
Research Article
Sequence Alignment Tools: One Parallel Pattern to
Rule Them All?

Claudia Misale,1 Giulio Ferrero,2 Massimo Torquati,3 and Marco Aldinucci1

1 Computer Science Department, University of Turin, Italy
2 School of Life and Health Sciences, University of Turin, Italy
3 Computer Science Department, University of Pisa, Italy

Correspondence should be addressed to Claudia Misale; misale@di.unito.it

Received 7 March 2014; Revised 3 June 2014; Accepted 21 June 2014; Published 24 July 2014

Academic Editor: Sandra Gesing

Copyright © 2014 Claudia Misale et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we advocate high-level programming methodology for next generation sequencers (NGS) alignment tools for both
productivity and absolute performance. We analyse the problem of parallel alignment and review the parallelisation strategies of
the most popular alignment tools, which can all be abstracted to a single parallel paradigm.We compare these tools to their porting
onto the FastFlow pattern-based programming framework, which provides programmers with high-level parallel patterns. By using
a high-level approach, programmers are liberated from all complex aspects of parallel programming, such as synchronisation
protocols, and task scheduling, gaining more possibility for seamless performance tuning. In this work, we show some use cases
in which, by using a high-level approach for parallelising NGS tools, it is possible to obtain comparable or even better absolute
performance for all used datasets.

1. Introduction

Next generation sequencers (NGS) have increased the
amount of data obtainable by genome sequencing; a NGS run
produces millions of short sequences, called reads, that is, a
sequence of nucleotides containing also information about
the quality of the sequencing process, which determine the
reliability of the nucleotide called during sequencing. The
alignment process maps reads onto a reference genome in
order to study the structure and functionalities of sequenced
data.

The rapid evolution of sequencing technologies, each one
producing different datasets, is boosting the design of new
alignment tools. Some of them target specific datasets (e.g.,
short reads, long reads, and high-quality reads) or even data
from specific sequencing technologies. Since the alignment
process is computationally intensive, many alignment tools
are designed as parallel applications, typically targeting mul-
ticore platforms. Several of them are based on the well-
known Smith-Waterman algorithm, which is known to be
computationally expensive. For this reason,many of them are
already parallel, typically leveraging on multithreading. Also

in some cases, SIMD parallelism (via either SSE or GPGPU)
is also exploited.

Due to specialisation, some of these tools provide the
users with superior alignment quality and/or performance.
With the ever-growing number of sequencing technologies,
it can be expected that the scenario of specialised alignment
tools will widen yet more.

Although the market of NGS alignment tools is growing,
to date, the parallel programming methodologies used to
design these tools do not embrace much more than low-
level synchronisation primitives, such as mutual exclusion
and atomic operations. In the hierarchy of abstractions, it
is only slightly above toggling absolute binary into the front
panel of the machine. In the NGS community, programming
multicore for performance is still perceived according to “the
closet to the metal the fastest”, thus exclusively focusing on
extreme optimisation of the code for a single algorithm and
a single platform. We believe that correctness, productivity,
time-to-market, and porting of existing legacy codes are
equally important targets.

In this paper, we advocate high-level programming
methodology for NGS alignment tools for both productivity

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 539410, 12 pages
http://dx.doi.org/10.1155/2014/539410

http://dx.doi.org/10.1155/2014/539410


2 BioMed Research International

and absolute performance.We analyse the problemof parallel
alignment and review the parallelisation strategies of some
of the most popular alignment tools (such as Bowtie and
BWA), which can all be abstracted by the farm paradigm
(a.k.a. master-worker or task-farm) [1, 2]. We compare
these tools to their porting onto the FastFlow pattern-based
programming framework [3], which provides the master-
worker as high-level pattern liberating the programmers from
all synchronisation details but providing them with seamless
performance tuning and eventually equal or better absolute
performance on tested tools.

This paper is organised as follows. Section 2 presents
related work on alignment tool performance, optimisations,
and benchmarking, while in Section 3 the FastFlow library
for high-level parallel programming models is presented.
Our case studies, Bowtie and BWA, are also presented in
Sections 3.3.1 and 3.3.2, respectively. Section 4 provides a
dataset analysis, which reports alignment rates of Bowtie2,
BWA, and BLASR on corrected and uncorrected PacBio
datasets. In Section 5, performance evaluations on short
reads datasets (20–200 bp) with Bowtie2 and the comparison
with our implementation with respect to the new release of
the software are presented. Performances on PacBio dataset
alignments executed with Bowtie2, BWA-MEM, and BLASR
are also discussed. Section 6 concludes the paper.

2. Related Works

Many algorithms for sequence alignment have been proposed
and different tools were implemented that entirely exploit
multithreading on homogeneous and heterogeneous plat-
forms.

2.1. Alignment Tools. The first step done before an align-
ment is to create and load the reference genome. The used
techniques are hash tables and Burrows-Wheeler transform
[4]. The hash-based technique builds a hash table for sub-
sequences of both genome and reads. Keys are created by
hashing subsequences and values are lists of positions in
which subsequences can be found. Hash-based tools, such
as SOAP [5] or SHRiMP [6], are particularly suitable for
short sequences alignment. The Burrows-Wheeler transform
(BWT) [4] is a string permutation algorithm used in data
compression tools as bzip2. Ferragina and Manzini have
enhanced it with the implementation of the FM-index [7,
8], an opportunistic data structure for text compression
that permits fast substring queries. Bowtie [9] and Bowtie2
[10] are Burrows-Wheeler transform (BWT) based tools.
Bowtie2 aligns longer reads and supports gapped, local, and
paired-end alignment modes. More details on Bowtie2 are
described in Section 3.3.1. MrFAST [11] maps short reads
emphasising the discovery of structural variation and seg-
mental duplications. It is possible to map both single-end
and paired-end reads and to support up to 4+4 base-pair
indels. BWA [12] and SOAP2 [13] use the FM index in order
to create a suffix array on sequences compressed by the BWT
algorithm. The combination of these two algorithms permits
the creation of a compressed genome that can be fully loaded

in memory. This technique has the limitation of a lower
sensitivity in alignment with respect to hash-based indexing
and of a reduction of maximum allowed mismatches (for
instance, Bowtie2 allows only up to one mismatch) but has
the advantage tomake the alignment faster. Burrows-Wheeler
aligner (BWA) consists of three algorithms: BWA-backtrack,
BWA-SW, and BWA-MEM. The first is designed for reads
up to 100 bp, while the other two for longer sequences.
BWA-MEM is used typically for high-quality reads, having
better performance than BWA-backtrack for 70–100 bp reads.
BLASR (Basic Local Alignment with Successive Refinement)
is a Single Molecule Sequencing alignment tool specifically
targeting PacBio datasets, where divergence between the read
and genome is dominated by insertion and deletion errors
[14]. This tool has been benchmarked with both real and
synthetic datasets produced by the PacBioRS instrument and
results obtained show that it is possible to map SMS reads
with high accuracy and speed.

