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Abstract
Gene expression is controlled by the combinatorial effects of regulatory factors from differ-

ent biological subsystems such as general transcription factors (TFs), cellular growth fac-

tors and microRNAs. A subsystem’s gene expression may be controlled by its internal

regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to dis-

tinguish the degree to which a subsystem is regulated internally or externally–e.g., how

non-conserved, species-specific TFs affect the expression of conserved, cross-species

genes during evolution. We developed a computational method (DREISS, dreiss.gertein-

lab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks,

both External and Internal based on State Space models. Given a subsystem, the “state”

and “control” in the model refer to its own (internal) and another subsystem’s (external)

gene expression levels. The state at a given time is determined by the state and control at a

previous time. Because typical time-series data do not have enough samples to fully esti-

mate the model’s parameters, DREISS uses dimensionality reduction, and identifies

canonical temporal expression trajectories (e.g., degradation, growth and oscillation) repre-

senting the regulatory effects emanating from various subsystems. To demonstrate capa-

bilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent

TFs across distant species. In particular, we applied DREISS to the time-series gene expres-

sion datasets of C. elegans and D. melanogaster during their embryonic development. We

analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing

the degree to which these can be accounted for by orthologous (internal) versus species-spe-

cific (external) TFs. We found that between two species, the orthologs have matched, inter-

nally driven expression patterns but very different externally driven ones. This is particularly

true for genes with evolutionarily ancient functions (e.g. the ribosomal proteins), in contrast to

those with more recently evolved functions (e.g., cell-cell communication). This suggests that
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despite striking morphological differences, some fundamental embryonic-developmental pro-

cesses are still controlled by ancient regulatory systems.

Author Summary

The dynamics of a biological system can be controlled by its own internal mechanisms
and external perturbations. To gain intuition on this, we may draw a comparison with a
mass hanging from a spring. The mass will move naturally by itself but its dynamics is also
affected by one’s pulling it. That is, the dynamics of the mass is governed by the effect of
the external perturbations superimposed on the internal mechanism of the spring (i.e.
Hooke’s law). Similarly, given a group of genes, their temporal gene expression dynamics
can be controlled by both transcription factors inside the group and external regulatory
factors. Therefore, it is useful to identify the expression dynamics that are exclusively con-
trolled by internal or external factors and compare them across various systems. While
state-space models have been widely used to decouple the internal and external effects in
physical systems, such as the mass and spring, typical biological systems do not have
enough time samples to infer all the model’s parameters, and applications of state-space
models were not very effective in these instances. Hence, we developed a general-purpose
computational method by integrating state-space models and dimensionality reduction to
identify temporal gene expression patterns driven by internal and external regulatory net-
works. We applied our method to the embryonic developmental datasets in the worm and
fly (and also in a human cancer context). We successfully identified the temporal expres-
sion dynamics of cross-species conserved genes that were driven by conserved and spe-
cies-specific regulatory networks.

This is a PLOS Computational BiologyMethods paper.

Introduction

Gene regulatory networks systematically control the gene expression dynamics. These net-
works are highly modular, and consist of various sub-networks. Each sub-network contains a
number of regulatory factors representing a subsystem that drives specific gene regulatory
functions [1,2]. The subsystems interact with one another, and work together to carry out the
entire gene regulatory function. For example, the gene expression in embryogenesis is con-
trolled by the combinatorial effects of various regulatory subsystems composed of complex
evolutionary regulatory networks [3]. These regulatory subsystems drive very diverse develop-
mental programs, from the highly conserved (e.g. DNA replication) to the species-specific (e.g.
body segmentation). As such the orthologous genes that are evolutionary conserved genes
across species can therefore be regulated by both orthologous and species-specific transcription
factors (TFs) [4]. The orthologous TFs form an “internal” regulatory network, while the spe-
cies-specificTFs form an “external” one. Unfortunately, existing experimental gene expression
data cannot decouple the expression components that are driven by the different subsystems.
Thus, computational methods are required to assess the contribution from each factor or sub-
system from the gene expression data. In this study, we propose a novel computational method,
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DREISS—dynamics of gene expression driven by external and internal regulatory networks
based on state space model. Using DREISS, we are able to identify temporal gene expression
dynamic patterns for evolutionarily conserved genes during embryonic development, as driven
by conserved and species-specific regulatory subsystems. These results advance our current
understanding of gene regulatory networks during evolution, as well as the differentiation dur-
ing development.

Developmental gene regulatory networks control gene expression during the developmental
processes. These particular regulatory networks have evolved, making it difficult to understand
their regulatorymechanisms at the system level. Hence, one typically compares developmental
gene expression across species to infer biological activities of developmental gene regulatory
networks. For example, embryogenesis provides a platform to study the evolution of gene
expression between different species. Recent work has showed that significant biological insight
can be gained by cross-species comparisons of the expression profiles during embryogenesis
for worms [5], flies [6], frogs [7] and several other vertebrates [8]. It was found that the ortho-
logous genes have minimal temporal expression divergence during the phylotypic stage, a mid-
dle phase during the embryonic development across species within the same phylum. These
patterns are often characterized as “hourglass” [9]. In addition, the conservedhourglass pat-
terns were observed even within a single species while comparing the developmental gene
expression data across distant species, such as worm and fly [10]; i.e., the expression divergence
among evolutionarily conserved genes becomeminimal during the phylotypic stage in both
worm and fly. However, much less is known about how the orthologous genes in each species
eventually contribute to their species-specificphenotypes due to the lack of appropriate
computational approaches. Thus, we aim to use DREISS to discover the components of the
orthologous gene expression during embryonic development driven by species-specific tran-
scription factors.

