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The mitochondrial DNA of Trypanosomatids, known as the kinetoplast DNA or kDNA or
mtDNA, consists of a few maxicircles and thousands of minicircles concatenated together
into a huge complex network. These structures present species-specific sizes, from 20 to
40 Kb in maxicircles and from 0.5 to 10 Kb in minicircles. Maxicircles are equivalent to
other eukaryotic mitochondrial DNAs, while minicircles contain coding guide RNAs
involved in U-insertion/deletion editing processes exclusive of Trypanosomatids that
produce the maturation of the maxicircle-encoded transcripts. The knowledge about
this mitochondrial genome is especially relevant since the expression of nuclear and
mitochondrial genes involved in oxidative phosphorylation must be coordinated. In
Trypanosoma cruzi (T. cruzi), the mtDNA has a dual relevance; the production of
energy, and its use as a phylogenetic marker due to its high conservation among
strains. Therefore, this study aimed to assemble, annotate, and analyze the complete
repertoire of maxicircle and minicircle sequences of different T. cruzi strains by using DNA
sequencing. We assembled and annotated the complete maxicircle sequence of the Y
and Bug2148 strains. For Bug2148, our results confirm that the maxicircle sequence is
the longest assembled to date, and is composed of 21 genes, most of them conserved
among Trypanosomatid species. In agreement with previous results, T. cruzi minicircles
show a conserved structure around 1.4 Kb, with four highly conserved regions and other
four hypervariable regions interspersed between them. However, our results suggest that
the parasite minicircles display several sizes and numbers of conserved and hypervariable
regions, contrary to those previous studies. Besides, this heterogeneity is also reflected in
the three conserved sequence blocks of the conserved regions that play a key role in the
minicircle replication. Our results using sequencing technologies of second and third-
generation indicate that the different consensus sequences of the maxicircles and
minicircles seem to be more complex than previously described indicating at least four
different groups in T. cruzi minicircles.
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INTRODUCTION

Trypanosoma cruzi is a unicellular eukaryotic organism that
causes the Chagas disease or American Trypanosomiasis, a
chronic endemic illness of Latin America, and a neglected
tropical disease (Pérez-Molina and Molina, 2018). Nowadays,
it has been estimated that there are around 6–7 million of
chronically infected people (World Health Organization). This
parasite has a very complex life cycle that includes an
invertebrate hematophagous triatomine vector and a broad
range of mammalian hosts (Clayton, 2010). Also, T. cruzi has
different biological stages (de Souza et al., 2010; Rodrigues et al.,
2014). The non-infective epimastigotes are present in the midgut
of triatomines where they differentiate into infective metacyclic
trypomastigotes, that after the infection of host cells are
differentiated into the replicative amastigote stages and
subsequently into infective trypomastigotes that reach the
bloodstream (Echeverria and Morillo, 2019). Chagas disease
presents an acute phase with low mortality and symptomatology.
Then, the patients can remain in an asymptomatic chronic
phase for life or in the 30–40% of them will produce after
10–30 years chronic myocarditis, megavisceras, or both (Rassi
et al., 2012).

T. cruzi is characterized for showing a great genomic
heterogeneity and plasticity across strains (Reis-Cunha et al.,
2015; Callejas-Hernández et al., 2018; Herreros-Cabello et al.,
2020). This diversity at the genomic level, has promoted the
creation of different methods for the classification of hundreds of
strains described to date (Zingales et al., 2009; Zingales et al.,
2012; Barnabé et al., 2016). These classifications have been
established based on some conserved genetic sequences
(genomic, mitochondrial and microsatellite DNA). Besides,
some researchers have suggested that both the parasite and
host genetic variability could be the causes of differential
clinical manifestations of Chagas disease (Manoel-Caetano Fda
and Silva, 2007). Also, transcriptomic analysis revealed
differences between virulent and non-virulent strains (Belew
et al., 2017; Oliveira et al., 2020). Indeed, some T. cruzi strains
highly differ in pathogenicity. Some are acute lethal strains as Y,
whereas others, such as VFRA can produce a chronic infection in
BALB/c mice (Rodriguez et al., 2014). Furthermore, proteomic
analysis, comparing strains with different pathogenicity,
indicates that strains inducing chronic infection have enriched
antioxidant defenses, while those inducing acute infections
produce nucleotides and proteins involved in parasite
replication and lethality (Herreros-Cabello et al., 2019).

All the Trypanosomatids have a single large mitochondrion
per cell (Maslov et al., 2019). Its mitochondrial DNA is a network
of concatenated circular molecules of maxicircles and minicircles
that is called the kinetoplast (kDNA). This structure contains
dozens of maxicircles (20-40 Kb) and thousands of minicircles
(0.5-10 Kb) with varying sizes depending on species (Shapiro,
1993; Lukes et al., 2002; Thomas et al., 2007).