2.2. Tools Parallelisation andOptimisations. Alignment tools,
generally, exploit parallelism viamultithreading. As an exam-
ple, Bowtie, both versions Bowtie1 and Bowtie2, imple-
ments multithreading with Posix Threads. The BWA aligner
is implemented in two different versions: multithreads by
exploiting a pool of Posix Threads in BWA and by using
MPI (message passing interface) to exploit both shared
memory and distributed clusters (pBWA [15]). PosixThreads
is also exploited by the BLASR aligner for multithreading.
SHRiMP and SHRiMP2 are parallel alignment tools, available
also in a distributed version [16], implemented upon the
MapReduce programming model [17]. Alignment tools that
exploit GPUs were also presented. An example is SOAP3
[18], the GPU-based version of SOAP2. SOAP3 is at least
7.5 to 20 times faster than BWA and Bowtie, respectively. In
addition, BarraCUDA [19] andCUSHAW[20] are short reads
alignment tools that exploit GPUs.

2.3. Datasets. There exist several technologies for DNA
sequencing, which produce reads of different lengths. At
today, the most popular sequencing platforms for long read
generation are the Roche 454 or Ion Torrent PGM platforms,
whereas for short read generation are the Illumina and
Applied Biosystems platforms. Novel sequencing platforms,
such as SMRT (Single Molecule Real Time sequencing)
PacBio RS family [21] by Pacific Biosciences, generate reads
with a mean length of 8.500 bases and longest reads exceed-
ing 30Kbp. From metagenomic studies to genome-based
personalised patients care, longer reads are mandatory to
solve structural complexities in nucleotide sequences that
are analysed in heterogeneous assays including de novo
genome assembly [22], haplotype phasing [23], transcriptome
analysis [24], and structural and copy number analysis [25].
In [26], a review of alignment algorithms, by introducing
their practical applications on different types of experimental
data, is proposed. Authors state that short-read alignment is
no longer a bottleneck and consider future development of
alignment algorithmswith respect to emerging long sequence
reads. In fact, the new trend in sequencing technologies is to



BioMed Research International 3

generate datasetswith longer sequenceswith respect to Roche
454 GS FLX Titanium and Ion Torrent PGM, which generate
readswith length up to 1000 bp by the former andup to 200 by
the latter. PacBio is the new sequencing technology produc-
ing reads which length can reach 35Kbp, having an error rate
around 15% that is uniformwithin sequences. In [27], authors
developed a simulation and evaluation suite, SEAL, which
simulates NGS runs for different configurations of various
factors, including sequencing error, indels, and coverage.
They propose also criteria to compare the performance of
alignment tools and evaluated Bowtie, BWA, mr- and mrs-
FAST, Novoalign, SHRiMP, and SOAPv2, considering accu-
racy and runtime. An evaluation of alignment algorithms for
RNA-Seq is proposed in [28], where they evaluated 14 widely
used alignment programs with respect to three different
algorithmic classes: hashing of the reference transcriptome,
hashing of reads, and compressed FM-index.They focused on
precision, recall, and performance for different read lengths
and on numbers of mismatches and indels within a read.
These studies evidenced how each algorithm is characterized
by peculiar overall performances and tolerance to errors in
the sequences. This latter parameter became important as
length of analysed reads increased. In fact, in [29], authors
show an algorithm and associated software tool, PBJelly, a
pipeline for gap filling and genome improvement that aligns
long sequence reads to draft assembles in order to close
or improve captured gaps. Results provide a 24% mapped
coverage of PacBio long reads and a 99% of addressed gaps,
with the closure of the 69% and the 12% improvement of all
gaps in genomic data from Drosophila pseudoobscura..

3. Materials and Methods

3.1. High-Level Parallel Programming Models: The FastFlow
Framework. Multicore platforms are de-facto small-scale on-
chip parallel computer.The only way to increase performance
on a multicore is by exploiting thread-level parallelism.
Parallel programs are inherently more difficult to write than
sequential ones, because concurrency introduces several new
problems that programmers should take into account care-
fully. Developers are then facing the challenge of achieving a
trade-off between high-end performance and time to solution
in developing applications on multicore platforms in which
the number of cores per CPU is increasing.

Parallel software engineering addressed this challenge
via high-level sequential language extensions, parallel coding
patterns, and algorithmic skeletons aimed at simplifying the
porting of sequential codes to parallel architecture while
guaranteeing the efficient exploitation of concurrency [30,
31].

Parallel design patterns have been recognised to have the
potential to induce a radical change in the parallel program-
ming scenario, such that new parallel programwill be capable
of exploiting the high parallelism provided by hardware
vendors [32]. Parallel design patterns make programmer
tasks simpler and the whole application development process
more efficient. They provide tested and efficient parallelism
exploitation patterns as compositional building blocks, with-
out the need of implementing, tuning, and maintaining ad

Fa
stF

lo
w

Parallel applications
Efficient and portable

High-level patterns
Map, reduce, stencil, D&C, . . .

Core patterns
Pipeline, farm and feedback

Building blocks

CUDA OpenCL TCP/IP
IB/OFED

Multicore and many-core platforms
Clusters of multicore +many-core

Queues, ff node, . . .

Figure 1: FastFlow Layered Design.

hoc solutions. A higher level of abstraction, with respect
to more traditional HPC approach, is thus offered to the
programmer.

In this respect, the FastFlowparallel programming frame-
work [3], offers an important methodological approach that
allows applications to be easily parallelized on a variety of
multi/many-core platforms. Also, thanks to its efficient lock-
free run-time support [33], applications developed on top of
FastFlow typically exhibit a good speedup with a minimal
tuning effort.

FastFlow is a parallel framework targeting shared mem-
ory multi/many-core and heterogeneous distributed systems.
It is implemented in C++ on top of the Posix Threads
(Pthreads) library and provides developers with a number
of efficient parallel patterns [3]. As shown in Figure 1, it
is designed as a stack of layers in order to abstract the
level of parallelism, starting from core level up to high-
level programming construct (such as map, reduce, stencil or
Divide & Conquer). The abstraction process has two main
goals: (1) to promote high-level, platform-independent par-
allel programming, and in particular skeletal programming
(i.e., pattern-based explicit parallel programming), and (2)
to promote efficient programming of applications for both
homogeneous and heterogeneous platforms and clusters of
them.

FastFlowhas been used to design a variety of parallel algo-
rithms, including Smith-Waterman [34], C4.5 data classifier
[35], and Gillespie simulators for systems biology [36].