The state-space model has been widely used in engineering [11], and also in biology for the
analysis of gene expression dynamics [12–14]. It models the dynamical system output as a
function of both the current internal system state and the external input signal. A well-known
example in engineering is the vehicle cruise control system where the system state can be the
vehicle’s speed. Based on the road conditions, the cruise control requires various fuel amounts
in order to keep the desired speed level. In biology, we can look at the transcription factors and
microRNAs as internal and respectively external regulatory factors of the protein-coding genes
expression (Seemore internal-external examples in S1 Table). Similarly, the state-space model
can be applied for studying the expression of orthologous genes at different developmental
stages using information regarding their expression (internal) and species-specific regulatory
factors (external) at the current known developmental stage. Unlike earlier studies that calcu-
late the expression correlation between individual genes, the state-space model predicts the
temporal causal relationships at the system level; i.e., the state at a time is determined by the
state and external input at the previous time. The earlier work applied the state-space model to
study the gene expression dynamics focusing on small-scale systems, and did not explore the
analytic dynamic characteristics of the inferred state-space models. The complex and large-
scale biological datasets, especially temporal gene expression data, are very noisy, and high di-
mensional (i.e., the number of genes is much greater than the number of time samples), thereby
preventing an accurate estimation of the state-space model’s parameters. The dimensionality
reduction techniques have thus been used to project high-dimensional genes to low-dimen-
sional meta-genes (i.e., the selected features representing de-noised and systematic expression
patterns [1,15,16]) as well as the principal dynamic patterns for those meta-genes [17,18].
Using DREISS, we are able to apply the dimensionality reduction to the gene expression data,
and develop an effective state-space model for their meta-genes, and then identify a group of
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canonical temporal expression trajectories representing the dynamic patterns driven by the
effective conserved and species-specificmeta-gene regulatory networks according to the mod-
el’s analytic characteristics. These dynamic patterns reveal temporal gene expression compo-
nents that are controlled by conserved or species-specificGRNs.

DREISS is a general-purpose tool and can be used to study the gene regulatory effects from
any different subsystems for a given group of genes. As an illustration, we applied DREISS to the
gene expression data during embryonic development for twomodel organisms, worm (Caenor-
habditis elegans) and fly (Drosophila melanogaster). In both species, we were able to identify the
expression patterns of worm-fly orthologs driven by the conserved regulatory network consisting
of the worm-fly orthologous TFs (i.e., the conserved regulatory subsystems between two species),
as well as the worm/fly-specificregulatory network consisting of non-orthologous TFs (i.e., the
species-specificregulatory subsystem). Our results reveal that, in addition to executing conserved
developmental functions betweenworm and fly, their orthologous genes are also regulated by
species-specificTFs to involve in species-specificdevelopmental processes. In summary, DRIESS
provides a framework to analyze both distantly and closely related species allowing for a better
understanding of the gene regulatorymechanisms during development.

Methods

DREISS consists of five major steps as detailed in Fig 1

Step A: DREISS models temporal gene expression dynamics using state-space models in con-
trol theory. In this step, we need to define the internal and external groups of genes and
input their time-series gene expression data that we are interested to study. We assume that
the time-series gene expression data fits a state-space module. In the state-space model, the
“state” refers to the expressions for a large group of genes of interest, such as the worm-fly
orthologous genes investigated here. The “control” refers to any other group of genes that
contribute to the gene expression of the “state”, such as the species-specificTFs contributed
to control orthologous gene expression.

Step B: Due to the limited number of temporal samples in gene expression experiments, we do
not have enough data to accurately estimate the parameters of the state-space models that
capture interactions among hundreds of genes. Therefore, DREISS projects high-dimen-
sional gene expression space to lower-dimensional meta-gene expression spaces using
dimensionality reduction techniques.

Step C: DREISS derives the effective state-space models for meta-genes so that model parame-
ters can be estimated.

Step D: DREISS identifies the meta-gene expression dynamic patterns; i.e., canonical temporal
expression trajectories driven by “state” (internal) and by “control” (external) based on the
analytic solutions of the estimated models.

Step E: Finally, DREISS calculates the gene coefficients over canonical temporal expression tra-
jectories based on linear transformations between genes and meta-genes. DREISS also
allows us to compare the dynamic expression patterns of multiple datasets with samples
taken at different times.We describe each DREISS step in detail as follows.

State-space models for temporal gene expression dynamics

A gene regulatory network is made up of various subsystems [1,2]. These subsystems work
together to execute regulatory functions. Given a group of N1 genes in a subsystem, defined as
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the internal gene set, O, their gene expression levels are not only controlled by internal interac-
tions among O, but also affected by the regulatory factors from other subsystems outside O.
We define an external gene set, C consisting of those external regulatory factors. For example,
we consider the worm-fly orthologous genes as internal set O. The worm-fly orthologous TFs
from internal set O are the internal regulatory factors, and non-orthologous TFs such as
worm- or fly- specific TFs are the external regulatory factors. Both the internal and external
regulatory factors control gene expressions in dynamic ways (i.e., their regulatory signals at the
current time will affect gene expressions at subsequent times). Thus, the regulatorymecha-
nisms for gene expressions form a control system. In this study, we used a state-space model
(defined by linear first-order difference equations, Fig 2A) to formulate temporal gene expres-
sion dynamics for internal set O (comprisingN1 genes) with external regulation from external