Kinetoplasts may play a role in the pathogenicity of T. cruzi,
and some researchers suggest the minicircles can integrate into
the host genome generating autoimmune events (Simoes-
Barbosa et al., 2006; Hecht et al., 2010). Also, maxicircle gene
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deletions have been associated with asymptomatic patients of
Chagas disease (Baptista et al., 2006). Both maxicircles and
minicircles have been proposed as targets for molecular
detection of T. cruzi DNA (Morel et al., 1980; Schijman et al.,
2011; Rusman et al., 2019).

Maxicircles contain the characteristic mitochondrial genes of
other eukaryotes (Simpson, 1987) and it has been shown that
their sequence is characterized by two main regions: the coding
region, highly conserved across strains and the divergent/
variable region, very difficult to sequence due to its repetitive
nature and length variability. Recent findings of maxicircles
using third-generation sequencing technologies have revealed
that the sequence length may differ across strains, but more
importantly, for some strains, its complete sequence is longer
than previous estimations (Gerasimov et al., 2020).

Minicircles are exclusive to Trypanosomatids and they are
directly involved in U-insertion/deletion editing system as they
encode guide RNAs (gRNAs) (Simpson et al., 2003; Aphasizhev
and Aphasizheva, 2014; Smith et al., 2020). Moreover, it is
suggested that both molecule populations are heterogeneous in
the cell, showing strain-specific variations (Westenberger et al.,
2006; Messenger et al., 2012).

Several studies have elucidated that the set of minicircles in
T. cruzi presents a conserved structure among strains of
approximately 1.4 Kb, being organized into four highly
conserved regions (mHCRs) of 120 bp located 90 degrees apart
from each other, and an equal number of hypervariable regions
(mHVRs) of 330 bp interspersed between these conserved
regions (Leon et al., 1980; Gonzalez, 1986; Macina et al., 1986;
Degrave et al., 1988; Avila et al., 1990; Shapiro and Englund,
1995; Guhl et al., 2002; Junqueira et al., 2005). Also, mHVRs
diversity have gained attention since they are involved in specific
functions that are unique for Trypanosomatids. mHVRs code for
gRNAs that direct the edition of several mitochondrial mRNAs
converting these primary transcripts into functional messages
(Simpson et al., 2003).

The presence of three conserved sequence blocks (CSB) in
Trypanosomatids minicircles. CSB-1 (10 bp sequence) and CSB-
2 (8 bp sequence) show lower interspecies homology, while CSB-
3 (12 bp sequence), known as the Universal Minicircle Sequence
(UMS), is conserved within most Trypanosomatids and
constitutes the minicircle replication origin (Ray, 1989). Also,
the number, size, and location of these CSBs in minicircles seem
to differ between species (Ponzi et al., 1984; Sugisaki and Ray,
1987; Degrave et al., 1988; Botero et al., 2018). Concretely, the
CSB-3 or UMS is the specific binding site of the UMS binding
protein (UMSBP), which has been related with the minicircle
replication and kDNA segregation (Milman et al., 2007). UMSBP
has been widely studied in Crithidia fasciculate (Tzfati et al.,
1995; Abu-Elneel et al., 1999; Abu-Elneel et al., 2001; Onn
et al., 2006), but its presence has been revealed in other
Trypanosomatids such as T. cruzi (Milman et al., 2007;
Herreros-Cabello et al., 2019), Leishmania donovani (Singh
et al., 2016) or T. brucei (Milman et al., 2007). According to
these studies the consensus sequence for each CSB, including T.
cruzi, would be: CSB-1=AGGGGCGTTC, CSB-2=CCCCGTAC
and CSB-3=GGGGTTGGTGTA.
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However, a similar analysis is lacking in T. cruzi. Therefore,
our study aimed to assemble, annotate, and analyze the complete
repertoire of maxicircle and minicircle sequences of different T.
cruzi strains.
MATERIALS AND METHODS

Parasite Cultures and DNA Isolation
Y strain was obtained from Dr. J. David (Harvard Medical
School, Boston, Massachusetts, USA), originally isolated back
in 1953 (Amato Neto, 2010). Bug2148 strain was obtained from
Dr. M. Miles (London School of Hygiene and Tropical Medicine,
London, UK) through the European program ChagasEpiNet.

