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Abstract: Wireless sensor networks are appealing, largely because they do not need wired infrastruc-
ture, but it is precisely this feature that renders them energy-constrained. The duty cycle scheduling
is perceived as a contributor to the energy efficiency of sensing. This paper developed a novel
paradigm for modeling wireless sensor networks; in this context, an adaptive sensing scheduling
strategy is proposed depending on event occurrence behavior, and the scheduling problem is framed
as an optimization problem. The optimization objectives include reducing energy depletion and
optimizing detection accuracy. We determine the explicit form of the objective function by numer-
ical fitting and found that the objective function aggregated by the fitting functions is a bivariate
multimodal function that favors the Fibonacci tree optimization algorithm. Then, with the optimal
parameters optimized by the Fibonacci tree optimization algorithm, the scheduling scheme can be
easily deployed, and it behaves consistently in the coming hours. The proposed “Fibonacci Tree
Optimization Strategy” (“FTOS”) outperforms lightweight deployment-aware scheduling (LDAS),
balanced-energy scheduling (BS), distributed self-spreading algorithm (DSS) and probing environ-
ment and collaborating adaptive sleeping (PECAS) in achieving the aforementioned scheduling
objectives. The Fibonacci tree optimization algorithm has attained a better optimistic effect than
the artificial bee colony (ABC) algorithm, differential evolution (DE) algorithm, genetic algorithm
(GA) algorithm, particle swarm optimization (PSO) algorithm, and comprehensive learning particle
swarm optimization (CLPSO) algorithm in multiple runs.

Keywords: sensing; energy-saving; duty cycles; Fibonacci tree optimization

1. Introduction

Wireless Sensor Network (WSN) is a network of thousands of low-cost miniature
devices capable of processing, communicating wirelessly, and sensing, which runs on a
limited battery. Since we typically expect WSN sensors to last from several months to
one year without recharging, energy efficiency is essential. Much previous work has re-
ferred to energy-efficient communication (media access control and routing) in WSN ([1–4],
for example); energy-efficient sensing, however, has received little attention. Results of
recent measurements indicate that sensing uses comparable amounts of energy as wire-
less communication [5]. Additionally, sensing frequency is greater than communication
frequency—for example, a sensor that monitors residential fire in forests only triggers an
alarm when temperatures exceed a threshold. Therefore, it is prime time we called for
efforts to study energy-saving strategies of sensing.

Dynamic events are not easily captured as they come and go and can only be observed
by continuous monitoring. Energy efficiency is a serious concern if sensors are always ON.
Programming sensors’ work/sleep cycles (or duty cycles) is seen as a helpful response
measure. When the node is in SLEEP mode, only the low-power timer remains active
should it be necessary to wake it up. Hence, the energy consumed during the sleep duration
is only a tiny fraction of that in the working duration.

While many studies have investigated sensing scheduling problems, they differ in
their design assumptions and objectives because of the multifarious business needs of
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applications. Based on the belief of building up mathematical foundations and establishing
synergy between detection accuracy and energy depletion (as the central theme of this
paper), we suggest that the main contributions of this paper are:

• A novel system model of wireless sensor network is introduced;
• An adaptive sensing scheduling strategy based on event occurrence behavior is proposed;
• The scheduling problem is formulated as an optimization problem and is solved by a

Fibonacci tree optimization algorithm.

The rest of the paper proceeds as follows: Section 2 reviews related work. Section 3
presents the system model. Section 4 introduces the Fibonacci tree optimization algorithm.
Section 5 explains why the Fibonacci tree optimization algorithm is selected for parameter
optimization and examines the advantages of the proposed FTOS strategy. Section 6
implements experiments. Section 7 discusses the deficiencies and unresolved issues. Finally,
Section 8 draws the conclusion.

2. Related Work
2.1. Sensing Scheduling Strategies

The research on energy-saving sensing scheduling strategies involves two levels. The
first level is adaptive duty cycle scheduling, concerning active time, nap time and the
idle listening period. The goal is to best model the event arrival patterns. The second
level, collaborative sensing, considers the sensing coverage: how numerous sensor nodes
(not just a single node) with different spatiotemporal coordinates in a public area can
cooperate to achieve adequate coverage, which is conducive to global optimization of
energy consumption.

We know that sensors consume the most energy when they are on duty and the least
when they are sleeping. As a result, almost all scheduling strategies, such as ELECTION [6]
and additive increase/multiplicative decrease (AIDM) [7], make full use of the energy-
saving characteristic of the sleep mode. DANCE [8] improves AIDM [7] by incorporating
the behavior of neighboring nodes into consideration scope. In DANCE, the sensor aban-
dons its task if its neighbor has already done it, thus down-scaling the energy inefficiency.
The authors argue that the data sampling rate affects the computing and communication
load on the central server. Controlling the sampling rate within a specific range (if it
exceeds, then the central server and nodes renegotiate a range) through Kalman filtering is
believed to be capable of tackling this problem [9].

Jothiraj et al. [10] recommend fine-tuning the sensing frequency of each sensor dynam-
ically. As the sensory readings increase, the detection accuracy improves. The challenge,
however, lies in modeling the actual world. Maintaining the greatest possible coverage is a
primary goal when designing a sensor network. Chen et al. [11] defined a sensing coverage
metric that measures a wireless sensor network’s QoS (quality of service). Furthermore,
a polynomial-time complexity optimization algorithm using graphing theory and com-
putational geometry is proposed to achieve optimum coverage [12] broadens the work
in [11] by enhancing the algorithm. The first work that considers both energy consump-
tion and sensing coverage was completed by [13], which introduces an energy-efficient
surveillance system (ESS). This was followed by lightweight deployment-aware scheduling
(LDAS) [14,15], probing environment and adaptive sensing (PEAS) [16], probing environ-
ment and collaborating adaptive sleeping (PECAS) [17], and randomized independent
scheduling (RIS) [18], and so forth. These studies make the following two common as-
sumptions: (1) each sensor is power-constrained, and (2) the network is expected to run for
a long time. Other assumptions include:

• Network Structure. The network structure can be flat or hierarchical.
• Sensor Placement. The sensing coverage is usually affected by how sensors are initially

placed. In most cases, the sensors follow a random distribution or two-dimensional
(2-D) Poisson distribution [12,19].