Fig 1. DREISS workflow. (A) DREISS models temporal gene expression dynamics using state-space models in control theory. The “state” refers to the

expressions for a large group of genes of interest, such as the worm-fly orthologous genes investigated here. The “control” refers to any other group of

genes that contribute to gene expressions of the “state”, such as the species-specific TF studied here. (B) it then projects high-dimensional gene

expression space to lower-dimensional meta-gene expression spaces using dimensionality reduction techniques. (C) it derives the effective state-space

models for meta-genes so that model parameters can be estimated. (D) it then identifies the meta-gene expression dynamic patterns; i.e., canonical

temporal expression trajectories driven by “state” (internal) and by “control” (external) based on the analytic solutions to estimated models. (E) it finally

calculates the coefficients of genes for the dynamic patterns of linear transformations between genes and meta-genes.

doi:10.1371/journal.pcbi.1005146.g001
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set C (comprisingN2 genes) at time points 1, 2, . . ., T as follows:

Xtþ1 ¼ AXt þ BUt ð1Þ

, where the vector Xt 2 R
N1�1, the “state”, includesN1 gene expression levels at time t in O, and

the vectorUt 2 R
N2�1, the “input or control”, includesN2 gene expression levels at time t in C.

The systemmatrix A 2 R
N1�N1 captures internal causal interactions among genes in O (i.e., the

ith, jth element of A, Aij describes the contribution from the jth gene expression at time t to the
ith gene expression at the next time t+1), which instantiates a gene regulatory network. The
control matrix B 2 R

N1�N2 captures external causal regulations from the genes in C to genes in
O (i.e., the ith, jth element of B, Bij describes the contribution from the jth gene expression in C

at time t to the ith gene expression in O at the next time t+1). R represents the real number
domain. According to the state space model (1), the gene expression dynamics in O is deter-
mined by the systemmatrix A and the control matrix B. In particular, based on Eq 1, the state
Xt can be expanded as follows:

Xt ¼ AXt� 1 þ BUt� 1 ¼ AðAXt� 2 þ BUt� 2Þ þ BUt� 1 ¼ A2Xt� 2 þ ABUt� 2 þ BUt� 1 ¼ A3Xt� 3þ

A2BUt� 3 þ ABUt� 2 þ BUt� 1 ¼ � � � ¼ At� 1X1 þ At� 2BU1 þ At� 3BU2 þ � � � þ ABUt� 2 þ BUt� 1 ¼

At� 1X1|fflfflffl{zfflfflffl}
XINT
t

þ
Pt� 2

k¼1
AkBUt� 1� k|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
XINTER
t

þ BUt� 1|fflffl{zfflffl}
XEXT
t

ð2Þ

, where XINT
t ¼ At� 1X1 is defined as the expression vector of the gene components driven only

internally by genes in O. The rest terms
Pt� 2

k¼1
AkBUt� 1� k þ BUt� 1 captures the expression

Fig 2. State space model for genes and the effective model for meta-genes. (A) linear state space

model for a given subsystem’s gene expression; i.e., linear first-order difference equations in Eq 1, is used to

formulate temporal gene expression dynamics for a given subsystem, the internal groupΩ (comprising N1

genes) with external regulations from the external groupΨ (comprising N2 genes) at time points 1, 2, . . ., T.

The vector Xt 2 R
N1�1

, the “state”, includes N1 gene expression levels at time t inΩ, and the vector

Ut 2 R
N2�1

, the “input or control”, includes N2 gene expression levels at time t in Ψ. The system matrix A 2
R
N1�N1 captures internal causal interactions among genes in Ω (i.e., the ith, jth element of A, Aij describes the

contribution from the jth gene expression at time t to the ith gene expression at the next time t+1). The control

matrix B 2 R
N1�N2 captures external causal regulations from the genes in Ψ to genes in Ω (i.e., the ith, jth

element of B, Bij describes the contribution from the jth gene expression inΨ at time t to the ith gene

expression inΩ at the next time t+1). (B) Meta-gene expression levels. The meta-gene expression levels are

obtained by ~Xt ¼W
�
XXt; ~Ut ¼ W

�
UUt, where ~Xt 2 R

M1�1
, the “meta-gene state”, includes M1 (<<N1 and <T)

meta-gene expression levels; i.e., the first M1 elements of the tth row of the matrix whose columns are right-

singular vectors of the matrix [X1 X2 � � � XT] in Ω by the singular value decomposition (SVD) [19]; the vector
~Ut 2 R

M2�1
, the “meta-gene input or control”, includes M2 (<<N2 and <T) meta-gene expression levels (i.e.,

the first M2 elements of the tth row of the matrix whose columns are right-singular vectors of the matrix SVD

of matrix [U1 U2 � � � UT] at time t in Ψ;WX 2 R
N1�M1 is the linear projection matrix of SVD from M1 meta-gene

expression space to N1 gene expression space in X,WU 2 R
N2�M2 is the linear projection matrix of SVD from

M2 meta-gene expression space to N2 gene expression space inΨ), and (.)* is a pseudo-inverse operation;

i.e., W*W = I, where I is the identity matrix. (C) Effective state space model for meta-genes. The effective

state-space model for meta-genes, Eq 5 is obtained by using linear projections WX and WU between

genes and meta-genes from Eqs 1–4. The effective meta-gene system matrix ~A ¼ W�
XAWX 2 R

M1�M1

captures internal causal interactions among meta-genes in Ω (i.e., the ith, jth element of ~A, ~Aij describes

the contribution from the jth meta-gene expression at time t to ith meta-gene expression at next time t+1), and

the effective control matrix ~B ¼ W�
XBWU 2 R

M1�M2 captures external causal regulations from meta-genes in

Ψ to meta-genes in Ω (i.e., the ith, jth element of ~B, ~Bij describes the contribution from the jth meta-gene

expression inΨ at time t to ith meta-gene expression in Ω at next time t+1). Eq 5 describes the effective state

space model for the meta-genes inΩ, whose expression dynamics are determined by ~A and ~B. Because the

meta-gene dimension, M1 (M2) is less than T, and much less than N1 (N2), we can estimate ~A and ~B.