3.2. The Paradigmatic Structure of Parallel Alignment Tools.
As discussed in related works (Section 2), a plethora of
sequence alignment tools is currently available. Some of them
target specific datasets (e.g., short reads, long reads, and high-
quality reads) or even specific sequencing technologies (e.g.,
BLASR for PacBio). Several of them are based on the well-
known Smith-Waterman algorithm, which is known to be
computationally expensive; thus,many of themhave already a
parallel implementation typically exploiting multithreading.



4 BioMed Research International

In some cases, multithreading is coupled with SIMD paral-
lelism to make use of hardware accelerators, either processor
Streaming SIMD Extensions unit (SSE) or General-Purpose
Graphics Processing Units (GPGPUs). They are typically
employed in the mapping of a single read.

Thanks to specialisation, some of these tools might
provide the users with superior alignment quality and/or per-
formance. It is of particular interest to identify and engineer
the building blocks needed to develop a parallel alignment
tool that is at the same time efficient and portable. Ideally,
such building blocks can provide any forthcoming alignment
tool with absolute performance, performance portability, and
reduced development time.

Indeed, the parallelisation of sequence alignment prob-
lem exhibits a number of distinguished features.

(i) There exists one (or a set of, in the future,) reference
sequences (e.g., genome). The single sequence is
typically read-only data.

(ii) There exists a set of reads to be aligned against
the reference. It is also read-only data. The specific
attributes of the reads (e.g., length, quality) depend
on the dataset. They can anyway be independently
aligned against the reference(s).With the growing size
of the dataset, they are likely to be available as a stream
of data flowing from a permanent storage.

(iii) The assembly of results from independent alignment
frequently does not require a complex merging oper-
ation. In case a merging phase is required (e.g., to
provide a global filtering of the data), it is expected
to be an online process on the result stream flowing
to a permanent storage.

These features fit into the master-worker parallel
paradigm (i.e., a variant of the farm paradigm), or the more
general composition of pipeline and farm paradigms in
the case the process requires complex a merging operation
(e.g., ordered merging). As a matter of fact, all the most
popular parallel alignment tools, including Bowtie2, BWA,
and BLASR, implement a master-worker paradigm, where
each worker cycles over the following three steps:

(1) gets a sequence to align from the shared input file;
(2) aligns the read against the genome loaded into the

shared index file;
(3) populates shared data structures with results and

statistics.

During the first and last steps, shared data structures are
accessed in a read/write mode. These accesses are regulated
via mutual exclusion (either blocking lock or atomic-based
spin-lock, depending on the configuration). Furthermore,
during these steps, the memory space to accommodate reads
is dynamically allocated and deallocated, whichmight induce
further mutual exclusion operations within thememory allo-
cator. Each worker thread iteratively gets a single read from
the input dataset andmaps it onto the reference genome.This
behaviour, usually named on-demand scheduling, enforces
load balancing among worker threads.

Interestingly enough, all of them are developed with
extremely low-level programming tools, such as spin-lock
and atomic operations. They might provide the applications
with low-overhead synchronizations but certainlymake them
hardly portable across different platforms and operating
systems. Furthermore, such low level optimizations require
nontrivial debugging and a large performance-tuning effort.

As shown in the next section, the adoption of an engi-
neeredmaster-worker pattern simplifies the work, guarantees
the portability of the application, and provides the application
with good performance. This adoption has been applied to
two aligners, Bowtie2 and BWA-MEM. To definitely assert
that the proposed pattern is the best for every aligner, we
should test it on each tool. It is difficult because of their con-
stant increasing number, but we can say that, for its nature,
this pattern helps on simplifying both the parallelisation
process and further optimisations.

3.3. Case Studies

3.3.1. Bowtie. The Bowtie2 (a.k.a. Bowtie version 2) align-
ment tool can align reads of very different length. The
human genome loading requires a fairly limited amount of
memory (about 2.3 GB) and it makes the tool usable from
both workstations and laptops. The original source code of
Bowtie2 implements parallelism by using the Posix Threads
library according to a master-worker pattern.

Each worker iteratively cycles the three steps described in
Section 3.2.

In order to asses expressiveness and efficiency of the
pattern-based approach, Bowtie2 (version 2.0.6) has been
ported on top of the FastFlow library (Bowtie2-FF) [3, 37].
The porting basically consisted in substituting the low-level
task dispatching code with an instance of the farm pattern
(i.e., a C++ factory object), specialised in the variant master-
worker. Overall, this required to alter less than two dozens of
code lines out of about 40K code lines (excluding comments)
of the whole Bowtie2 source code.

The synchronisation schemas of both original Bowtie2
and Bowtie2-FF are shown in Figure 2. Observe that the two
applications are almost identical both in the orchestration of
parallel activities (i.e., master-worker paradigm) and in the
business code (i.e., C++/SSE workers code, input and output
code). Nevertheless, the usage of FastFlow master-worker
pattern has several advantages with respect to low-level code
as follows.

(i) Thread creation and synchronisation are trasparently
made available by the parallel pattern. This simplifies
the coding and enhance portability on different plat-
forms and threading libraries (e.g. Windows native
threads).

(ii) Pattern run-time behaviour can be configured
according to different scheduling policies (e.g., static,
on-demand, and affinity) without changing the code.

(iii) The lock-free run-time support minimises concur-
rency overhead due to coherency traffic, thus exhibit-
ing a superior speedup on fine-grain and irregular
workloads.



BioMed Research International 5

Shared memory
input

(reads, genome)

W1
Wn

Mutex

(Mutex)

Memory
task

(read)

Worker
threads

· · ·

Shared memory output
(alignment)

Required in some tools

Memory
task

(read)

(Bowtie2 = yes, BWA = no)
W1

Wn

Memory
input/output

(reads, alignment)

Shared memory

FastFlow
master-worker

interleaved and read-only
(alignment)

Core-pinned
worker threads

Lock-free
synchronisations

Affinity scheduling
implemented via

scheduler thread (active)
or lock-free scheduler

object (passive)

Memory
task

(read)

Memory
task

(read)· · ·

E

(a) (b)

Figure 2: Typical thread orchestration in parallel alignment tools. (a) Low-level design (e.g., Bowtie2, BWA); (b) pattern-based design with
FastFlow (e.g., Bowtie2-FF, BWA-FF).