• Sensing Area: The sensing area can be 2-D circular or 3-D spherical.
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• Time Synchronization. The sensors are synchronized in time, and can be woken up
simultaneously for the next scheduling round.

• Failure Model. Almost all the studies assume that sensors fail when energy is exhausted.
• Sensor Mobility. Most studies have assumed that the sensor is immobile.
• Location Information. These studies typically associate location information with

whether, or how much, a sensor’s sensing area overlaps with its neighbor’s.
• Distance Information. The distance information can be inferred from the location information.

Randomized independent scheduling (RIS) [18] can extend the sensor lifetime and
obtain an asymptotic k-coverage, and, it is simple. RIS does not need to provide location
information or distance information, nor does it need adjustable transmission range and
mobility. However, it is based on strict distribution assumptions—for example, the sensor
is Poisson/uniform/grid distributed, the sensing range follows a uniform distribution and
the network is flat and two-dimensional.

Lightweight deployment-aware scheduling (LDAS) [15], probing environment and
adaptive sensing (PEAS) [16], probing environment and collaborating adaptive sleeping
(PECAS) [17], and so forth, make relatively loose assumptions. LDAS assumes that the
sensor nodes do not own a positioning device, such as GPS, thus forces the sensors achiev-
ing the desired coverage by static sensing. PEAS consists of two mechanisms: sensing and
adaptive sleep scheduling, and requires high sensor density. PECAS is an updated version
of the PEAS. It posts its remaining/available hours in response to neighbors to avoid mis-
perceptions. This leads to an increase in communication energy depletion. Balanced-energy
scheduling (BS) [20] is a balanced-energy scheduling model designed for dense sensor
networks. It distributes the sensing and communication tasks to all sensor nodes in the
cluster. The assumptions made by the reviewed studies are listed in Table 1.

Table 1. The studies’ classifications according to their assumptions.

Strategies
Assumptions

Network
Structure

Sensor
Placement

High
Density

Sensing
Area

Time
Synch

Frequent
Failures Mobility Known

Location
Known

Distance

RIS [18] Flat
Grid,

Uniform,
Poisson

N 2-D Y N N N N

BS [20] Hierarchical Poisson N 2-D Y N N N Y
LDAS [15] Flat Uniform N 2-D N N N N N
PEAS [16] Flat Uniform Y Any N Y N N N

PECAS [17] Flat Uniform N Any N Y N N N
CCP [21] Flat Any N 2-D N N N Y N

ASCENT [18] Flat Any Y Any N N N N N
CSS [22] Flat Any Y 2-D Y N N Y N

LEACH-GA [23] Hierarchical Any N Any Y N N N N
IBLEACH [24] Hierarchical Any N Any Y N N N N

ESS [25] Hierarchical Any N Any Y N N N N
DSS [26] Hierarchical Poisson N 2-D Y N N N Y

IDCA [27] Flat Any N 2-D N N N Y N

Y: yes; N: no.

Applications differ in their necessities. Hence, the served sensor networks have
diverse design objectives and priorities. We summarize these design objectives as follows:

• Maximizing Network Lifetime. This is a goal that is hard not to consider.
• Sensing Coverage. A network is said to achieve k-coverage if any event occurs within

the jurisdiction of at least k sensors. 1-overage is a minimum requirement for WSN.
• Network Connectivity. The developers applaud a model that offers a particular network

connectivity needed by the application, but this requires a very high sensor density.
• Balanced Energy Usage. In the case of a sensing coverage breach, when a node runs

out of power before others, some studies endeavor to spread the energy utilization
evenly among each node.
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• Simplicity. Sensors have exceptionally restricted memory space and limited computa-
tion power. For this reason, simple schemes are more popular.

• Robustness: Robustness measures how well a network can withstand downtime
and crashes.

Adaptive self-configuring sEnsor networks topologies (ASCENT) [18], PEAS, PECAS,
Low-energy adaptive clustering hierarchy (LEACH-GA) [23], IBLEACH [24], energy-
efficient surveillance system (ESS) [25] and BS [20] do not take complete coverage of
the region as their primary goal. Cooperative spectrum sensing (CSS) [22], however, is
the opposite. The coverage configuration protocol (CCP) [21] introduced the concept of
interconnected sensor coverage. It devised an approximation algorithm to construct a
topology with near-optimal sensor coverage. The central controller periodically selects
sensors along a trajectory until the target area is fully covered.

Most schemes strive to attain an energy balance [28], for example, the distributed
self-spreading algorithm (DSS) [26] and intelligent deployment and clustering algorithm
(IDCA) [27]. In the DSS, the sensor nodes are initially deployed randomly and move
because of the influence exerted by nearby nodes. In the IDCA, however, the remaining
energy level of the node determines whether it moves or not. The idea behind DSS and
IDCA is to reduce the residual capacity differential between nodes.

Many studies envisage network connectivity with sensing coverage, for example, [29–31].
When the transmission range of the sensor node is at least twice its sensing range, k-
coverage leads to k-connectivity [29,30]. Typically, high connectivity ensures high robust-
ness, but one result of high connectivity is that data conflicts between nodes can seriously
affect data transfer rates. The results of recent research presented in [32] are not based
on the assumption that the transmit range of the sensor nodes is not less than twice their
sensing range. Dhumal et al. [31] considered a tiered sensor network that includes sensors
that could fail and they discussed the sensing coverage, network connectivity, and network
diameter. In [19], the authors proposed an optimal deployment strategy to achieve two
connections that fully cover all communication and sensing ranges.

The design objectives of the reviewed studies are summarized in Table 2.

Table 2. The studies’ classifications according to their objectives.