doi:10.1371/journal.pcbi.1005146.g002
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expression vector of the gene components in O affected externally by the genes in C. In partic-
ular, XEXT

t ¼ BUt� 1 represents the expression vector of gene components in O driven purely by
the genes in C since it only involves B and U, and XINTER

t ¼
Pt� 2

k¼1
AkBUt� 1� k captures the

expression vector of gene components in O driven by the interactions between internal and
external groups for involving A, B and U. In this paper, we mainly focus on the purely internal
dynamics. As for the external-related terms, we should emphasize that any subdivision of the
rest of the terms

Pt� 2

k¼1
AkBUt� 1� k þ BUt� 1 is completely arbitrary. That is, although we subdi-

vided it into a purely external term and an interaction term here, one could subdivide it multi-
ple ways. That is, given a particular type of subdivision, each of the subdivided terms sums up a
group of terms from AkBUt−1−k, k = 0,1,2,. . .,t-2. For example, one can look at
Pt� 2

k¼2
AkBUt� 1� k þ ðABUt� 2 þ BUt� 1Þ, where ABUt−2 + BUt−1 shows the contribution from the

inputs up to two time steps back to Xt.

Dimensionality reduction from genes to meta-genes

The temporal gene expression experiments normally have limited time samples (for example,
there may only be a dozen time points), which are far less than the time samples needed to esti-
mate the large matricesA and Bwhen internal and external groups, O and C are composed of
hundreds or thousands of genes. One way to deal with lack of time samples is dimensionality
reduction. Thus, we project high dimensional temporal gene expressions to much lower dimen-
sional meta-gene expression levels using a dimensionality reduction technique (Fig 2B). Those
meta-gene expression levels should capture original gene expression patterns, such as the ones
having the greatest degree of co-variation.We calculate the meta-gene expression levels as follows:

~Xt ¼W
�

XXt; ~Ut ¼W
�

UUt ð3Þ

, where ~Xt 2 R
M1�1, the “meta-gene state” at time t, includesM1 (<< N1 and<T) meta-gene

expression levels; i.e., the firstM1 elements of the tth row of the matrix whose columns are right-
singular vectors of the matrix [X1 X2 � � � XT] in O by the singular value decomposition (SVD)
[19]; the vector ~Ut 2 R

M2�1, the “meta-gene input or control” at time t, includesM2 (<< N2 and
<T) meta-gene expression levels; i.e., the firstM2 elements of the tth row of the matrix whose col-
umns are right-singular vectors from SVD of the matrix [U1U2 � � � UT] in C;WX 2 R

N1�M1 is the
linear projectionmatrix of SVD fromM1 meta-gene expression space toN1 gene expression space
in O,WU 2 R

N2�M2 is the linear projectionmatrix of SVD fromM2 meta-gene expression space
toN2 gene expression space in C, and (.)

�

is a pseudo-inverse operation; i.e.,W
�

W = I, where I is
the identity matrix.

Estimation of effective state-space model for meta-gene expression

dynamics

Next, we obtain the effective state-space model for meta-genes using linear projectionsWX and
WU between genes and meta-genes as follows (Fig 2C). By replacing (1) using (3), we obtain that

WX
~Xtþ1 ¼ AWX

~Xt þ BWU
~Ut: ð4Þ

After multiplying the pseudo-inverse ofWX,W�
X 2 R

M1�N1 s.t.W�
XWX ¼ I where I is an

identity matrix, at both sides of (4), we have that

~Xtþ1 ¼W
�

XAWX|fflfflfflfflffl{zfflfflfflfflffl}
~A

~Xt þW
�

XBWU|fflfflfflffl{zfflfflfflffl}
~B

~Ut ¼
~A ~Xt þ

~B ~Ut ð5Þ

Gene Expression Dynamics by External and Internal Regulatory Networks
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, where the effectivemeta-gene systemmatrix ~A ¼W�
XAWX 2 R

M1�M1 captures internal causal
interactions among meta-genes in O (i.e., an element of ~A, ~Aij describes the contribution from
the jth meta-gene expression at time t to ith meta-gene expression at time t+1), and the effective
control matrix ~B ¼W�

XBWU 2 R
M1�M2 captures external causal regulations frommeta-genes

of C to meta-genes of O (i.e., the ith, jth element of ~B, ~Bij describes the contribution from the jth

meta-gene expression in C at time t to ith meta-gene expression in O at time t+1). Eq 5
describes the effective state space model for the meta-genes of O, whose expression dynamics is
determined by ~A and ~B. Because the meta-gene dimension,M1 (M2) is less than T, and much
less than N1 (N2), we can estimate ~A and ~B as follows.