Vero cells were culture with complete Roswell Park Memorial
Institute (RPMI, Thermo Fisher Scientific) medium containing 2
mM L-glutamine, 100 UI/ml of antibiotics mixture, 10 mg/m
streptomycin and 0.1 mM non-essential amino acids and
supplemented with 5% Fetal Bovine Serum (FBS, Gibco Life
Technologies, Grand Island, NY) at 37°C in an atmosphere
of 5% CO2 until the cells reached 80% confluence in biosafety
level 3 (BSL3) cell culture laboratories. The cell monolayer was
subsequently infected with previously infected Vero cell-derived
trypomastigotes (Bug2148 and Y strains). After 4 days, the
supernatant medium was collected, dead cells and amastigotes
were removed by centrifugation at 1000 g by 5 min and
trypomastigotes were collected by centrifugation at 1600 g
for 10 min.

DNA from Y strain was isolated using the “High Pure PCR
Template Preparation Kit” (Roche). DNA from Bug2148 strain
was isolated using the Phenol-Chloroform method to obtain
larger fragments for sequencing as needed for PacBio technology.
Samples for sequencing were treated with DNAse-free RNAse I
(Roche) and quantified by absorbance at 260 nm using the
Nanodrop ND-1000 (Thermo Scientific). All samples showed
an A260/A280 ratio higher than 2.0 and DNA integrity was
assessed by agarose gel electrophoresis.

Maxicircle and Minicircle Sequencing
DNA from Bug2148 was sequenced using Pacific Biosciences
(PacBio) technologies at the Norwegian Sequencing Centre
(www.sequencing.uio.no), a national technology platform
hosted by the University of Oslo and supported by the
“Functional Genomics” and “Infrastructure” programs of the
Research Council of Norway and the Southeastern Regional
Health Authorities. PacBio library preparation includes a
fragment length filtering (>8Kb). DNA from the Y strain was
sequenced with Illumina MiSeq series by the Genomics facility at
the Parque Cientıfíco de Madrid (PCM, Madrid, Spain). Both are
described in Callejas-Hernández et al., (2018). Integrity from two
samples was analyzed in Bioanalyzer (Agilent 2100) to confirm
DNA fragmentation level larger than 20 Kb for PacBio and 900
bp for Illumina sequencing. No overlapping Paired-end reads of
2 × 300 format and 8–15 Kb of read length were obtained
from Illumina and PacBio, respectively. Raw reads were subject
to quality-filtering using standard processes and analyzed
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using FASTQC tool. Reads with quality lower to 25 (phred
score based) and mapped to nuclear genomic DNA references
were discarded.

Assembly and Gene Annotation of
Trypanosoma cruzi Maxicircle and
Minicircle Sequences
Reads from the Y strain were assembled using SPADES (v3.9.0).
Bug2148 maxicircle was assembled using HGAP v3 (Pacific
Biosciences, SMRT Analysis Software v2.3.0), seed sequence length
and minimal coverage values were set to 6 Kb and 15X, respectively.
Assembled maxicircles were annotated in a semi-automatic mode.
We checked the synteny of maxicircle genes described by Ruvalcaba-
Trejo and Sturm (2011) using Blastn searches.

Maxi and minicircle sequences were further tested for
circularity, manifested by the presence of directly repeated
ends in the assembled molecule. Briefly, contigs were split into
two halves, and then Minimus2 [from to Amos (version 3.1.0)]
tool was used to identify repeated ends as described by Camacho
et al. (2019) and Treangen et al. (2011).

Maxicircle synteny between strains was analyzed using Artemis
Comparison Tool (ACT) and R using the genoPlotR package.

Analysis of Conserved and Variable Motifs
in Minicircles
Multiple alignments of the minicircle sequences of Y strain were
performed using MUSCLE software (https://www.ebi.ac.uk/
Tools/msa/muscle/). The conserved regions of the Y strain
minicircles were analyzed using the WebLogo 3 (version 3.7.4)
tool (Crooks et al., 2004).

Validation of Minicircles by PCR
Amplification and Sequencing
Experimental validation of some minicircles of Y strain was
performed by PCR amplification. Primers were manually
designed and then checked in silico by Primer Blast, NCBI
Blast and TriTrypDB Blast to check the predicted PCR
amplicon length and their specificity to T. cruzi. Primers for
each minicircle are described in Supplementary Table S1. The
same primers were tested in DNA sample of Bug2148 strain.
Amplification was carried out in a 25 µL-final volume using Q5
High-Fidelity DNA Polymerase protocol (New England BioLabs)
and 30 ng of DNA. PCR was run on a MyCycler Thermal Cycler
(BioRad) using the following profile: initial denaturation at 95°C
for 3 min followed by 20 cycles of 30 s at 95°C, 30 s at 58°C
and 30 s at 72°C, completed by a final incubation of 5 min at
72°C. Amplification products were analyzed by agarose gel
electrophoresis and sequenced using Sanger technology by the
Plataforma de Genoḿica of the Parque Cientıfíco de Madrid.
RESULTS

