16
genes, hypergeometric P = 4·10221), suggesting the presence of in-
creased spontaneous DNA damage in these mutants, as expression of
RNR3 responds specifically to DNA damage (Elledge and Davis 1990).
We compared the genes that, when deleted, caused increased Dna2
foci to those that cause increased Rad52 foci (Alvaro et al. 2007), again
finding significant overlap (10 genes, hypergeometric P = 2·10211).
Finally, we compared the set of genes with negative genetic interac-
tions with dna2-1 or dna2-2 (Budd et al. 2005), which could indicate
spontaneous damage that requires Dna2 for its repair. We noted
a significant overlap (10 genes, hypergeometric P = 2·10214). There
were only five genes (CLB5, CTF8, EST3, MID1, and RIF2) in our set
of 25 that were not found to have increased Rnr3 expression, in-
creased Rad52 foci, or a negative genetic interaction with dna2. De-
creased replication origin usage in clb5 mutants is proposed to cause
spontaneous DNA damage (Gibson et al. 2004). Deletion of the
CTF18 gene, which encodes the binding partner of Ctf8, causes in-
creased Rad52 foci (Gellon et al. 2011). RIF2 and EST3 regulate telo-
mere length (Wotton and Shore 1997; Hughes et al. 2000). MID1 has
no clear connection to DNA repair, but it is only 403 bp from the

59 end of the RFC3 ORF. RFC3 is essential for DNA replication and is
important for DNA repair (Cullmann et al. 1995; Green et al. 2000).
Thus, all 25 of the genes whose deletion causes increased Dna2 focus
formation likely cause increased DNA damage when deleted, and
Dna2 likely participates in the repair of that damage.

The 12 gene deletions with fewer Dna2-GFP foci do not represent
a coherent functional group (Figure 4B) and were not enriched for any
GO term. Of the genes identified, only RAD27 has a clear connection
to Dna2, because Rad27 and Dna2 function in concert in Okazaki
fragment maturation (Ayyagari et al. 2003). Several of the genes we
identify are involved in translation capacity (RPP1A, RPS10A, DEG1),
nutrient sensing (TCO89), and G1 transit (SWI4), and therefore could
reflect cell cycle delays in G1, where Dna2 foci typically do not form
(Table 1). It is also possible that reduced Dna2-GFP foci per cell could
be caused by decreased total abundance of Dna2-GFP or decreased
nuclear abundance of Dna2-GFP. We tested these latter possibilities
by quantifying total GFP fluorescence per cell, nuclear GFP fluores-
cence per cell, and Dna2-GFP focus intensity (Figure 4, C and D, and
Table S4). Two mutants, brp1Δ and ckb1Δ, had statistically apparent
decreases in nuclear Dna2-GFP mean fluorescence intensity (Figure
4C). In both cases, the effect size was small (0.67· wild-type for
brp1Δ and 0.70· wild-type for ckb1Δ), and the decrease in nuclear
Dna2-GFP signal was paralleled by a similar decrease in total cel-
lular Dna2-GFP signal. Deletion of YNL198C caused a decrease in
total cellular Dna2-GFP fluorescence, but the decrease in nuclear
fluorescence in this mutant could not be statistically distinguished
from wild-type. A similar analysis of Dna2-GFP focus intensity in
the 12 mutants with decreased Dna2-GFP foci per cell revealed four
strains with decreased focus intensity (Figure 4D) (brp1Δ, ckb1Δ, deg1Δ,
and ynl198cΔ). Interestingly, two mutants, rad27Δ and ubp3Δ, had in-
creased focus intensity despite having fewer foci per cell. We conclude
that none of the mutants causes a substantial decrease in Dna2-GFP
expression or in nuclear abundance of Dna2-GFP. However, in brp1Δ
and ckb1Δ, decreased nuclear localization could indirectly cause a de-
crease in Dna2-GFP focus intensity.

To further assess the functional relationship between DNA2 and
gene deletions that decrease Dna2-GFP foci, single and double
mutants of dna2-1 (Budd et al. 2000) and ubp3D, ecm32D, swi4D,
ckb1D, ynl198CD, deg1D, rad27D, rpp1AΔ, tos9Δ, brp1Δ, tco89Δ, and
rps10AΔ were tested for phleomycin sensitivity. Double mutants of
dna2-1 with tos9Δ, swi4D, ckb1D, rps10AΔ, or rad27D showed in-
creased phleomycin sensitivity relative to the relevant single mutants
(Figure 5), indicating that deletion of any of these five genes exacer-
bates the phleomycin sensitivity of dna2-1 mutants.

In summary, we find that Dna2 nuclear foci induced by phleomy-
cin colocalize with a group of proteins that form double-strand break
repair centers with Rad52. We identified 25 genes that cause an in-
crease in Dna2 foci when mutant, likely by promoting spontaneous
DNA damage. We identified a functionally diverse group of 12 genes
that are important for robust Dna2 focus formation in phleomycin,
five of which contribute to phleomycin resistance. Together these data
will be a useful resource for understanding Dna2 compartmentaliza-
tion in response to DNA damage.
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