We rewrite Eq 5 as a matrix product on the right side:

~Xtþ1 ¼
~A ~Xt þ

~B ~Ut ¼ ½ ~A ~B �
~Xt

~Ut

2

4

3

5: ð6Þ

By applying Eq 6 to time points, 2,3, . . ., T, we then obtain that

½ ~X2
~X3

� � � ~XT �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z

¼ ½ ~A ~B �
~X 1

~X 2
� � � ~XT� 1

~U 1
~U 2

� � � ~UT� 1

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Υ

ð7Þ

, where Z 2 R
M1�ðT� 1Þ and Υ 2 R

ðM1þM2Þ�ðT� 1Þ.
Because of dimension reduction,Υ has more columns than rows so that it has right pseudo-

inverse. Thus, the effective internal systemmatrix ~A and external control matrix ~B can be esti-
mated by:

½ ~A ~B � ¼ ZΥ� ð8Þ

, where Υ� 2 R
ðT� 1Þ�ðM1þM2Þ is the right pseudo-inverse of Υ; i.e., ΥΥ� = I, withM1<N1,M2<N2,

M1+M2<T, t = 1,2,. . .,T. It is worth noting that if we do not reduce the dimensionality, and
obtain Eq 7 from Eq 5, then Υ will have much more rows than columns so that it doesn’t have
right pseudo-inverse; i.e., there doesn’t exist a matrix Υ� such that ΥΥ� is a full-rank identify
matrix. In addition, the condition ofM1+M2<T also makes ΥΥ� be a full-rank identifymatrix.

Identification of internally and externally driven principal dynamic

expression patterns of meta-genes (canonical temporal expression

trajectories)

The analytic solution to a general first-order linear matrix difference equation [20],Qt+1 = CQt is
Qt = CtQ0 = (HEH-1) tQ0 = HEtH-1Q0 = HEtS, where the columns of the matrixH are eigen-

vectors of C, the diagonal elements of the diagonal matrix E are eigenvalues of C such that
CH =HE, and the vector
S =H-1Q0. Then, if we rewriteQt by a linear combination of the time exponential of eigen-

values of C, we have that Qt ¼ HEtS ¼
Pmc

i¼1
ati siHi ¼

Pmc
i¼1

atiKi, wheremc is the total number
of eigenvalues of C, αi is the ith eigenvalue of C, si is the ith element of S,Hi is the ith eigenvector
of C (i.e., the ith column ofH), and Ki = siHi is the coefficient vector ofQt over the tth time expo-
nential of αi.

By Eq 5, the matrix Ã determines the meta-gene states components whose expression
dynamics are internally controlled by the meta-genes of O. As Eq 2, we define the expression of
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the meta-gene components driven only internally by themselves in O at time t as ~X INT
t , anM1-

dimensional vector; i.e., their expression at two adjacent time points have
~X INT
tþ1
¼ ~A ~X INT

t 2 R
M1�1. According to the above analytic solution, it can be a linear combina-

tion ofM1 dynamic patterns determined by the eigenvalues of the effective systemmatrix ~A as
follows:

~X INT
t ¼

PM1

p¼1
l
t
p
~Kp; i.e., the internally driven component of ith meta-gene’s expression across

all time points,

½ ~X INT
1
ðiÞ ~X INT

2
ðiÞ . . . ~X INT

T ðiÞ � ¼
PM1

p¼1
~KpðiÞ ½ l

1

p l
2

p . . . l
T
p �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pth iPDP

ð9Þ

, where λp and ~Kp 2 C
M1�1 are the pth eigenvalue of ~A and its coefficient vector from the ana-

lytic solution, which determines the pth dynamic pattern driven by effective internal regula-
tions, defined as the pth internal principal dynamic pattern (iPDP) = ½l1

p l
2

p . . . l
T
p �, in which l

t
p

represents the tth power of λp, and X(i) represents ith element of the vector X.C represents the
complex number domain. If an eigenvalue λ is complex when ~A is asymmetric, then its conju-
gate �l is also an eigenvalue, so we sum its iPDP and its conjugate eigenvalue, �l’s iPDP, as a uni-
fied iPDP with real elements equal to ½l1

p þ
�l1
p l

2

p þ
�l2
p . . . l

T
p þ

�lTp �.
The internal principal dynamic patterns (iPDPs) represent canonical temporal expression

trajectories, which can be either increasing, or damped oscillation and so on depending on
iPDP’s eigenvalues (Fig 3). The iPDPs can be ordered by sorting their eigenvalues.

Also by Eqs 2 and 5, the expression of the meta-gene states components driven purely by
the external group C at time t is defined as ~XEXT

t , anM1-dimensional vector, and its expression
dynamics is determined by the equation ~XEXT

tþ1
¼ ~B ~Ut 2 R

M1�1; i.e., the externally driven com-
ponents of meta-gene states at two adjacent time points. In particular, the externally driven
component of ith internal meta-gene’s expression across time points:

½ ~XEXT
2
ðiÞ ~XEXT

3
ðiÞ . . . ~XEXT

T ðiÞ � ¼
PM2

q¼1
~Bi;q ½ ~U 1ðqÞ ~U 2ðqÞ . . . ~UT� 1ðqÞ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

qth ePDP

ð10Þ

, where ~XEXT
t ðiÞ and ~UtðqÞ are i

th and qth elements of ~XEXT
t and ~Ut , respectively with t = 1,2,. . ., T,

Fig 3. Classification of canonical temporal expression trajectories for iPDP eigenvalue types. The internal principal dynamic patterns

(iPDPs) represent canonical temporal expression trajectories, which can be either increasing, or damped oscillation and so on depending on

iPDP’s eigenvalues (The bottom row).

doi:10.1371/journal.pcbi.1005146.g003
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the vector ½ ~U 1ðqÞ ~U 2ðqÞ . . . ~UT� 1ðqÞ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
is defined as qth external principal dynamic pat-

tern (ePDP), and ~Bi;q is the element of ~B at ith row and qth column, which is also the coefficient
of the externally driven component of ith internal meta-gene’s expression over qth ePDP. Based
on Eq 2, the expression of the meta-gene components driven by the interactions between inter-
nal and external meta-genes is given by ~X INTER

t ¼
Pt� 2

k¼1
~Ak ~B ~Ut� 1� k: In this paper, we focus on

the purely driven internal patterns (i.e., iPDPs) and compare them across different biological
systems.