Maxicircles of Y and Bug2148 Strains
In agreement with previous estimations, the total length of the Y
strain maxicircle is about 24 Kb. However, in the case of Bug2148
June 2021 | Volume 11 | Article 672448
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strain, the sequence length is the largest obtained to date with
64.11 Kb, suggesting that an unknown level of complexity may
exist for some T. cruzi strains. Both maxicircles are available in
Supplementary Data S1, S2, and accessible in GenBank.
However, the complete repertoire of 21 genes listed by
Ruvalcaba-Trejo and Sturm (2011) was confirmed in both
strains (Supplementary Table S2) with minimum sequence
length variations (about 15 Kb of the coding sequence in both
strains), confirming that the well-documented differences
between strains in the maxicircle only depends on the
divergent sequence, in agreement to Gerasimov et al. findings
(Gerasimov et al., 2020).

Synteny between the two maxicircles showed a highly
conserved block, corresponding to the coding sequence,
perfectly flanked by the variable sequence (Figure 1). Besides,
for the first time in T. cruzi, we found clear differences in %GC
content of the two main regions. The variable region is highly
enriched with AT (up to 76%) nucleotides while the coding
sequences are composed with a more proportional composition
of nucleotides (about 47.6% of GC content). Multiple whole
maxicircle synteny maps confirm the high conservation of
the coding sequence between different T. cruzi strains
(Supplementary Figure S1).
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Validation of T. cruzi Minicircles
We were able to assembly minicircle sequences of the Y strain
using Illumina (sequences < 1Kb), but it was not possible to
assembly Bug2148 strain minicircles using PacBio since library
preparation includes a fragment length filtering discarding DNA
fragments below 8Kb. We assembled and confirmed the
circularity (in silico) of 286 different minicircles belonging to
the Y strain. Sequences and assembly statistics for all these
minicircles are summarized in the Supplementary Data S3
grouped by size. We designed primers to confirm the sequence
and circularity of some of these Y strain minicircles. Primers
were designed to amplify a specific band around 200-500 bp
(depending on the minicircle total length). The methodology
followed to confirm sequence circularity predicted in silico is
described in Figure 2A. We designed primers with opposite
directions at 5’ and 3’ ends; in this way, we obtained amplified
sequences just for circular and completely assembled minicircles.

We confirmed the sequence and circularity of 9 different
minicircles from the Y strain (Figure 2B). Sequencing results of
the PCR products are shown in Supplementary Figure S2.
However, we decided to test the same set of primers with the
Bug2148 strain (Figure 2C). Our results showed one minicircle
specific of the Y strain, confirming previous suggestions that the
FIGURE 1 | Synteny blocks between T. cruzi maxicircles. The maxicircle sequence of Y (upper block) and Bug2148 (low block) are composed of two main regions,
the coding region (shown in green boxes) and the variable region, which is mainly composed of short repetitions. The %GC content for each strain shows clear
differences between the two main regions.
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number and sequence of these short molecules may differ
between strains.

Minicircles of Y Strain Display
Heterogeneity in Size
Previous studies have proposed that the T. cruzi minicircles are
highly conserved among strains with a regular size around 1.4 Kb
and the same number and length of conserved (mHCR) and
variable (mHVR) regions (Degrave et al., 1988; Avila et al., 1990;
Guhl et al., 2002; Junqueira et al., 2005).

However, despite Y strain was analyzed in these original studies,
we have elucidated that different sizes of minicircles exist in this
strain with a variable number of mHCRs and mHVRs. Contrary to
other Trypanosomatids where the minicircle sequences have a
more uniform length, we found that T. cruziminicircles sizes vary
from 300 bp to 1400 bp, as we can see in Figure 3.

We identified 42 minicircles with sizes between 336-376 bp, the
smallest interval. Just 9 minicircles were found between 698-769
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
bp. 47 had a size between 1051-1095 bp and finally, 188minicircles
belonged to the largest group with 1357-1448 bp This result gives
us a clear classification in 4 groups according to the range of sizes,
being each group separated from the next one by around 300 bp.

Analysis of Conserved and Variable Motifs
of the Y Strain Minicircle
We analyzed the presence and composition of the mHCRs and
mHVRs in the Y strain minicircles. Multiple alignments for each
group of size were performed: 336-376 (group 1), 698-769 (group
2), 1051-1095 (group 3) and 1357-1448 bp (group 4).