Also, the FastFlow framework offers the opportunity to
easily couple thread pinning and memory affinity. As an
example, in the Bowtie2-FF implementation, each worker
private data structures have been allocated on the memory
node connected to the core that is executing the worker
pinned on it. This way it is possible to get the best memory
access latency; that is, each worker thread needs less time
to access to the memory and retrieve private data. In order
to improve access to the genome, it has been allocated with
an interleaved policy, that is, allocating memory pages into
all memory nodes on the system (Round-Robin scheduling
policy). This way it is possible to avoid memory hot spots
on the access to the genome (concurrently accessed by many
cores). To understand the gain breakdown of the different
techniques, in Section 5.1, three variants of Bowtie2-FF have
been tested:

(1) Bowtie2-FF (bt-FF): master-worker with workload
dynamically partitioned among workers;

(2) Bowtie2-FF with thread pinning (bt-FF (pin)):
master-worker with threads pinning on cores and
memory affinity for private data;

(3) Bowtie2-FF with thread pinning and genome inter-
leaving (bt-FF (pin + int)): master-worker with
threads pinning on cores, memory affinity for private
data, and interleaved allocation policy among mem-
ory nodes for shared data (genome).

For further implementation details, please refer to [37].
Bowtie2-FF has been developed as a porting version 2.0.6

on the FastFlow library. In February 2014, the version 2.2.1 of
Bowtie2 has been released. It has been improved in the index
querying efficiency using “population count” instructions
available since SSE4.2. In this set, the STTNI instructions
(String and Text New Instructions) have been added, which
contain several new operations for character searches and
comparison on two 16 bytes operands. The two versions do
not differ in the orchestration of threads.

3.3.2. Burrows-Wheeler Aligner (BWA). The BWA align-
ment suite includes three algorithms based on the suffix-
array based representation of data (Burrows-Wheeler): BWA-
backtrack, BWA-SW, and BWA-MEM [12, 38]. As previously
mentioned, the first algorithm is designed for relatively short
sequences (Illumina reads up to 100 bp), while the rest two
for longer sequences ranged from 70 bp to 10Kbp. Compared
with Bowtie, it needs a slightly larger memory footprint
(about 3.2 GB of memory [39]).

In all three variants, the BWA tool is designed according
to a master-worker paradigm as described in Section 3.2
and Figure 2(a). They differ for the business code used to
instantiate the workers threads.

As for Bowtie2, each worker of BWA iteratively cycles
the three steps described in Section 3.2. Differently from
Bowtie2, BWA prefetches all the reads from the storage
before scheduling them to workers. This makes it possible
to schedule them to workers with a single atomic increment
operation that points to the next task to be executed in the
array of tasks, which is also used to avoid mutual exclusion in
the output of results. A specialised work-stealing mechanism
is used for load-balancing.

Theoretically, the FastFlow master-worker implemen-
tation has still performance edge against the described
implementation since it also avoids all coherency traffic
due to atomic operation (thanks to the memory fence-
free/atomic-free design of FastFlow run-time). However, this
edge becomes evident only for very fine grain tasks (hundreds
of clock cycles), whereas typical task grain in BWA is orders
or magnitudes larger. Still, master-worker pattern simplifies
the design because it implements a transparent dynamic
load-balancing strategy and does not require any ad hoc
rebalancing strategy.

4. Dataset Analysis

In this section, datasets used to compare performances
between Bowtie2 and Bowtie2-FF are firstly present
(Section 4.1). Then, results about mapped and unmapped



6 BioMed Research International

Table 1: Datasets.

Dataset Platform Read length (bp) Reads count
SRR534301 Illumina 101 108,749,331
SRR072996 Illumina 20 60,673,318
lane2 CTL qseq Illumina 36 53,673,423
SRR568427 Illumina 36 53,594,954
SRR502198 Illumina 36 25,675,656
SRR078586 Illumina 8–48 3,101,013
SRR003161 454 GS FLX 47–4,931 1,376,701
SRR341579 Illumina 202 6,143,624
SRR027963 Illumina 76 18,145,940
Human-Ref19-1 PacBio 35–35,488 25,249
Human-Ref19-2 PacBio 35–34,583 17,797
Drosophila M. PacBio 55–6,883 332,369

sequences of PacBio datasets by using Bowtie2, BWA,
BWA-MEM-FF, and BLASR are shown (Section 4.2).

4.1. Roche 454 and Illumina Datasets. Within this work, we
aligned datasets obtained with three different sequencing
technologies in order to show how they behave with various
lengths. More precisely, for our analysis on Bowtie2, we
selected 4 short reads (SRR027963, SRR078586, SRR502198,
and SRR341579) and 3 long reads experiments (SRR003161,
Human-Ref19-1, and Human-Ref19-2). The formers report
genomic sequences from CTCF ChIP-Seq experiments per-
formed on IMR90 cell line (SRR078586), Exome sequenc-
ing from phase 1 of 1000 Genomes Project (SRR502198),
and a dataset from Hi-C assay on K562 cells (SRR341579,
SRR027963). For long read datasets, we choose three
whole human genome sequencing, one from phase 2 of
1000 genome project (SRR003161). Table 1 summarises used
datasets with their characteristics and sequencing platform.

4.2. PacBio Human Datasets. We also selected a portion of
two PacBio Bioscience PacBio RS II technologies (Human-
Ref19-1, Human-Ref19-2). By comparing the length of
mapped and unmapped reads, we observed that Bowtie2 was
able to align reads longer than 10Kbp (max length 35Kbp).
Despite expectations, majority of shorter reads (less than
3Kbp) were not mapped by the algorithm (Figure 3). This
is probably caused by the unusual sequencing error related
to this technique, uniformly distributed along the reads
[40]. Alignment percentages of both datasets are reported in
Table 2. In these tables, we report the very low alignment rate
of Bowtie2, which is at most about 13%. We focused on these
subsets because of the low alignment rate on relatively short
sequences, as reported in Figure 3.

The same analysis was done on BLASR and BWA-MEM
alignment results. Figure 4 shows that boxplot for mapped
and unmapped reads for both human PacBio datasets BLASR
is the only one tool that is able to align the whole dataset.

We verified this observation also using BLASR and
BWA-MEM tools. All reads were aligned using the former
algorithm (data not shown), while BWA-MEM produced
similar results of Bowtie2 algorithm in terms of distribution

Table 2: Alignment percentages on Human-Ref19-1 and Human-
Ref19-2.

Subset Mapped Number of reads Mapped Number of reads
PacBio Human-Ref19-1 PacBio Human-Ref19-2

1 Kbp 8.10% 2098 10.76% 1747
2Kbp 8.20% 5231 11.68% 4788
3Kbp 9.57% 2697 12.07% 7093
5Kbp 9.58% 11755 13.38% 9931

Table 3: Alignment tools key.