Identification of gene coefficients of principal expression dynamic

patterns

Because genes and meta-genes have linear relationships in terms of their expression levels as
described in Eq 2, the components of gene expression levels in O driven by internal regulations,
XINT
t 2 R

N1�1 can be also expressed as linear combinations ofM1 iPDPs:

XINT
t ¼WX

~X INT
t ¼

PM1

p¼1
l
t
p WX

~Kp
|fflfflffl{zfflfflffl}

Cp

¼
PM1

p¼1
l
t
p Cp ; i:e:;

the internally driven component of ith gene’s expression across all time points,

½ XINT
1
ðiÞ XINT

2
ðiÞ . . . XINT

T ðiÞ � ¼
PM1

p¼1
CpðiÞ ½ l

1

p l
2

p . . . l
T
p �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pth iPDP

ð11Þ

, where Cp ¼WX
~Kp 2 C

M1�1 represents the gene coefficient vector for pth iPDP. Similarly, the
gene expression components driven by external genes in C, XEXT

t 2 R
N1�1 can be also

expressed as linear combinations ofM2 ePDPs:

XEXT
t ¼WX

~XEXT
t ¼WX

~B
|fflffl{zfflffl}

D

~Ut ¼ D ~Ut ; i:e:;

the externally driven component of ith gene’s expression across all time points,

½ XEXT
2
ðiÞ XEXT

3
ðiÞ . . . XEXT

T ðiÞ � ¼
PM2

q¼1
Di;q ½ ~U 1ðqÞ ~U 2ðqÞ . . . ~UT� 1ðqÞ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

qth ePDP

ð12Þ

, where XEXT
t ðiÞ is i

th element of XEXT
t with t = 1,2,. . ., T, and Di,q is the element of D ¼WX

~B at
ith row and qth column, which is also the coefficient of the externally driven component of ith

gene’s expression over qth ePDP.

Results

Gene expression data during embryogenesis provide important information about the dynam-
ics of genomic functions throughout the developmental process, from the conserved functions
such as DNA replication to the species-specific functions such as body segmentation, but
hardly reveal any data regarding the evolutionary gene regulatory subsystems that drive those
developmental functions [3]. Thus, in order to understand the relationships between those sub-
systems and their driving genomic functions, we apply DREISS to worm and fly gene expres-
sion datasets during embryogenesis in modENCODE and we are able to identify various
developmental genomic functions of worm-fly orthologous gene pairs driven by two different
evolutionary regulatory subsystems, conserved (worm-fly orthologous TFs) and non-
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conserved (worm/fly specific TFs). As model organisms for developmental biology, both worm
and fly have been used previously to study embryogenesis.

Applications to worm and fly embryonic developmental data in

modENCODE: Orthologous genes, transcription factors and gene

expression datasets

DREISS enables us to compare expression dynamic patterns between two or more temporal
gene expression datasets even though they have different numbers of samples, as well as differ-
ences in the times at which those samples were collected. For example, we can apply DREISS to
two different datasets of the same group of genes, and identify both the common (similar) and
the specific (different) dynamic patterns driven by internal regulations captured by the eigen-
values of the effective systemmatrices between the two datasets.

In this paper, we apply DREISS to 3,153 one-to-one orthologous genes betweenworm (Cae-
norhabditis elegans) and fly (Drosophila melanogaster) as internal group, O to study their
expression dynamics during embryonic development [10]. We refer to species-specificTFs as
external regulations; i.e., external group C. We found that worm-fly orthologs have similar
internal dynamic patterns, which may be mainly driven by conservedTFs, but have very differ-
ent external dynamic patterns driven by species-specificTFs betweenworm and fly embryonic
developmental stages. The data is summarized as follows.

We define internal group O as 3,153 one-to-one orthologous genes betweenworm and fly
during embryonic development, and external group C as all the species-specificTFs (509
worm-specificTFs, 442 fly-specificTFs) [21,22]. We used their temporal gene expression levels
(as measured by the RPKM values in RNA-seq) during embryonic development from the mod-
ENCODE project [10]. The worm embryonic development dataset includes T = 25 time stages
at 0, 0.5, 1, 1.5, . . ., 12 hours, and the fly dataset includes T = 12 time stages at 0, 2, 4, . . ., 22
hours, but t = 1,2,..,25 for worm and t = 1,2,. . .,12 for fly are used in this paper, representing
the relative time points for the entire embryonic development processes. BecauseM1+M2<T
in Eq 8, we chooseM1 =M2 = 5 meta-genes for fly (T = 12), and find that five meta-genes of O

and five meta-genes of C capture ~98% of the co-variation of orthologous gene expressions
and fly-specificTF gene expressions, respectively. In order to compare worm and fly, we also
chooseM1 =M2 = 5 meta-genes for worm, which capture ~98% of the co-variation of ortholo-
gous gene expressions and worm-specific TF gene expressions.