In group 1 all the minicircles present a unique mHCR, and
therefore a unique mHVR (Figure 4A). CSB-1, CSB-2, and CSB-
3 sequences can be seen in the mHCR and the consensus logo of
each one is also displayed. Interestingly, in the three CSBs the
conserved sequence is longer than the consensus sequence
described for Trypanosomatids, suggesting for the first time a
larger conserved signature in both ends.
A

B

C

FIGURE 2 | (A) Strategy followed to confirm sequence and circularity of the Y strain minicircles. (B) PCR products of nine minicircles of the Y strain. (C) PCR
products with the primers designed against the Y strain, tested in Bug2148 strain.
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Regarding group 2, the multiple alignment analysis displayed
2 mHCRs and 2 mHVRs (Figure 4B). Interestingly, minicircles
in group 2 double the size of group 1, and the same occurs with
the number of mHCRs and mHVRs. Besides, the logo of each
CSB is extremely similar to the respective logo in group 1,
showing an increase in the number of conserved nucleotides
compared to the theoretical consensus sequence of the T. cruzi Y
strain CSBs (CSB-1 = AGGGGCGTTC, CSB-2 = CCCCGTAC,
CSB-3 = GGGGTTGGTGTA).

For group 3, we discovered 3 mHCRs and 3 mHVRs in these
minicircles (Figure 5). Logos of the CSBs showed a similar
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
distribution to those in groups 1 and 2, although logos of the
same CSB in each one of these three mHCRs are not exactly the
same. There areminimal differences, as the insertion of a nucleotide
in a specific minicircle or a variation in the proportion of a
nucleotide in a specific position. However, in all the mHCRs the
conservation of the principal nucleotide in each position is evident.

And finally, minicircles from group 4 contain 4 mHCRs and 4
mHVRs (Figure 6). Logos of CSBs were highly similar to the
other groups in analysis, although there were specific differences
as the insertion of a nucleotide or changes in the nucleotide
proportion in some positions.
FIGURE 3 | Histogram representation of minicircle sizes of the Y strain in base pairs (bp).
A

B

FIGURE 4 | Sequence structure of mHCRs (red) and mHVRs (blue) in group 1 (A) and group 2 (B) of the Y strain minicircles. Logos of the CSB regions are
displayed in each mHCR.
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Interestingly, each group in the analysis had an increment of
around 300 bp in size with respect to the immediately shorter.
According to our results, it seems like the minicircle needs a new
mHCR each 300 bp. Minicircles in group 1 have only a mHCR,
while minicircles in group 4 have four mHCRs, one every 90
degrees in the circular structure as it has been well documented
(Degrave et al., 1988; Junqueira et al., 2005). Also, in all the
minicircle groups the consensus sequence of each CSB seems to
be longer than those previously described (Botero et al., 2018).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
DISCUSSION

We report relevant information regarding maxicircles and
minicircles kinetoplast DNA isolated from cell-derived
parasites. Using second and third generation sequencing
techniques we unraveled more complexity than previously
reported. Being aware of the limitations of dealing with this
complex parasite we were able to obtain valuable results by
comparing data from different technologies.
FIGURE 5 | Sequence structure of group 3 minicircles (1051-1095 bp). mHCRs are shown in red and mHVRs in blue. Logos of each CSB region are displayed in
each mHCR.
FIGURE 6 | Sequence structure of minicircles from group 4 (1357-1448 bp). mHCRs are shown in red and mHVRs in blue. Logos of each CSB region are
displayed in each mHCR.
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Contrary to the first maxicircles assembled and described in
T. cruzi (Westenberger et al., 2006), our results suggest that their
total length may be larger than previous suggestions, at least for
some strains as one analyzed here. Interestingly, this work
indicated that the mitochondrial genes are highly conserved
between strains and the coding region is about 16 Kb long,
independently of the maxicircle length. The main difference
between strains (at maxicircle level) corresponds to the
variable/divergent sequence length, which also does not have
conserved motifs or repetitive patterns. Besides, clear differences
in %GC content between the coding and variable regions were
found, suggesting, on one hand, the importance of the maxicircle
stability and structure and on the other hand, that the
transcription efficiency in T. cruzi is highly correlated with a
proportional sequence composition.

We detected a total of 286 different minicircles. This is the
first time that the complete repertoire of different minicircles of a
particular T. cruzi strain is described. The general structural
organization of some T. cruziminicircles was described (Degrave
et al., 1988; Avila et al., 1990; Guhl et al., 2002; Junqueira et al.,
2005). Their common scheme would be a minicircle with a size
around 1.4 Kb, in which four mHCRs of 120 bp are interspersed
with four 330 bp regions that would correspond to the mHVRs.
However, our results suggest that this organization, at least in
some strains, is more complex, suggesting a new potential
aggrupation in at least four main groups of minicircles
according to their size and the number of mHCRs and
mHVRs: 336-376 bp (group 1), 698-769 bp (group 2), 1051-
1095 bp (group 3) and 1357-1448 bp (group 4). Minicircles of
group 1 have only one mHCR and mHVR. Group 2 minicircles
have two mHCRs and mHVRs. Those belonging to group 3
present three mHCRs and mHVRs. And finally, minicircles of
group 4 have four mHCRs and mHVRs. The most abundant was
group 4, with 188 members, and the less abundant the group 2
with just 9.