Acronym Tool Version Variant Technology
bt-2.0.6 Bowtie2 2.0.6 original Pthreads
bt-2.2.1 Bowtie2 2.2.1 original Pthreads
bt-FF Bowtie2 2.2.1 porting FastFlow
BWA-MEM BWAMEM 0.7.9a original Pthreads
BWA-MEM-FF BWAMEM 0.7.9a porting FastFlow
BLASR BLASR 2.1 original Pthreads

of reads length (Figure 4). In fact, we observed again a
difference between mapped and unmapped reads with the
latter characterized by a significantly shorter length.

Error Correction. In [41], statistics about errors in PacBio
datasets are shown. It is reported that (i) the error rate that
comes from sequencing is typically around 15%; (ii) errors
are uniform within reads and not at the end (as seen with
other sequencing technologies); and (iii) errors depend on
insertions for the 11%, 4%ondeletions and 1%onmismatches.
Taking into account the possibility that results discussed
above could be caused by errors related to the PacBio
sequencing techniques, we tried to align a corrected dataset.
For this test, we used the Drosophila melanogaster corrected
dataset, generated by using the PacBio RS technology [42],
and consisting in 332,369 reads with a median length of
1,186 bp.

Notably, using Bowtie2, the fraction of aligned reads
increased to 84.3% but again, we observed a fraction of
unmapped reads whose length was significantly lower com-
pared to the former (unpaired 𝑡 test 𝑃 value < 2.2−16) (see
Figure 5). The alignment of the same dataset was repeated
with twowell-known long reads alignment tools: BWA-MEM
and BLASR. BLASR performed better on alignment rate
with the whole dataset successfully aligned while BWA-MEM
outperformed in processing time (sequential executions: 766
seconds for BWA-MEM, 7,668 seconds for bt-FF, 12,532 for
BLASR, and 13,845 for bt-2.2.1).

5. Performance Comparison and Analysis

In this section, the original multithreaded implementation
of Bowtie and BWA alignment tools are compared for
performance to their porting onto the FastFlow pattern-
based library on different datasets. A key of used tools with
their version is reported in Table 3.



BioMed Research International 7

Mapped Unmapped

40

30

20

10

0

Re
ad

 le
ng

th
 (K

bp
)

Alignment status

3.653e − 13

(a)

Mapped Unmapped

40

30

20

10

0

Re
ad

 le
ng

th
 (K

bp
)

Alignment status

6.031e − 74

(b)

Figure 3: Length of mapped and unmapped reads for PacBio Human-Ref19-1 (a) and Human-Ref19-2 dataset (b) obtained with bt-FF. 𝑃
value from two-tailed unpaired t test is reported on top.

Mapped Unmapped

40

30

20

10

0

Re
ad

 le
ng

th
 (K

bp
)

Alignment status

4.195e − 11

(a)

Mapped Unmapped

40

30

20

10

0

Re
ad

 le
ng

th
 (K

bp
)

Alignment status

9.947e − 14

(b)

Figure 4: Length of mapped and unmapped reads for PacBio Human-Ref19-1 (a) and Human-Ref19-2 dataset (b) obtained with BWA-MEM.
𝑃 value from two-tailed unpaired t-test is reported on top.

Tests were executed on an Intel workstation with 4 eight-
core E7-4820 Nehalem (64 HyperThreads) @2.0GHz with
18MB L3 cache and 64 GBytes of main memory with Linux
x86 64. Each processor uses HyperThreading with 2 contexts
per core. bt-2.2.1 was compiled with the sse flag set to 4.2,
while bt-2.0.6 and bt-FF have sse3 flag set. All were compiled
with the g++ 4.7.2 compiler.

5.1. Bowtie2 on Roche 454 and Illumina Datasets (Mixed Read
Length). As reported in Figure 6, bt-FF performs better than
the original version (bt-2.0.6) on datasets with short reads,
gaining up to 10 speedup points. In this case, the performance
gain is mostly due to particularly low synchronisation over-
head of the FastFlow run-time support, which is the main
speedup-impairing factor on fine grain tasks.



8 BioMed Research International

Mapped Unmapped Mapped MappedUnmapped

7

0

1

2

3

4

5

6

Re
ad

 le
ng

th
 (K

bp
)

Alignment status

bt-FF BWA-MEM BLASR

Figure 5: Length of mapped and unmapped reads for PacBio
Drosophila melanogaster corrected dataset obtained by different
alignment tools.

Notice that the version with pinning and interleaving
performs better in the most cases. This latter version is used
for tests shown in the rest of the paper. Alignment tests with
Roche 454 real and synthetic datasets can be found in [43],
where Bowtie2 has been compared to other tools, reporting a
poor speedup as well (maximum speedup of 7). Besides this,
alignment algorithm is able to align very long reads, but its
performance significantly degrades on long reads (whereas it
is quite efficient on short reads).

As shown in Figures 7(a) and 7(b), bt-2.2.1 performs
better than bt-2.0.6 but not better than the bt-FF. Apparently,
the gain due to the SSE4.2 instructions in bt-2.1.1 (to perform
character searches and comparison on two 16 bytes operands)
on Nehalem platform does not compensate the limited
speedup. Paradoxically enough, thewider SSE4.2 instructions
induce even more pressure on memory subsystem, which is
the real bottleneck of Bowtie2.

5.2. PacBio Human Datasets. Performances of bt-2.2.1, bt-
2.0.6, and bt-FF have been also compared on two Human
uncorrected datasets, which exhibits long length reads.
Notice that the aim of the test is to assess the performance
gain due to the high-level programming approach, that is, to
compare bt-FF against bt-2.06 and bt-2.2.1, and not to assess
absolute performance of Bowtie2 on long reads.

Table 4 shows execution times of all three versions tested
on a small subset of 1000 reads of PacBio datasets, which
alignment rate is shown in Figure 3 (Human-Ref19-1 and
Human-Ref19-2). In this case, the performances of bt-2.0.6
and bt-FF are almost identical. On long reads, the mapping
of a single read by means of the Bowtie2 algorithm becomes
particularly expensive. In terms of concurrency, this turns
into coarse grain tasks dispatched to the workers and thus
into the reduction of speedup difference between bt-2.0.6 and

Table 4: Bt-2.2.1, Bt-2.0.6, and Bt-FF execution times on Human-
Ref19-1 and Human-Ref19-2.

Tool Best time Speedup Best time Speedup
PacBio Human-Ref19-1 PacBio Human-Ref19-2

bt-2.2.1 00:14:48 6.34 00:20:38 5.6
bt-2.0.6 00:02:20 16.30 00:03:15 15.61
bt-FF 00:02:20 16.30 00:03:13 15.77

bt-FF. It can be noticed that bt-2.2.1 is significantly slower
than bt-2.0.6 when executed on PacBio datasets.