Strategies
Objectives

Sensing Coverage Network Connectivity Simplicity Robustness Energy Balance

RIS [18] k-coverage,asymptotic × × Y Y
BS [20] × × × × Y

LDAS [15] 1-coverage × × × Y
PEAS [16] × 1 × × ×

PECAS [17] × 1 × × Y
CCP [21] k-coverage k × × Y

ASCENT [18] × × Y × ×
CSS [22] k-coverage k × Y Y

LEACH-GA [23] × × × Y Y
IBLEACH [24] × k × Y Y

ESS [25] × × × Y Y
DSS [26] × × × × Y

IDCA [27] Full-coverage × × × Y

×: not mentioned.

2.2. Optimization Algorithms for Multi-Modal Function

Population or single solution search-based optimization algorithms (viz., meta, hyper-
heuristic) have solid global search ability. Typical examples include inter alia evolutionary
and swarm intelligence algorithms, such as the genetic algorithm (GA) [33], differential
evolution (DE) algorithm [34], particle swarm optimization (PSO) algorithm [35], compre-
hensive learning particle swarm optimization (CLPSO) [36] and artificial bee colony (ABC)
algorithm [37]. These algorithms are essentially methods by trial and error. It can take
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many thousands or even millions of iterations to converge. New emerging algorithms, such
as the multi-layered gravitational search algorithm (MLGSA) [38] and quantum tabu search
(QTS) algorithm [39], improve classical versions by avoiding premature convergence or
being trapped in local optima. When addressing practical issues, we search for the global
extremum of a complicated or unknown function, but just finding one local minimum of a
relatively simple but very high-dimensional function can also be a formidable challenge;
for example, the Multi-modal Function Optimization (MFO) [40]. Given a multi-modal
problem, the optimization task is to identify the greatest number of optimal solutions
(global and local) to help the decision-maker better understand the problem at hand.

It has developed many techniques to locate local optimums. These techniques are
termed “niching” methods. A niching method can be built into a standard search-based
optimization algorithm to identify several optimal or sub-optimal solutions sequentially
or concurrently. Sequential approaches discover optimal solutions gradually over time,
while concurrent methods encourage and maintain many stable sub-populations within
a single population. Conventional niching techniques include crowding, fitness sharing,
decommissioning, covariance matrix adaptation, cleaning, species conserving, and so
forth. More recently, some variants of meta-heuristic algorithms, such as an ant colony
system with nonlinear pheromone update (ACS-NP) [41], and comprehensive learning
particle swarm optimization with local search (CLPSO-LS) [42], have incorporated niching
methods. Despite niching methods’ first appearance over 30 years ago (in the 1980s),
niching methods (or multi-modal optimization) are being resurrected as an increasingly
important research subject, attracting researchers from a broad spectrum of research areas,
including Evolutionary Computation (EC) [43] and Swarm Intelligence (SI) [42].

The Fibonacci tree optimization algorithm (FTO) [44] is a sophisticated optimization
algorithm. It resolves the optimal solution of the problem by alternating iterations of global
scanning and local scanning. It fully utilizes computer memory to save the optimization
process. FTO can provide a reasonable approximation of a global optimum for a function
with ample search space. In each iteration, the golden ratio separation is used to compress
the search space, so the local optimal solution can also be achieved. It particularly applies
to multi-peak/multi-modal function optimization.

The comparison of features of the aforementioned optimization algorithms is shown
in Table 3.

Table 3. Comparison of some optimization algorithms.

Algorithm Type Searching Philosophy Global Search
Ability

Local Search
Ability

Incorporate Niching
Techniques

Convergence
Speed

GA [33] evolutionary intelligence probabilistic search No Slow

DE [34] evolutionary intelligence probabilistic search No Slow

PSO [35] swarm intelligence probabilistic search No Slow

CLPSO [36] swarm intelligence probabilistic search No Slow

ABC [37] swarm intelligence probabilistic search No Slow

MLGSA [38] swarm intelligence probabilistic search No Fast

ACS-NP [41] swarm intelligence probabilistic search Yes Fast

CLPSO-LS [42] swarm intelligence probabilistic search Yes Fast

QTS [39] evolutionary intelligence probabilistic search No Fast

FTO [44] Recursive search recursive search No Fast

: weak; : medium; : strong.

3. System Model

Table 4 lists the essential notations used in the system model.
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Table 4. List of essential notations in the model descriptions.

# Description

W Total working duration
S Total sleep duration
Wk The k-th working interval
Sk The k-th sleep interval
n Number of intervals
S0 Initial sleep interval (fixed)
s Average sleep duration per duty cycle
w Average working duration per duty cycle
M The interested 2-D square region
Mx Length of M
My Width of M
C(t) The counting process of events in [0, t]
q̂|[0,t] Expected number of events processed in [0, t]
Γs Average number of missed events in sleep duration
Γw Average number of missed events in working duration
Γ Event space
λ Poisson rate
d Distance between sensor and event
r Sensing radius
rmin Minimum sensing radius
rmax Maximum sensing radius
µ Detection accuracy
ξ1, ξ2 Metrics of detection ability
e Energy depletion for sensing
eS Energy depletion of sensing in sleep duration
eW Energy depletion of sensing in working duration
εS Static power loss in sleep mode
εW Static power loss in working mode
γ Coefficient of energy depletion growing with distance
α Changeable power scaling parameter for the sensing circuit
δ Step-size increasing factor
θ Step-size diminishing factor
N Number of sensors
Sgn(·) The sign function
σ(·) The logistic Sigmoid function

3.1. Basic Assumptions

The model operates on a 2-D map with many devices, each equipped with sensors to
perform specific tasks. We make the following basic assumptions:

• A1: The network structure is flat. All nodes are homogeneous with the same energy budget.
• A2: The positions of sensor nodes are uniformly distributed.
• A3: The sensing area is 2-D.
• A4: The transmission/sensing radii are tunable.
• A5: Time is asynchronous. It is hard to coordinate sensors without a central controller

but, otherwise, the central controller incurs a performance penalty. So, sensors em-
brace asynchronous scheduling—every sensor autonomously decides its duty cycle
without synchronizing with each other.