The circularity of minicircles was validated by PCR
amplification using specific primers of different groups that
amplified the common regions detected at both 3’ and 5’ ends
of the reads. Primers were designed for the Y strain, but were also
amplified in the Bug2148 strain, except for one set of primers,
suggesting that these minicircles may be also present in
this strain.

Interestingly, the four groups we have described here in Y
strain differ in size by about 300 bp, and this distance is always
conserved between the mHCRs in all the groups. Also, the size of
the mHCRs is around 120 bp in all of the groups. Therefore, the
common patterns of distance are the same as those previously
described, which may explain the number of mHCRs depending
on the size of the minicircle. Previous analysis detected
minicircles around 1.4 Kb (Degrave et al., 1988; Avila et al.,
1990; Guhl et al., 2002; Junqueira et al., 2005), as those ascribed
to our group 4 (the group with more members). Thus, the new
techniques of Next Generation Sequencing used here have likely
improved the detection of all minicircles regardless of
their abundance.

Also, we analyzed the presence and number of the CSB-1,
CSB-2, and CSB-3 in the mHCRs of the Y strain minicircles.
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Previous studies had determined a consensus sequence for each
CSB in other Trypanosomatids, although little differences in
length and nucleotide composition have been described between
species for the CSB-1 and CSB-2 (Barrois et al., 1981; Jasmer and
Stuart, 1986; Nasir et al., 1987; Botero et al., 2018). However, in
our study of the Y strain of T. cruzi we have highlighted that this
theoretical consensus sequence for T. cruzi is larger than the
previous one, with more conserved nucleotides in both ends in
all the CSBs of the Y strain minicircles. Interestingly, there are
even small differences as changes in the nucleotide proportion in
a position or nucleotide insertions between mHCRs of distinct
minicircle groups and between the mHCRs of the same
minicircle group.

For decades, many researchers have used for their
experiments this standard organization of 1.4 Kb and 4
mHCRs and 4 mHVRs of the T. cruzi minicircles, although
sequences in the NCBI databases of some minicircles suggest a
variety of sizes between less than 100 bp and more than 1000 bp.
However, the vast majority of submitted sequences correspond
to unpublished data, partial or only the hypervariable regions of
specific minicircles sequences (Telleria et al., 2006; Velazquez
et al., 2008). Therefore, our contribution with the new full
complement of different 286 minicircles of the Y strain
supposes a great advance in the knowledge and current data
that we have of this type of circular structures.

While T. cruzi has four groups of minicircles, other species as
Trypanosoma rangeli (T. rangeli) display three different classes of
minicircle sequences that are known as KP1, KP2, and KP3
according to the number of conserved regions. They may present
one conserved region (KP1), two conserved regions located at
180 degrees (KP2), or four conserved regions, located at 90
degrees (KP3) ( (Recinos et al., 1994; Vallejo et al., 2002).
However, while in T. cruzi the size of the minicircles varies
between 336 and 1448 bp, T. rangeli displays a less size variation
in minicircles with a range of 1.6-1.8 Kb (Vallejo et al., 1994). In
Trypanosoma copemani, minicircles have 2048 bp of size and two
classes were suggested considering the number of conserved and
variable regions: the G1M1 minicircles with two conserved and
two variable regions, and the G1M2 minicircles with four
conserved and four variable regions (Botero et al., 2018).

In Leishmania major 97 different minicircles were detected,
and 49 in Leishmania infantum, although in these species the size
of their minicircles is very uniform, between 660-876 bp and
775-832 bp respectively (Camacho et al., 2019), while T. cruzi
presents a bigger size minicircle heterogeneity. Moreover, the
researchers described the minicircles of Leishmania with only
one conserved region, while for the same minicircle size T. cruzi
displays two, and the CSBs present differences in sequence length
and nucleotide composition between both species. Taking into
account that these conserved regions contain the replication
origin, it seems that Leishmania only needs one to perform the
completed minicircle replication, while T. cruzi needs one each
300 bp, probably due to the different efficiency in this biological
process between both Trypanosomatids.

Mitochondrial metabolism and gene expression are highly
regulated to deal with all those complicated environmental
changes across the complete life cycle alternating between the
June 2021 | Volume 11 | Article 672448
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mammalian host and insect vector, including regulation of
mRNAs that require extensive uridine insertion/deletion (U-
indel) editing for their maturation, as has been described in other
closely related Trypanosomatids (Smith et al., 2020). To our
knowledge, it is the first time describing a large repertoire of
complete T. cruzi minicircle sequences.