5.3. PacBio Drosophila melanogaster Dataset. To exclude the
influence of sequencing errors content in sequences, we
compared the speedup achieved by different tools (Bowtie2,
BWA, and BLASR) on the PacBio Drosophila melanogaster
corrected dataset.

Figure 8 shows the maximum speedup reached by
Bowtie2 and BWA, in both the original version and the
FastFlow versions. In all tested cases, the FastFlow version
exhibits a better speedup with respect to the original, hand-
optimised code. For Bowtie2, the gain is particularly con-
sistent (2×), whereas BWA results only slightly improved.
The rationale of this difference is likely to be related on
the different memory behaviour of the two tools. Bowtie2 is
strongly memory bound and can greatly benefit from affinity
scheduling and shared data interleaving (enabling the usage
of the aggregated bandwidth of memory channels) offered
by FastFlow master-worker, whereas BWA exhibits a smaller
working set and thus better exploits memory cache hierarchy.

The BLASR version, for which a FastFlow version has
not been developed, is reported for the sake of completeness.
BLASR exhibits the very same parallel structure of other two
tools (see Section 3.2) and its porting to FastFlow is expected
to be neither problematic nor very informative. In terms of
absolute performances, the BWA tool on this dataset is order
of magnitudes faster than Bowtie2, which is not designed to
efficiently map long length reads.

In all cases, the efficiency of parallelisation hardly reaches
the 50% of efficiency, which cannot be considered to be fully
satisfactory. A full explanation for this result requires further
investigation; however, it is likely related to SIMD/SSE code
used for the single read mapping. SSE instruction typically
induce a strong pressure on memory subsystem due to wide
operands, thus saturating memory/shared-cache bandwidth
even using the half of the available cores. A partial evidence of
this effect can be found in Table 5: due to wide SSE4.2/STTNI
instructions, bt-2.2.1 exhibits a much lower IPC (instruction
per cycle) with respect to other versions of the tools coded
with SSE2.

5.4. Performance Analysis. Further information to explain
performance differences of the different versions of Bowtie2
can be extracted via perf, a performance analyser tool
in Linux. Table 5 reports the performance analysis on
Human-Ref19-1 dataset restricted to reads of length ranging
from 2Kbp to 3Kbp. Results are obtained by way of the



BioMed Research International 9

Sp
ee

du
p

0

4

8

12

16

20

24

28

32

Dataset

bt-2.0.6
bt-FF(int)
bt-FF

bt-FF(pin)
bt-FF(pin-int)

Sp
ee

du
p

0

4

8

12

16

20

24

28

32

SRR502198 SRR078586 SRR072996
Dataset

bt-2.0.6
bt-FF(int)
bt-FF

bt-FF(pin)
bt-FF(pin-int)

lane2-CTL-qseq SRR568427 SRR534301

Figure 6: Maximum speedup obtained by executing different implementations of Bowtie2 on short reads datasets (see Table 1). The speedup
is computed with respect to the bt-2.0.6 sequential execution.

SRR078586 SRR502198 SRR027963

Sp
ee

du
p

Dataset

0

4

8

12

16

20

24

28

32

bt-2.2.1
bt-2.0.6
bt-FF

(a) Speedup comparisons testing on short read dataset.

SRR003161 SRR341579

Sp
ee

du
p

Dataset

0

4

8

12

16

20

24

28

32

bt-2.2.1
bt-2.0.6

Human-Ref19-2

bt-FF

(b) Speedup comparisons testing on long read dataset.

Figure 7: Speedup comparisons among bt-2.2.1 and bt-FF on mixed length datasets (see Table 1). The speedup is computed with respect to
the bt-2.2.1 sequential execution.

“perf stat –d” command. All the three versions of the tool
have been analysed, running with 32 threads. These ranges
are chosen on the basis of lower alignment rate reported on
Table 2.

Table 5 shows that the number of threads migration by
pinning worker threads in bt-FF version is strongly lower
than the other two versions. The main thread is not pinned
and then those migrations could be imputable to the main
thread.

5.5. Testing on an Alternative Platform. To assess results
across different platforms, the tools were tested also on a

different platform, an Intel Sandy Bridge with two 8-core
sockets (2 HyperThreads) @2.2GHz, 20MB L3 cache with
Linux x86 64 (only on a subdataset from Human-Ref19-1
from 1Kbp up to 5Kbp). As in the previous tests, bt-2.2.1
was compiled with the sse flag set to 4.2, while bt-2.0.6 and
bt-FF have the sse3 flag set. All were compiled with g++
4.4.7 compiler (4.7.2 for the NehalemWorkstation). Tests are
executed by running tools with at most 16 threads in order
to exploit only physical cores. These tests showed the same
behaviour among the three versions, with two noteworthy
differences: (1) all the Bowtie versions are significantly faster
on the Sandy Bridge platform on subdatasets 1 Kbp, 2 Kbp,



10 BioMed Research International

Bowtie2 BWA-MEM BLASR

M
ax

im
um

 sp
ee

du
p

Alignment tool

Original implementation
FastFlow implementation

0

4

8

12

16

20

24

28

32

Figure 8: Performance comparison among bt-2.2.1, bt-FF, BLASR,
BWA-MEM, and BWA-MEM-FF on Drosophila melanogaster cor-
rected dataset. Speedups are computedwith respect to the sequential
execution of each tool.

Table 5: Perf Stat analysis on Human-Ref19-1, 2-3 Kbp for different
implementations of Bowtie2.

Metric bt-2.2.1 bt-2.0.6 bt-FF
CPUs utilised 28.665 19.661 24.363
CPU-migrations 1,363 3,513 57
IPC 0.19 0.98 1.03
L1-dcache-misses 42.46% 32.91% 32.14%
(of all L1-dcache hits)
LLC-load-misses 80.87% 58.66% 67.91%
(of all LL-cache hits)
Execution time (s) 96.87 24.41 19.05

and 3Kbp; (2) this is not true on subdataset 5 Kbp, for which
the bt-2.2.1 version is also significantly slower with respect
to the other software versions. Both differences are rooted in
coupling of the software implementation choices with hard-
ware platforms and can be appreciated by comparing Figures
9 and 10, which show completion times on subdatasets in four
different ranges min—1Kbp, min—2Kbp, min—3Kbp, and
min—5Kbp, where min is the minimum read length in the
dataset. Being one subset of the next, respectively, they exhibit
a growing size.