• A6: The sensor node can be movable.
• A7: Location information is unknowable.
• A8: Distance information is unknowable.

3.2. Location Distribution and Sensing Radii

We assume the participants move around in M randomly. The locations of all N
participants follow a uniform distribution. To accommodate different sensing radii, the
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sensor can adjust its transmission range r from rmin to rmax, which is usually accomplished
by varying the transmitting power (see Figure 1).

Figure 1. Tunable sensing radii.

3.3. Event Occurrence and Detection

We assume the events occur randomly and independently in M, subject to a Poisson
process of Poisson rate λ. The Poisson process is a stochastic process used to model random
and independent events. Furthermore, it is assumed that the measurement is efficient,
which means all the events occurring within the sensing range will be expediently detected.
Therefore, the probability that q events processed by a sensor with sensing radius r in
duration t is

Pr (C(t) = q) =
exp

{
−λ′πr2t

}(
λ′πr2t

)q

q!
=

exp{−λt}(λt)q

q!
, (1)

where C(t) is the counting process of events and λ = λ′πr2 represents the average Poisson
rate in the circular sensing region of the sensor. By leveraging the properties of Poisson’s
process, we have:

E[C(t)] = q̂|[0,t] = λt, (2)

where E[·] is the expectation operator and q̂|[0,t] denotes the expected number of events
processed in [0, t].

An event at a distance of d from the sensor has a probability of being detected:

Pr (d) =


1, if d < rmin

exp
{
−ξ1(d− rmin)

ξ2
}

, if rmin < d < rmax

0, if d > rmax

, (3)

where ξ1 and ξ2 are parameters determined by the sensor physical characteristics, which
reflects the probability attenuation coefficients with distance.

In sleep time, all events are considered missed. Let ΓS be the average number of
missed events, then

ΓS = E[C(S)] = λS. (4)
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During working hours, the average number of missed events, ΓW , can be calculated as

ΓW = E[C(W)](1− Pr (d)) = λW(1− Pr (d)). (5)

The event space is
Γ = E[C(W + S)] = λ(W + S). (6)

Now we define the detection accuracy µ as a quantifiable indicator of event missing

µ = 1− ΓS + ΓW
Γ

. (7)

It follows from (3)–(6) that

µ =


W

S + W
, if d < rmin

W
S + W

exp
{
−ξ1(d− rmin)

ξ2
}

, if rmin < d < rmax

0, if d > rmax

. (8)

3.4. Energy Depletion

We consider the sensing energy model introduced in Lee et al. [8]:

eW = γ(d− rmin)
α + εW , (9)

where γ, α are sensor-specific constants; in exemplary cases, α ∈ [2, 4]; εW describes the
static power and the wake-up timing and wake-up frequency will affect the static power
consumption, so εW is inextricably related to scheduling strategies. Equation (9) implies
that the energy depletion of the perceptron during the working duration is determined
by the distance at which an object appears. If a sensor is in sleep mode, then only the
low-power timer and other necessary components remain active, viz.

eS = εS; (10)

εS represents the static power. Since frequent wake-up and sleep can affect the static power,
that means εS is also a function of the scheduling strategy.

The total energy depletion for the sensing circuit is going to be the weighted sum of
these two,

e = eSS + eWW, (11)

where W and S represent working duration and sleeping duration, respectively. Then the
mathematical expectation is:

E[e] = eS
S

S + W
+ eW

W
S + W

. (12)

Assign (9) and (10) to (11), we have:

E[e] = εS
S

S + W
+
(
γ(d− rmin)

α + εW
) W

S + W
. (13)

3.5. Scheduling Model

Figure 2 shows a schematic diagram of a typical alternate sensing scheduling scheme.
A sensor wakes up its sensing unit when transitioning to the working state and turns it off
when the sleep interval comes, and the length of the sleep interval is dynamically adjusted
according to the event occurrence of the previous interval. Despite the scheme’s prevalence,
how to adjust the intervals properly is as yet an open issue.
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Figure 2. The diagram of alternate sensing scheduling.

Now, we establish a baseline scheduling strategy: fixed-time scheduling (denoted as
FT for convenience). In FT, we set the working duration and the sleep duration in advance
and they remain unchanged. Then, we introduce an adaptive scheduling strategy, in which
we dynamically fine-tune the sleep duration as per the event statistics and user-specified
parameters. The mathematical formula is:

Sk =

{
Sk−1 + δSk−1, Sgn(Wk−1) = 0

Sk−1 − θSk−1, Sgn(Wk−1) = 1
, (14)

where δ and θ denotes the step-size increasing/diminishing factor, 0 ≤ δ ≤ 1, 0 ≤ β ≤ 1.
Sgn(·) is sign function:

Sgn(t) =

{
1, If an event is detected during time t

0, Otherwise
. (15)

δ and θ provide the ability to maintain a synergy between the event capture and energy
expenditure. For instance, a larger δ renders more energy-saving but also increases the
probability of missing an event.

3.6. Sensing Coverage

Practical applications require the monitoring of almost the whole area of the wireless
sensor network. Achieving 1-coverage is a minimum requirement (as shown in Figure 3).

Theorem 1. Suppose there are N sensors uniformly distributed in a WSN, the sensing radius of
each sensor is r, r ∈ [rmin, rmax], then the overall detection accuracy is given by:

µ̃ = 1− exp
{
− W

S + W
Nπr2

MX MY

}
. (16)

Proof. The probability of a random event occurring within the sensing radii of N0 sen-
sors is:

Pr 0 =

(
Nπr2

MX MY

)N0

N0
exp

{
− Nπr2

MX MY

}
. (17)

The expected number of sensors within the scope of an event is:

E[N0] =
N

MX MY
πr2. (18)

The expected number of sensors that are within the scope of an event and are them-
selves in a working state is:

E[NW
0 ] = − W

S + W
N

MX MY
πr2. (19)
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Therefore, the probability of a random event being detected by a sensor is:

1− exp
{
− W

S + W
Nπr2

MX MY

}
. (20)

The theorem holds.