Meta-genes of worm-fly orthologous genes have similar internal, yet

different external principal dynamic patterns during embryonic

development

We find that the meta-gene canonical temporal expression trajectories driven by conserved
regulatory networks (i.e., internal principal dynamic patterns, iPDPs) include four major pat-
terns in both the worm and fly embryonic developmental process by order of eigenvalues: 1) a
late highly varied pattern; 2) an early fast decaying pattern; 3) a slowly increasing pattern; and
4) an oscillating pattern (Fig 4A); i.e., the pattern of canonical trajectories (VL, D, I, O) in Fig
3. In contrast to the observed iPDP similarities, we find that worm and fly have very different
external principal dynamic patterns (ePDPs) (Fig 4B); i.e., the expression dynamic patterns
driven by species-specificTFs. The principal dynamic patterns driven by the worm-specific
regulatory network; i.e., worm ePDPs, include a varied pattern that decreases until the middle
stage and then increases, an increasing pattern, a varied pattern with a peak enteringmiddle
stage, a pattern that varies early and then increases during the embryonic development, and a
cosine-like oscillating pattern with roughly two periods during the embryonic development. The
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fly ePDPs, however, have a varied pattern with low expression at the early stage, a sine-like oscil-
lating pattern with roughly one period during the embryonic development, an increasing pattern,
another sine-lie oscillating pattern with roughly two periods during the embryonic development,
and a varied pattern that is like damped oscillation. In addition, we checked the sensitivity of
iPDPs to small perturbations to internal/external regulatory networks by the leave-one-out
method; i.e., we removed one gene in the internal/external group, ran DREISS, and obtained the
ordered iPDP eigenvalues for the remaining genes.We repeated the leave-one-out method for all
genes, and finally found the ranges in which iPDP eigenvalues vary shown as error bars in S1 Fig.
We can see that the iPDP eigenvalues almost stay at the same values (small error bars) for both
worm and fly, which implies that the principal dynamic patterns of worm-fly orthologous genes
driven by their conserved regulatory network are robust to small changes.

Fig 4. Principal dynamic patterns of orthologous genes between worm and fly during embryonic development. (A) Metagenes of orthologous

genes have similar internal driven principal dynamic patterns. Meta-gene canonical temporal expression trajectories driven by conserved regulatory

networks (i.e., internal principal dynamic patterns, iPDPs) include four major patterns in both worm and fly embryonic development: 1) a highly varied

pattern late (iPDP with the real eigenvalue No. 1); 2) a fast decaying pattern early (iPDP with the real eigenvalue No. 2); 3) a slowly increasing pattern

(iPDP with the real eigenvalue No. 3); and 4) an oscillating pattern (iPDP with the complex eigenvalue). (B) Metagenes of orthologous genes have

different external driven principal dynamic patterns. Worm and fly have very different external principal dynamic patterns (ePDPs); i.e., the patterns driven

by species-specific TFs. The principal dynamic patterns driven by the worm-specific regulatory network; i.e., worm ePDPs consist of a varied pattern that

decreases until the middle stage and then increases (ePDP No.1), an increasing pattern (ePDP No.2), a varied pattern with a peak entering middle stage

((ePDP No.3), a pattern that varies early and then increases during the embryonic development (ePDP No.4), and a cosine-like oscillating pattern with

roughly two periods during the embryonic development (ePDP No.5). The fly ePDPs, however, have a varied pattern with low expression at the early

stage (ePDP No.1), a sine-like oscillating pattern with roughly one period during the embryonic development (ePDP No.2), an increasing pattern (ePDP

No.3), another sine-lie oscillating pattern with roughly two periods during the embryonic development (ePDP No.4), and a varied pattern that is like

damped oscillation (ePDP No.5).

doi:10.1371/journal.pcbi.1005146.g004
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The above results suggest that the conserved regulatory networks from orthologousmeta-
genes betweenworm and fly have similar effects to orthologousmeta-genes, given their similar
iPDPs (i.e., both have four patterns, as described above). The species-specific regulatory net-
works from species-specificmeta-genes (i.e., worm-specific or fly specific TFs) have effects that
differ from the orthologousmeta-genes for their different ePDPs. In addition, the expression
dynamic patterns driven by the interactions between internal orthologous genes and external
species-specificTFs are also different betweenworm and fly (S2 Fig).

Orthologous genes have correlated coefficients between worm and fly

for their matched internal principal dynamic patterns

In both worm and fly, we observe the similar four types of internally driven canonical temporal
expression trajectories; i.e., four matched internal principal dynamic patterns (iPDPs) (Fig 4A).
Thus, we are interested in seeing how individual orthologous genes relate to those dynamic pat-
terns. We find that the worm-fly orthologous genes have correlated coefficients over each of
the four iPDPs. Based on Eq 10, we can obtain the coefficients of orthologous genes for each
iPDP. We find that their coefficients are significantly correlated betweenworm and fly iPDPs
with a similar pattern (Fig 5): r = 0.33 (p<2.2e-16) for the highly varied pattern at late embry-
onic development stages (first iPDP), r = 0.66 (p<2.2e-16) for the fast decaying pattern at early
embryonic development stages (second iPDP), r = 0.67 (p<2.2e-16) for the slowly increasing
pattern during embryonic development (third iPDP), and r = 0.73 (p<2.2e-16) for the oscilla-
tion pattern during embryonic development (forth iPDP), where r represents Spearman corre-
lation of iPDP coefficients of 3,153 orthologous genes betweenworm and fly. This implies that,
not only do the orthologousmeta-genes have similar internal (conserved) regulatory effects
(i.e., similar iPDPs), but the worm-fly orthologous genes also have similar internally-driven
expression dynamics as resulted from their significantly correlated coefficients for iPDPs. The
ePDPs betweenworm and fly generally do not show a high degree of matching similarity, but
the worm ePDP No. 2, and the fly ePDPs No. 3 are roughly representing the growing patterns.
We find that orthologous gene correlation coefficients between these ePDP patterns are very
small (Spearman correlation r = -0.22 of the orthologous gene coefficients of worm ePDP No.2
and fly ePDP No. 3).