In general, the Sandy Bridge platform is (slightly) highly
clocked andmore importantly exploits SSE/AVX instructions
whose length is twice the Nehalem’s SSE ones. However, the
quad-socket Nehalem platform exhibits an aggregate Level3
cache of 72MB (18MB x 4), whereas the Sandy Bridge
dual-socket is only 40MB (20MB x 2). For this, the 5 Kbp
experiment working set fits in the Nehalem cache and does
not fit in the Sandy Bridge cache. Being Bowtie, a strongly
memory-bound application, this impairs the performance
to such large degree that cannot be balanced by the faster
processors of the Sandy Bridge. In the same way, bt-2.2.1 is

Ex
ec

ut
io

n 
tim

e (
lo

g 
sc

al
e)

Tool version

1

10

100

1000

10000

bt-2.2.1 bt-2.0.6 bt-FF

1Kbp
2Kbp

3Kbp
5Kbp

Figure 9: Execution time for each tool version (bt-2.2.1, bt-2.0.6,
and bt-FF) on tested PacBio human subdatasets on the Intel
Nehalem workstation.

Ex
ec

ut
io

n 
tim

e (
lo

g 
sc

al
e)

Tool version

1

10

100

1000

10000

bt-2.2.1 bt-2.0.6 bt-FF

1Kbp
2Kbp

3Kbp
5Kbp

Figure 10: Execution time for each tool version (bt-2.2.1, bt-2.0.6,
and bt-FF) on tested PacBio sub-datasets on the Intel Sandy Bridge
workstation.

generally slower with respect to bt-2.0.6/bt-FF on the same
experiment because it requires a larger working set.

6. Conclusions

In this paper, we analysed the problem of sequence alignment
from parallel computing perspective; we reviewed the design
of three of the most popular alignment tools exhibiting par-
allel computing capabilities, among others, Bowtie2, BWA,
and BLASR. All these tools exploit a master-worker parallel
orchestration paradigm to process the set of reads in parallel.
Some of them also exploit SIMD parallelism to further



BioMed Research International 11

accelerate the computation of a single task (i.e., a read)
using SSE instructions. Each of the analysed tools implements
its own version of the master-worker paradigm at a very
low-level of abstraction, specifically using blocking locks
of the Posix Threads library or processor-specific atomic
instructions.

We advocate high-level parallel programming as an
alternative design strategy for next generation alignment
tools. High-level parallel programming aims at reducing
development and performance tuning effort and enhances
code and performance portability across different platforms.
We demonstrated on two tools (Bowtie2 and BWA-MEM)
that the pattern-based design not only simplifies tool engi-
neering but also boosts the speedup of the application beyond
the hand-tuned low-level original code. As nowadays no
developer expects to get any performance advantage coding
an application in assembler, no developer should expect
to get more speedup by the low-level coding of a parallel
application.

We ported Bowtie2 and BWA on top of the pattern-
based FastFlow parallel programming framework for C++.
The porting required altering few lines of code (out of
several ten thousands) with an estimated programming
effort of few days. Also, the FastFlow-based version of the
tools resulted easier to tune for maximum performance. In
particular, scheduling policy, load-balancing strategies, and
memory affinity are extrafunctional features of the master-
worker FastFlow pattern. Leveraging on these features, it has
been possible to optimise tools parallel behaviour beyond
the hand-optimised code of their original versions. As an
example, in the case of Bowtie2, which is a memory bound
application; the key optimisation consists in improving local-
ity of the memory accesses and utilisation of shared memory
bandwidth. In terms of programming effort, this just consists
in configuring themaster-worker pattern to adopt amemory-
affine task scheduling.

High-level parallel programming is becoming the main-
stream approach for a growing class of applications. Even
though our results cannot be considered fully demonstrative
of the correctness and efficiency of the parallel pattern
applied, we can fairly state that the global structure of an
aligner, from the parallelisation viewpoint, can be always
mapped within a master-worker pattern with suggested
optimisations. We do believe this can be an enabling fea-
ture for future generation sequence alignment and analysis
approaches.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work has been partially supported by the Paraphrase
(EC-STREP FP7 no. 288570) and the (EC-STREP FP7 no.
609666) REPARA Projects.

References

[1] M. Cole, Algorithmic Skeletons: Structured Management of
Parallel Computations, Research Monographs in Parallel and
Distributed Computing, Pitman, 1989.

[2] M. Aldinucci and M. Danelutto, “Stream parallel skeleton opti-
mization,” in Proceedings of the 11th International Conference on
Parallel and Distributed Computing and Systems (IASTED ’99),
pp. 955–962, ACTA Press, Cambridge, Mass, USA, November
1999.

[3] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Fastflow: high-level and efficient streaming on multi-core,” in
ProgrammingMulti-Core andMany-Core Computing Systems, S.
Pllana and F. Xhafa, Eds., Parallel and Distributed Computing,
chapter 13, John Wiley & Sons, 2014.

[4] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” Tech. Rep. 124, Digital Equipment
Corporation, Palo Alto, Calif, USA, 1994.

[5] R. Li, Y. Li, K. Kristiansen, and J. Wang, “SOAP: short oligonu-
cleotide alignment program,” Bioinformatics, vol. 24, no. 5, pp.
713–714, 2008.

[6] S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume, A. Sidow,
and M. Brudno, “SHRiMP: accurate mapping of short color-
space reads,” PLoS Computational Biology, vol. 5, no. 5, Article
ID e1000386, 2009.

[7] P. Ferragina and G. Manzini, “Opportunistic data structures
with applications,” in Proceedings of the 41st Annual Symposium
on Foundations of Computer Science (FOCS ’00), pp. 390–398,
IEEE Computer Society, Washington, DC, USA, 2000.

[8] P. Ferragina and G. Manzini, “An experimental study of an
opportunistic index,” in Proceedings of the 12th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’ 01), pp. 269–
278, Society for Industrial and Applied Mathematics, Philadel-
phia, Pa, USA, 2001.

[9] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short DNA sequences to
the human genome,” Genome Biology, vol. 10, article R25, no.
3, 2009.

[10] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment
with Bowtie 2,” Nature Methods, vol. 9, no. 4, pp. 357–359, 2012.

[11] C. Alkan, J. M. Kidd, T. Marques-Bonet et al., “Personalized
copy number and segmental duplication maps using next-
generation sequencing,” Nature Genetics, vol. 41, no. 10, pp.
1061–1067, 2009.

[12] H. Li and R. Durbin, “Fast and accurate short read alignment
with Burrows-Wheeler transform,” Bioinformatics, vol. 25, no.
14, pp. 1754–1760, 2009.

[13] R. Li, C. Yu, Y. Li et al., “SOAP2: an improved ultrafast tool for
short read alignment,” Bioinformatics, vol. 25, no. 15, pp. 1966–
1967, 2009.

[14] M. J. Chaisson and G. Tesler, “Mapping single molecule
sequencing reads using basic local alignment with successive
refinement (BLASR): application and theory,” BMC Bioinfor-
matics, vol. 13, no. 1, article 238, 2012.