Theorem 1 reveals that the detection accuracy is a function of the average number of
sensors in each cell area and sensing scheduling.

Figure 3. The diagram of 1-coverage.

3.7. Problem Formulation

The design objective of our model is an optimization problem:

min J = min
{

1
2
(1− µ) +

1
2

σ

(
E[e]
1000

)}
. (21)

We change the optimization goal from maximizing µ to minimizing 1− µ. σ(·) is the
logistic Sigmoid function, 1

1+exp(−x) , which maps the entire number line into a small range
between 0 and 1. The reason we divide E[e] by 1000 is that we want to convert the value of
E[e] to the linear region of the Sigmoid function—as can be seen from Figure 4, the linear
region of 1

1+exp(−x) is only 0–1 mW, while that of 1
1+exp(−x/1000) is 0–4000 mW wide, which

can fully cover the maximum variation range of energy depletion.
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Figure 4. The liner region for different Sigmoid functions.

We list all the equations that determine J:

S =
k=1

∑
n

Sk

Sk =

{
Sk−1 + δSk−1, Sgn(Wk−1) = 0
Sk−1 − θSk−1, Sgn(Wk−1) = 1

W =
k=1

∑
n

Wk

Wk = w̄

µ =


W

S + W
, if d < rmin

W
S + W

exp
{
−ξ1(d− rmin)

ξ2
}

, if rmin < d < rmax

0, if d > rmax

E[e] = εS
S

S + W
+
(
γ(d− rmin)

α + εW
) W

S + W
d ≤ MX

d ≤ MY

2 ≤ α ≤ 4

0 ≤ δ ≤ 1

0 ≤ θ ≤ 1

(22)

Since the occurrence of events is random, then:

Pr{Sgn(Wk−1) = 0} = Pr{Sgn(Wk−1) = 1} = 1
2

, (23)

which means

S =
n

∑
k=1

Sk

= ∑ Sk|{Sgn(Wk−1) = 0}+ ∑ Sk|{Sgn(Wk−1) = 1}

=

(
1 +

δ− θ

2

)
nS0.

(24)
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The working interval is fixed to w̄, so

W =
n

∑
k=1

Wk = nw̄. (25)

Put these together, then we get the final objective function:

J =



1
2

(
1 + δ−θ

2

)
nS0(

1 + δ−θ
2

)
nS0 + nw̄

+
1
2

σ

 1
1000

(
γ(d− rmin)

α + εW
)
nw̄ + εS

(
1 + δ−θ

2

)
nS0(

1 + δ−θ
2

)
nS0 + nw̄

, if d < rmin

1
2

1−
nw̄ exp

{
−ξ1(d− rmin)

ξ2
}

(
1 + δ−θ

2

)
nS0 + nw̄

+
1
2

σ

 1
1000

(
γ(d− rmin)

α + εW
)
nw̄ + εS

(
1 + δ−θ

2

)
nS0(

1 + δ−θ
2

)
nS0 + nw̄

, if rmin < d < rmax

1
2

σ

 1
1000

(
γ(d− rmin)

α + εW
)
nw̄ + εS

(
1 + δ−θ

2

)
nS0(

1 + δ−θ
2

)
nS0 + nw̄

 if d > rmax

. (26)

The constraint conditions are

s.t. 0 ≤ δ ≤ 1,

0 ≤ θ ≤ 1
. (27)

εW and εS are affected by the scheduling strategy. The question now is how to establish the
functional relationship between εW , εS and δ, θ. We have been thinking about numerical
fitting methods—if we have real historical sample sensory readings, we can fit out the
function between εW , εS and δ, θ.

Numerical fitting is also known as curve fitting. As for the discrete sensory data
collected by sampling, we often want to get a continuous function (i.e., a curve) or a denser
discrete equation consistent with the known data. The steps of numerical fitting are:

1. Presume a functional form. Commonly used function forms include: polynomial
function, exponential function, logarithmic function, trigonometric function, and
so forth.

2. Determine the indeterminate coefficients. Using the least square method, point group
center method, random fuzzy method, and so on, to determine the coefficients of the
function. Of those, the least square method is the most commonly used.

3. Evaluation. The imitative effect can be measured by the mean square error (MSE) or
the degree of fit (R2).

4. Fibonacci Tree Optimization Algorithm

Recall that one-dimensional Fibonacci (golden ratio) search cannot proficiently take
care of multi-variate issues, giving rise to Fibonacci Tree Optimization—an improved
multi-dimensional search algorithm [44].

Let XA, XB and XC be the vectors in D-dimensional Euclidean space. In particular,
D = 2. XA and XB address the endpoints of the search component fulfilling the optimiza-
tion rule, and XC signifies the split points that can be resolved from searching rules. A
proportion of the vectors can be determined as follows:

‖XC − XA‖
‖XB − XA‖

=
‖XB − XC‖
‖XC − XA‖

=
Fp

Fp+1
, (28)

where Fp denotes the pth Fibonacci number, and Fp
Fp+1

is equal to what is called the golden ratio.
The fitness function determined by the endpoints in the construction ought to be

assessed as:
J(XA) < J(XB). (29)
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J(·) denotes the objective function. Then, the coordinate for split point XC can be calcu-
lated as:

XC = XA +
Fp

Fp+1
(XB − XA). (30)

Finding the optimal value can likewise be viewed as setting up a search component in
FTO, and can be partitioned into two phases: the local optimization phase and the global
optimization phase. Allow Θ to signify the points set of the objective function and set
|Θ|num = Fp, i = 1, 2, · · · , n, where |·|num denotes the number of points in the set, and d
represents the depth of the tree. We select the point with the best fitness value. Then, in the
following optimization stage, the points are rearranged by their fitness values from best
to worst.