We sequenced DNA from cell-derived trypomastigotes while
in previous reports used epimastigotes. It could be argued that
kinetoplast DNA may change from one stage to another.
According to Riou and Gutteridge (1978), there should not be
differences in DNA content between different stages of T. cruzi.
On the other hand, Schwabl et al. (2019) found genomic changes
over the same stage just by culture passage. Thus, it would be
interesting to further investigate whether the increase in
complexity could be due to changes in DNA content between
epimastigotes and trypomastigotes.

Finally, considering that there are minicircles conserved
among strains and their relevant role for the maturation of the
maxicircle-encoded transcripts, critical for the replication and
survival of the parasite, their analysis may contribute to the
understanding of the mitochondrial transcription and
translation processes potentially related to the Chagas disease.
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Pérez-Molina, J. A., and Molina, I. (2018). Chagas Disease. Lancet 391, 82–94.
doi: 10.1016/S0140-6736(17)31612-4

Ponzi, M., Birago, C., and Battaglia, P. A. (1984). Two Identical Symmetrical
Regions in the Minicircle Structure of Trypanosoma Lewisi Kinetoplast DNA.
Mol. Biochem. Parasitol. 13, 111–119. doi: 10.1016/0166-6851(84)90105-1

Rassi, A., Rassi, A., and Marcondes de Rezende, J. (2012). American
Trypanosomiasis (Chagas Disease). Infect. Dis. Clin. North Am. 26, 275–291.
doi: 10.1016/j.idc.2012.03.002

Ray, D. S. (1989). Conserved Sequence Blocks in Kinetoplast Minicircles From
Diverse Species of Trypanosomes. Mol. Cell Biol. 9, 1365–1367. doi: 10.1128/
mcb.9.3.1365

Recinos, R. F., Kirchhoff, L. V., and Donelson, J. E. (1994). Characterization of
Kinetoplast DNA Minicircles in Trypanosoma Rangeli. Mol. Biochem.
Parasitol. 63, 59–67. doi: 10.1016/0166-6851(94)90008-6

Reis-Cunha, J. L., Rodrigues-Luiz, G. F., Valdivia, H. O., Baptista, R. P., Mendes, T.
A. O., de Morais, G. L., et al. (2015). Chromosomal Copy Number Variation
Reveals Differential Levels of Genomic Plasticity in Distinct Trypanosoma
Cruzi Strains. BMC Genomics 16 (1), 499. doi: 10.1186/s12864-015-1680-4

Riou, G. F., and Gutteridge, W. E. (1978). Comparative Study of Kinetoplast DNA
in Culture, Blood and Intracellular Forms of Trypanosoma Cruzi. Biochimie
60, 365–379. doi: 10.1016/S0300-9084(78)80670-1

Rodrigues, J. C. F., Godinho, J. L. P., and de Souza, W. (2014). Biology of Human
Pathogenic Trypanosomatids: Epidemiology, Lifecycle and Ultrastructure.
Subcell. Biochem. 74, 1–42. doi: 10.1007/978-94-007-7305-9_1

Rodriguez, H. O., Guerrero, N. A., Fortes, A., Santi-Rocca, J., Gironès, N., and
Fresno, M. (2014). Trypanosoma Cruzi Strains Cause Different Myocarditis
Patterns in Infected Mice. Acta Tropica 139, 57–66. doi: 10.1016/
j.actatropica.2014.07.005

Rusman, F., Tomasini, N., Yapur, N. F., Puebla, A. F., Ragone, P. G., and Diosque,
P. (2019). Elucidating Diversity in the Class Composition of the Minicircle
Hypervariable Region of Trypanosoma Cruzi: New Perspectives on Typing and
kDNA Inheritance. PloS Negl. Trop. Dis. 13, e0007536. doi: 10.1371/
journal.pntd.0007536

Ruvalcaba-Trejo, L. I., and Sturm, N. R. (2011). The Trypanosoma Cruzi Sylvio
X10 Strain Maxicircle Sequence: The Third Musketeer. BMC Genomics 12:58.
doi: 10.1186/1471-2164-12-58

Schijman, A. G., Bisio, M., Orellana, L., Sued, M., Duffy, T., Mejia Jaramillo, A. M.,
et al. (2011). International Study to Evaluate PCR Methods for Detection of
Trypanosoma Cruzi DNA in Blood Samples From Chagas Disease Patients.
PloS Negl. Trop. Dis. 5, e931. doi: 10.1371/journal.pntd.0000931

Schwabl, P., Imamura, H., Van den Broeck, F., Costales, J. A., Maiguashca-Sánchez, J.,
Miles, M. A., et al. (2019). Meiotic Sex in Chagas Disease Parasite Trypanosoma
Cruzi. Nat. Commun. 10 (1), 3972. doi: 10.1038/s41467-019-11771-z