[15] D. Peters, K. Qiu, and P. Liang, “Faster short dna sequence
alignment with parallel bwa,” in American Institute of Physics
Conference Series, I. Kotsireas, R. Melnik, and B.West, Eds., vol.
1368, pp. 131–134, 2011.

[16] R. AlSaad, Q. Malluhi, and M. Abouelhoda, “Efficient parallel
implementation of the SHRiMP sequence alignment tool using
MapReduce,” in Qatar Foundation Annual Research Forum
Proceedings, 2012.



12 BioMed Research International

[17] J. Dean and S.Ghemawat, “MapReduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no.
1, pp. 107–113, 2008.

[18] C. M. Liu, T.Wong, E.Wu et al., “SOAP3: ultra-fast GPU-based
parallel alignment tool for short reads,” Bioinformatics, vol. 28,
no. 6, pp. 878–879, 2012.

[19] P. Klus, S. Lam, D. Lyberg et al., “BarraCUDA—a fast short
read sequence aligner using graphics processing units,” BMC
Research Notes, vol. 5, article 27, 2012.

[20] Y. Liu, B. Schmidt, and D. L. Maskell, “CUSHAW: a CUDA
compatible short read aligner to large genomes based on the
Burrows–Wheeler transform,” Bioinformatics, vol. 28, no. 14,
Article ID bts276, pp. 1830–1837, 2012.

[21] M. O. Carneiro, C. Russ, M. G. Ross, S. Gabriel, C. Nusbaum,
andM. A. DePristo, “Pacific biosciences sequencing technology
for genotyping and variation discovery in human data,” BMC
Genomics, vol. 13, no. 1, p. 375, 2012.

[22] J. Huddleston, S. Ranade, M. Malig et al., “Reconstructing
complex regions of genomes using long-read sequencing tech-
nology,” Genome Research, 2014.

[23] V. Kuleshov, D. Xie, R. Chen et al., “Whole-genome haplotyping
using long reads and statistical methods,”Nature Biotechnology,
vol. 32, no. 3, pp. 261–266, 2014.

[24] D. Sharon, H. Tilgner, F. Grubert, and M. Snyder, “A single-
molecule long-read survey of the human transcriptome,”Nature
Biotechnology, vol. 31, no. 11, pp. 1009–1014, 2013.

[25] E. W. Loomis, J. S. Eid, P. Peluso et al., “Sequencing the
unsequenceable: Expanded CGG-repeat alleles of the fragile x
gene,” Genome Research, vol. 23, no. 1, pp. 121–128, 2013.

[26] H. Li and N. Homer, “A survey of sequence alignment algo-
rithms for next-generation sequencing,” Briefings in Bioinfor-
matics, vol. 11, no. 5, pp. 473–483, 2010.

[27] M. Ruffalo, T. Laframboise, and M. Koyutürk, “Comparative
analysis of algorithms for next-generation sequencing read
alignment,” Bioinformatics, vol. 27, no. 20, pp. 2790–2796, 2011.

[28] R. Lindner and C. C. Friedel, “A comprehensive evaluation of
alignment algorithms in the context of RNA-Seq,” PLoS ONE,
vol. 7, no. 12, Article ID e52403, 2012.

[29] A. C. English, S. Richards, Y. Han et al., “Mind the gap: upgrad-
ing genomes with pacific biosciences rs long-read sequencing
technology,” PLoS ONE, vol. 7, no. 11, Article ID e47768, 2012.

[30] K. Asanovic, R. Bodik, J. Demmel et al., “A view of the parallel
computing landscape,”Communications of the ACM, vol. 52, no.
10, pp. 56–67, 2009.

[31] H. González-Vélez and M. Leyton, “A survey of algorithmic
skeleton frameworks: high-level structured parallel program-
ming enablers,” Software: Practice and Experience, vol. 40, no.
12, pp. 1135–1160, 2010.

[32] K. Hammond, M. Aldinucci, C. Brown et al., “The paraphrase
project: parallel patterns for adaptive heterogeneous multicore
systems,” in Proceedings of the International Symposium on
Formal Methods for Components and Objects (FMCO ’11), vol.
7542 of Lecture Notes in Computer Science, pp. 218–236, Torino,
Italy, 2011.

[33] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati, “An efficient unbounded lock-free queue for
multi-core systems,” in Proceedings of the 18th International
Conference, Euro-Par 2012, Rhodes Island, Greece, August 2012,
vol. 7484 of Lecture Notes in Computer Science, pp. 662–673,
Springer, Berlin, Germany, 2012.

[34] M. Aldinucci, M. Meneghin, andM. Torquati, “Efficient Smith-
Waterman on multi-core with FastFlow,” in Proceedings of the
18th Euromicro Conference on Parallel, Distributed andNetwork-
Based Processing (PDP ’10), pp. 195–199, IEEE, Pisa, Italy,
February 2010.

[35] M. Aldinucci, S. Ruggieri, and M. Torquati, “Decision tree
building on multi-core using FastFlow,” Concurrency and Com-
putation: Practice and Experience, vol. 26, no. 3, pp. 800–820,
2014.

[36] M. Aldinucci, C. Calcagno, M. Coppo et al., “On designing
multicoreaware simulators for systems biology endowed with
on-line statistics,” BioMed Research International, vol. 2014,
Article ID 207041, 14 pages, 2014.

[37] C. Misale, “Accelerating Bowtie2 with a lock-less concurrency
approach and memory affinity,” in Proceedings of the 22nd
Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP ’14), IEEE, Torino, Italy,
February 2014.

[38] H. Li, “Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM,” 2013, http://arxiv.org/abs/1303.3997.

[39] H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu, and
C. Alkan, “Accelerating read mapping with fasthash,” BMC
Genomics, vol. 14, supplement 1, p. S13, 2013.

[40] M. A. Quail, M. Smith, P. Coupland et al., “A tale of three next
generation sequencing platforms: comparison of Ion Torrent,
Pacific Biosciences and Illumina MiSeq sequencers,” BMC
Genomics, vol. 13, no. 1, article 341, 2012.

[41] M. J. Chaisson and G. Tesler, “Mapping single molecule
sequencing reads using basic local alignment with successive
refinement (BLASR): application and theory,” BMC Bioinfor-
matics, vol. 13, article 238, no. 1, 2012.

[42] D.Miller, C. Smith, R. Hawley, and C. Bergman, “PacBioWhole
Genome Shotgun Sequences for the D. melanogaster Reference
Strain,” 2013.

[43] S.Marco-Sola,M. Sammeth, R.Guigó, andP. Ribeca, “TheGEM
mapper: fast, accurate and versatile alignment by filtration,”
Nature Methods, vol. 9, no. 12, pp. 1185–1188, 2012.