There are two search rules in FTO, which can be summed up:
Rule One: Consider the endpoints XA and XB, which are given by

{XA} = Θ =
{

Xk|k ∈ [1, Fp]
}

(31)

{XB} = Θ =

{
X|X ∈

D

∏
j=1

[
X J

lb, X J
ub

]}
, (32)

where Θ denotes the points set, with each point represented as Xk, of the pth iteration, and
k is the index. XA absorb every point from Θ. XB select Fp points from Θ randomly, where
Fp denotes the population size. X J

ub and X J
lb are the upper and lower limits for every point.

For ∀X ∈ {XB}, X satisfies a uniform distribution over the span
[

X J
lb, X J

ub

]
, viz.

Pr(X) = U(Xlb, Xub) =
1

Xub − Xlb
. (33)

Using the XA and XB given above, the split points XS1 are solved by Equation (30).
Rule Two: Assume that Xbest is the optimal point in the current iteration given by

rule one, viz.
Xbest = BEST(Θ). (34)

Then, let XA = Xbest; we have

J{XA} = min
{

J{Xk}|k ∈ [1, Fp]
}

(35)

XB = {Xk|Xk ∈ Θ ∧ Xk 6= XA}. (36)

Hence, the split points XS2 in the local optimization stage can be determined by
Equations (35) and (36).

After applying the two rules above, new endpoints XA and XB and split points XS1
and XS2 are generated, and now we have 3Fp points. These points are sorted from best to
worst based on the fitness value, retaining the optimal Fp + 1 points, while the remaining
3Fp − Fp − 1 points are eliminated. At the end of this process, the set of search spaces for
the current p iteration is updated from the remaining points and form a new set for the
next iteration.

Figure 5 shows the branch generation process in the Fibonacci tree optimization
algorithm. The depth is initialized as expected, and the number of points in each branch
layer is equal to Fp. The dotted circle represents the search points set of the previous
iteration; the solid red circle represents the endpoint XA of the current iteration, and the
solid blue circles represent the global random endpoints. Figure 5a shows the global
optimization phase, the split points XS1 are constructed based on XB and XA and are
represented by a solid white circle. Figure 5b shows the local optimization phase. New
split points XS2 can be obtained as per the rules.
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(a) global optimization stage (b) local optimization stage

Figure 5. The diagram of the branch generation process in the Fibonacci tree optimization algorithm.

The pseudo-code for the Fibonacci branch generation process is shown as Algorithm 1.

Algorithm 1: Pseudo-code of Fibonacci branch generation process
Input: Branch depth: d; Max iterations: Imax
Output: Optimal point: Xbest

1 Initialize set Θ with F1 global random points;
2 for p = 1→ Imax do
3 Rule 1:
4 {XA} ← Θ;
5 Generates {XB}, |{XB}|num = Fp;
6 Compute the split points set {XS1} and merge them into the set Θ;
7 Sort and preserve top best Fp points of the set Θ;
8 Rule 2:
9 XA ← Xbest;

10 {XB} = {Xk|∀Xk ∈ Θ ∧ Xk 6= XA};
11 Compute the split points set {XS2} and merge them into the set Θ;
12 Sort and preserve top best Fp points of the set Θ;
13 p← p + 1;
14 if |Θ|num = Fd then
15 break;
16 end
17 end
18 return Xbest;

5. Analysis
5.1. Why FTO Algorithm Is Chosen for Parameter Optimization?

1. In the FTO algorithm, the growth of a Fibonacci tree is based on the optimal points of
the latest generation, which is a process of competitive elimination. If there are peaks
with different heights, the smaller peaks will be removed in the optimization process.
Hence, the global optima can be achieved.

2. The inner structure of the FTO algorithm meets the golden ratio all over. With each
iteration, the separation of the golden ratio rapidly compresses the search space,
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providing the local optimal solution. It is adapted to the optimization of multi-modal
functions. Conversely, most heuristic algorithms are based on the probabilistic search;
they are essentially trial and error methods. It may take thousands or even millions
of iterations, which is uneconomical and slow.

3. The FTO setup only concerns the initial Fibonacci number, which is exquisite and sim-
ple. The typical way to obtain multiple local extremums of the multi-modal function
using heuristic algorithms is the niche technology. Setting population parameters has
a significant impact on the optimistic effects.

4. Just like most heuristic algorithms, FTO is also inspired by natural phenomena—plant
phototropism. Plants flourish more in sunny areas. To solve the optimization of the
multi-modal function, FTO considers the global search space as a sunlit area. The hit
probability is sustained and stable. The lush areas refer to the local search process,
reflecting the fact that FTO can alternate between global and local searches.

5. It fully utilizes the computer memory to save the optimization process and therefore
is traceable.

The comparison between FTO and other optimization algorithms is listed in Table 5.
Figure 6a illustrates the idea of golden separation in the FTO algorithm’s structure. Figure 6b
reflects the global/local alternate search process inspired by phototropism of plants.

Table 5. The comparison between FTO and other optimization algorithms.

FTO Heuristic Algorithms

Parameters simple many, hard to determine
Imitation of nature phototropism swarm intelligence

Characteristic competitive elimination alternate
search golden ratio search

random search based on
probability

Global search capability strong prone to be trapped in local
optimum

Convergence speed fast slow
Resources footprint low high

(a) The idea of golden separation in the FTO algorithm
structure

(b) Global/local alternate search in FTO

Figure 6. Optimal points in each iteration of FTO for optimizing: (a) f (x, y) =
(

3
0.05+9x2+9y2

)2
+
(
9x2 + 9y2)2, and

(b) f (x, y) = 0.5(sin(10 ln(x)) + sin(10 ln(y))), x, y ∈ [0, 1].
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5.2. Why Do We Claim FTOS Strategy Is Superior to Other Scheduling Strategies?

1. Some of the latest scheduling strategies, such as LEACH, work under strict assump-
tions; for example, the network structure is flat, nodes are densely distributed, time is
synchronized, and so forth. The FTOS strategy does not require time synchronization
(centralized scheduling); each node independently determines the duty cycle; node
density is not important; the location and distance information is not needed.