Shapiro, T. A. (1993). Kinetoplast DNA Maxicircles: Networks Within Networks.
Proc. Natl. Acad. Sci. U. S. A. 90, 7809–7813. doi: 10.1073/pnas.90.16.7809

Shapiro, T. A., and Englund, P. T. (1995). The Structure and Replication of
Kinetoplast DNA. Annu. Rev. Microbiol. 49, 117–143. doi: 10.1146/annurev.
mi.49.100195.001001
June 2021 | Volume 11 | Article 672448

https://doi.org/10.1038/s41598-018-32877-2
https://doi.org/10.3390/genes10100758
https://doi.org/10.1038/nature09220
https://doi.org/10.1038/nature09220
https://doi.org/10.1101/gr.849004
https://doi.org/10.1016/0166-6851(88)90025-4
https://doi.org/10.1155/2010/295394
https://doi.org/10.1016/j.idc.2018.10.015
https://doi.org/10.3390/pathogens9020100
https://doi.org/10.1093/nar/14.22.9217
https://doi.org/10.1016/S0188-4409(02)00380-6
https://doi.org/10.1371/journal.pone.0009181
https://doi.org/10.1016/j.meegid.2019.104041
https://doi.org/10.3390/genes11101196
https://doi.org/10.3390/genes11101196
https://doi.org/10.1016/0166-6851(86)90084-8
https://doi.org/10.1016/j.pt.2005.04.001
https://doi.org/10.1016/0005-2787(80)90075-1
https://doi.org/10.1016/0005-2787(80)90075-1
https://doi.org/10.1128/ec.1.4.495-502.2002
https://doi.org/10.1016/0166-6851(86)90075-7
https://doi.org/10.1016/0166-6851(86)90075-7
https://doi.org/10.1590/S0102-311X2007001000002
https://doi.org/10.1017/S0031182018000951
https://doi.org/10.1371/journal.pntd.0001584
https://doi.org/10.1371/journal.pntd.0001584
https://doi.org/10.1073/pnas.0706858104
https://doi.org/10.1073/pnas.77.11.6810
https://doi.org/10.1016/0166-6851(87)90162-9
https://doi.org/10.1371/journal.ppat.1008781
https://doi.org/10.1074/jbc.M606374200
https://doi.org/10.1016/S0140-6736(17)31612-4
https://doi.org/10.1016/0166-6851(84)90105-1
https://doi.org/10.1016/j.idc.2012.03.002
https://doi.org/10.1128/mcb.9.3.1365
https://doi.org/10.1128/mcb.9.3.1365
https://doi.org/10.1016/0166-6851(94)90008-6
https://doi.org/10.1186/s12864-015-1680-4
https://doi.org/10.1016/S0300-9084(78)80670-1
https://doi.org/10.1007/978-94-007-7305-9_1
https://doi.org/10.1016/j.actatropica.2014.07.005
https://doi.org/10.1016/j.actatropica.2014.07.005
https://doi.org/10.1371/journal.pntd.0007536
https://doi.org/10.1371/journal.pntd.0007536
https://doi.org/10.1186/1471-2164-12-58
https://doi.org/10.1371/journal.pntd.0000931
https://doi.org/10.1038/s41467-019-11771-z
https://doi.org/10.1073/pnas.90.16.7809
https://doi.org/10.1146/annurev.mi.49.100195.001001
https://doi.org/10.1146/annurev.mi.49.100195.001001
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Callejas-Hernández et al. Complete Mitochondrial DNA of T. cruzi
Simoes-Barbosa, A., Arganaraz, E. R., Barros, A. M., Rosa Ade, C., Alves, N. P.,
Louvandini, P., et al. (2006). Hitchhiking Trypanosoma Cruzi Minicircle DNA
Affects Gene Expression in Human Host Cells Via LINE-1 Retrotransposon.
Mem Inst. Oswaldo Cruz 101, 833–843. doi: 10.1590/s0074-0276200
6000800003

Simpson, L. (1987). The Mitochondrial Genome of Kinetoplastid Protozoa:
Genomic Organization, Transcription, Replication, and Evolution. Annu.
Rev. Microbiol. 41, 363–382. doi: 10.1146/annurev.mi.41.100187.002051

Simpson, L., Sbicego, S., and Aphasizhev, R. (2003). Uridine Insertion/Deletion
RNA Editing in Trypanosome Mitochondria: A Complex Business. RNA 9,
265–276. doi: 10.1261/rna.2178403

Singh, R., Purkait, B., Abhishek, K., Saini, S., Das, S., Verma, S., et al. (2016).
Universal Minicircle Sequence Binding Protein of Leishmania Donovani
Regulates Pathogenicity by Controlling Expression of Cytochrome-B. Cell
Biosci. 6, 13. doi: 10.1186/s13578-016-0072-z
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