2. The FTOS strategy determines the scheduling parameters as per the occurrence of
events from the previous period, which is very scalable.

3. Once the parameters are determined, they remain unchanged in the coming hours;
you can easily deploy them.

Table 6 enlists the above-mentioned points.

Table 6. The differences between FTOS and other scheduling strategies.

FTOS Other Scheduling Strategies

Assumptions

Time synchronization no yes
Node density no requirement high
Transmission radii tunable untunable
Node location movable immovable

Adaptability strong weak
Deployment easy difficult

6. Experiment
6.1. Experimental Setup

We set up a wireless sensor network comprising three nodes (N = 3), covering a
5 m × 5 m lawn area (see Figure 7). Each node owns a single-chip microcomputer with a
STM32F103ZET6 processor and a diffuse reflection photoelectric infrared proximity sensor.
The technical parameters of the sensor are presented in Table 7.

Figure 7. The experimental scene.

We randomly throw objects into the area to simulate the event. The diffuse reflection
photoelectric infrared proximity sensor with a sensing radius of r = 3~5 m (rmin = 3, rmax = 5)
opens the switch when there is an object to block; the processor then issues a command to
pull the buzzer.

Since the working voltage of the single-chip microcomputer is fixed to 5 V, the power for-
mula is P = UI, so that the current reflects the size of the power consumption. Consequently,
the energy is measured by the reading of the ammeter placed on each microcontroller.
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Table 7. The technical parameters for the diffuse reflection photoelectric infrared proximity sensor.

Parameter Value

Product model E3F-DS100P1
Operating voltage DC 6~36 V
Operating current 200 mA
Response frequency 50 Hz
Sensing object Any opaque object
Sensing radius 10~100 cm, adjustable

6.2. Train
6.2.1. Function Fitting

We assume that the sensor node determines its sleep interval based on the adaptive
scheduling model mentioned in Section 3, where the parameters δ and θ are randomly
generated on [0, 1]. The polynomial function, double-exponential function, and checkmark
function are used to fit the data (the forms are shown in Table 8). The determination of the
coefficients is performed by the nonlinear least square method.

We generated 100 samples, recorded the static power losses, εS and εW , and the
corresponding parameters δ and θ . Figure 8 shows the fitting curves. Table 9 enlists the
degree of fit, R2.

Table 8. The fitting functions.

Function Form

Polynomial function ax5 + bx4 + cx3 + dx2 + ex + f
Double-exponential function aebx + cedx

Checkmark function ax + b
x + c

Table 9. The degree of fit (R2).

Cases Polynomial Function Double-Exponential Function Checkmark Function

εS and δ 0.87 0.93 0.35
εS and θ 0.83 0.80 0.56
εW and δ 0.73 0.32 0.46
εW and θ 0.54 0.76 0.93

(a) εS and δ (b) εS and θ

Figure 8. Cont.
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(c) εW and δ (d) εW and θ

Figure 8. The fitting curves of εS, εW and δ, θ.

Now that we have determined the functional relations between εS, εW and δ, θ, the
explicit form of the objective function J can be obtained by putting the fitted functions in.

6.2.2. Univariate Analysis

Three sets of parameters, (0.175, 0.175), (0.65, 0.65), (0.5, 0.5), were used to test the
sensing power dissipation against α in base sleep duration s̄ and base working duration w̄.
The result is shown in Figure 9. When the distance between the event and the sensor, and
the base sleep duration and base working duration, are fixed (d = 3.15 m, w̄ = 1 s, s̄ = 1 s),
the working power increases exponentially with α, and the sleeping power dissipation
remains unchanged for α. With the increase of step-size parameter δ and θ, both the
working power dissipation ew̄ and the sleeping power dissipation es̄ decrease.

Figure 9. The power dissipation against α in base duration s̄ and w̄ (d = 3.15 m, w̄ = 1 s, s̄ = 1 s).

Figure 10 shows the variation of detection accuracy and expected energy depletion
with δ. Figure 11 shows the variation of detection accuracy and expected energy depletion
with θ. It can be seen that the two parts of the objective function J, 1− µ grow with δ,
while σ(E[e]/1000) decreases with δ; the optima can only be obtained by jointly optimizing
1− µ and σ(E[e]/1000). 1− µ and σ(E[e]/1000) move in the opposite direction against
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θ and w̄ and s̄ impose opposite effects on 1 − µ and σ(E[e]/1000). Anything that can
increase/decrease 1− µ/σ(E[e]/1000) by increasing s̄ can also be achieved by decreasing w̄.

(a) w̄ = 1 s, varying s̄ = 0.5 s, 1 s, 2 s (b) s̄ = 1 s, varying w̄ = 0.5 s, 1 s, 2 s

Figure 10. The detection accuracy and energy depletion against δ. (a) w̄ is fixed to 1 s, varying s̄; (b) s̄ is fixed to 1 s, varying w̄.

(a) w̄ = 1 s, varying s̄ = 0.5 s, 1 s, 2 s (b) s̄ = 1 s, varying w̄ = 0.5 s, 1 s, 2 s

Figure 11. The detection accuracy and energy depletion against θ. (a) w̄ is fixed to 1 s, varying s̄; (b) s̄ is fixed to 1 s, varying w̄.

Next, we set up a benchmark strategy: a fixed sleep time strategy, in which Sk = s̄ =
Wk = w̄ = 1 s. The relationship between the number of nodes N, the sensing radius r and
the overall detection accuracy is studied. The results are shown in Figure 12. For both
the proposed adaptive scheduling and fixed scheduling strategies, the detection accuracy
will improve with the increase of the sensing radius and the number of nodes. However,
the detection accuracy improvement of the proposed adaptive scheduling strategy is
significantly higher than that of the fixed scheduling strategy.
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(a) µ and N (b) µ and r

Figure 12. Detection accuracy for the proposed adaptive scheduling and fixed scheduling (a) against the number of cognitive
sensors N (r is fixed and r = 3.15 m); and (b) sensing radius r (N is fixed and N = 100).

6.2.3. Optimization

By constructing a 3-D surface from the scattered data (see Figure 13), we found that
J(δ, θ) is a bivariate multi-modal function, which favors the FTO algorithm.

Figure 13. 3-D surface graph for scattered data.

Figure 14 shows the optimization process of the FTO algorithm, and the values of the
horizontal and vertical axis represent the values of δ and θ, respectively. The darker the
color of the contour map, the smaller the value of J. The algorithm stops after 500 iterations,
and Figure 15 provides the final comparison of the peak areas. We can see that the peak
area in the lower-left corner is the largest, and is where the optimal point is most likely
to appear. The central point of the aforementioned area was taken as the ultimate global
optimization point with the coordinate pair (δ, θ) = (0.175, 0.175).
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(a) 10 iterations (b) 50 iterations

(c) 200 iterations (d) 500 iterations

Figure 14. The contour plots in iterations.

Figure 15. The determination of the ultimate optimum point.
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As a comparison, we also implemented the particle swarm optimization (PSO) algo-
rithm, genetic algorithm (GA), comprehensive learning PSO (CLPSO) algorithm, differ-
ential evolution (DE) algorithm, and the artificial bee colony (ABC) algorithm. Table 10
outlines the parameters, and Table 11 presents their optimization results. The FTO algo-
rithm outperforms others in most iteration rounds.

Table 10. The algorithm parameters adopted.

Algorithm Parameter Value

Particle Swarm Optimization (PSO)

Population 20
Cognitive ratio 2

Social coefficient 2
Inertia weight 0.4~0.9

Genetic Algorithm (GA)

Population 100
Point mutation 0.01
Hoist mutation 0.4

Parsimony coefficient 0.01
Learning rate 0.05~0.5

Comprehensive Learning Particle Swarm Optimization (CLPSO)

Population 20
Cognitive ratio 2

Social coefficient 2
Inertia weight 0.4~0.9

Differential Evolution (DE)
Population 20

Scaling factor 0.6
Crossover rate 0.8

Artificial Bee Colony (ABC)
Followers 50
Scouters 20

Employed foragers 1

Fibonacci Tree Optimization (FTO)

Nested branch depth 2
Total branch depth 6

Search space [0,1]
Max iterations 1000

Precision 0.001

Table 11. The optimization results.

Algorithm Iter = 10 Iter = 50 Iter = 200 Iter = 500
min J δ θ min J δ θ min J δ θ min J δ θ

PSO 0.65 0.57 0.165 0.67 0.71 0.11 0.55 0.75 0.34 0.56 0.59 0.65
GA 0.87 0.57 0.2 0.76 0.38 0.6 0.57 0.56 0.13 0.55 0.55 0.65

CLPSO 0.52 0.72 0.4 0.49 0.18 0.74 0.56 0.75 0.9 0.54 0.15 0.15
DE 0.67 0.57 0.37 0.67 0.78 0.56 0.5 0.44 0.15 055 0.65 0.65

ABC 0.63 0.57 0.38 0.58 0.51 0.17 0.49 0.45 0.65 0.49 0.65 0.5
FTO 0.52 0.74 0.56 0.45 0.18 0.86 0.45 0.8 0.13 0.45 0.175 0.175

6.3. Test

Once the parameters of the strategy are determined, they remain unchanged in the
coming hours.

Figure 16a presents the optimal J for the first four runs, applying ABC, DE, GA, PSO,
CLPSO and FTO; Figure 16b shows a statistical result from 100 runs. From the perspective
of distribution, FTO demonstrates a better optimistic effect than the other algorithms for its
lowest center J value 0.47.
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(a) Optimal J in first 4 runs (b) Statistical results from 100 runs

Figure 16. Test results of FTOS scheduling with parameters optimized by different algorithms.

We have implemented several sensing scheduling strategies including LDAS, PECAS,
BS and DSS. These strategies all make similar assumptions. Figure 17 shows the results.
FTOS (δ = θ = 0.175) accomplished better detection accuracy and consumes the bare
minimum of energy compared to the other sensing scheduling strategies. For sensing
duration (t = 20~150 s), all sensing scheduling strategies improved, viz., 1− µ and E[e]
decline with time.

(a) σ(1− µ) (b) σ(E(e)/1000)

Figure 17. The expected detection accuracy and the expected energy depletion of different sensing scheduling strategies at
different time scales.

7. Deficiencies and Unresolved Issues

The research of this paper is still flawed in the following aspects:

1. Selection of fitting functions. Some simple fitting functions are selected by experience
to simulate the relationship between variables related to the objective function and
the parameters of the scheduling strategy. The results are indeed good, but other
fitting functions are still worth trying.
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2. Selection of sensors. The diffuse reflection photoelectric infrared proximity sensor,
E3F-DS100P1, has a sensing radius of 3~5 m. If you have the budget to pay, you
had better use sensors with a larger sensing radius and more accuracy, for example,
laser radar.

3. Too few nodes. Because of the insufficient number of devices we have, we have only
configured a 3-node network. Experiments with more nodes would be more convincing.

The dynamics of network traffic were not analyzed. It is also interesting to associate
our strategy with other approaches, such as the follow-up of specific targets in [19], which
is also a topic for future efforts.

8. Conclusions

The FTOS strategy proposed in this paper addresses the synergy between the energy
availability and fault tolerance of event monitoring. The experimental results show that the
FTOS strategy contributes to reducing energy depletion and increasing detection accuracy.
It outperforms LDAS, BS, DSS and PECAS, which have the same design objectives. The
experimental findings show that the step-size parameters optimized by the FTO algorithm are
better than those optimized by PSO, GA, and so forth. We also guide the actual deployment.
It should be noted that when applied in practice, the FTOS strategy can be generalized only
if the step-size can be systematically formulated.
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