Ribosomal genes have significantly larger coefficients for the internal

than external principal dynamic patterns, but signaling genes exhibit the

opposite trend

The ribosome produces proteins, which is an ancient process and conserved across worm and
fly, organisms separated by almost a billion years of evolution. The ribosomal genes are highly
expressed during embryogenesis, since intensive cell division and migration require a large
amount of proteins to be synthesized.We collected 195 ribosome-related genes based on the
GO annotations. We ranked the coefficients of orthologous genes for each iPDP and ePDP in
ascending order, and compared the rank values of iPDP and ePDP coefficients of ribosomal
genes.We found that their average ranks of iPDP coefficients are significantly larger than
ePDP ones in both worm (t-test p<2.2e-16) and fly (t-test p<2.6e-13) as shown in Fig 6. This
means that the ribosomal gene expression is significantlymore influenced by the conserved
regulatory network than by the species-specific regulatory network, which is consistent with
ribosomal genes having conserved functions during embryonic development.

The orthologous genes related to signal transduction for cell-cell communication (a signifi-
cantly more recent evolutionary adaptation relative to the ribosome) exhibit the opposite
trend.We found that 320 signaling genes from GO annotations have significantly larger
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average rank values of ePDP coefficients than iPDP ones in both worm (t-test p<5.6e-11) and
fly (t-test p<8.3e-4), as shown in Fig 6. This result implies that the signaling gene expression is
significantlymore driven by the species-specific regulatory network than by the conserved reg-
ulatory network, which is consistent with the signaling genes being commonly associated with
species-specific functions, such as body plan establishment and cell differentiation.

Fig 5. Orthologous genes have correlated coefficients between worm and fly for their matched internal principal dynamic

patterns. The 3,153 worm-fly orthologous genes have correlated coefficients over each of four iPDPs. Their coefficients are

significantly correlated between worm and fly iPDPs with a similar pattern: r = 0.33 (p<2.2e-16) for the highly varied pattern at late

embryonic development (first iPDP), r = 0.66 (p<2.2e-16) for the fast decaying pattern at early embryonic development (second iPDP),

r = 0.67 (p<2.2e-16) for the slowly increasing pattern during embryonic development (third iPDP), and r = 0.73 (p<2.2e-16) for the

oscillation pattern during embryonic development (forth iPDP).

doi:10.1371/journal.pcbi.1005146.g005
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DNA replication and Proteasome machinery are enriched in orthologous

genes with high coefficients for the dynamic patterns with fast growing

canonical trajectories

We next turn to the biologicalmeaning of individual canonical temporal expression trajectory
for iPDPs and ePDPs. For the fast-decaying pattern (2nd iPDP), we find that the DNA replica-
tion is significantly enriched in Top 300 (~10%) orthologous genes that have the most negative
coefficients for this pattern, in both worm (p<1.6e-8) and fly (p<4.5e-6). The GO enrichment
analysis was performed using DAVID [23]. The very negative coefficients for the fast decaying

Fig 6. Ribosomal genes have significantly larger coefficients for internal than external principal dynamic patterns, but

signaling genes exhibit the opposite trend. The rank values in ascending order of iPDP and ePDP coefficients of ribosomal and

signaling genes (cell-cell communication) genes are compared. The y-axis shows the distributions of rank values. Ribosomal genes

(white boxes): their average rank values of iPDP coefficients are significantly larger than ePDP ones in both worm (t-test p<2.2e-16)

and fly (t-test p<5.6e-11). Signaling genes (grey boxes): they have significantly larger average rank values of ePDP coefficients than

iPDP ones in both worm (t-test p<2.6e-13) and fly (t-test p<8.3e-4).

doi:10.1371/journal.pcbi.1005146.g006
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pattern mean high positive coefficients for a fast-growing pattern (vertically flipped 2nd iPDPs
of worm and fly represent a fast-growing pattern), showing a drastic increase at the beginning
of embryogenesis, then remain flat during the late embryogenesis (red curves in Fig 7). Most of
the cell division of embryogenesis in both worm and fly happens approximately within the first
300 minutes. Then, the cell elongation and migration start to dominate the development
[24,25]. The mRNA abundance of the genes involved in DNA replication may change accord-
ingly. This is well reflected by the second iPDP. Interestingly, the original expression patterns
of those top orthologous genes actually do not have fast-growing patterns (black curves in Fig
7), probably because of the combined effects of both conserved and species-specificGRN.
Maternal mRNAs, which are pre-loaded before fertilization,may also mask the fast growing
pattern of DNA replication genes. This pattern could only be observed after we separated the
effect of two types of TFs using DREISS. In addition, we did not find any enrichment of DNA
replication in top genes of other iPDPs (p>0.05). Therefore, the fast-growing iPDP patterns
identified by our method reveal conserved regulation on the elementary cellular process of
both species (i.e. DNA replication).

Besides a fast growing pattern driven by conservedworm-fly orthologous TFs, we also iden-
tified a fast growing pattern driven by non-conservedTFs for the two species. The Top 300
orthologous genes (~10%) with the fast-growing worm ePDP (ePDP No.2) (i.e., driven by
species-specific regulatory networks) are enriched in ‘proteasome’ (p<9.8e-16). Protein degra-
dation is not only a key process in apoptosis, but also throughout the entire course of develop-
ment [26,27]. For example, eliminating proteins that are no longer needed is a vital process

Fig 7. DNA replication is enriched in orthologous genes with high coefficients for the dynamic patterns with fast growing

canonical trajectories. (A) The first principal component of Top 10% genes with most negative coefficients with 2nd worm iPDP (black

curve). (B) The fast-growing iPDP (vertical flipped 2nd iPDP) showing a drastic increase at the beginning of embryogenesis, then

remain flat during the late embryogenesis (red curve). For the fast-decaying pattern (2nd iPDP), we found that the DNA replication is

significantly enriched in Top 300 (~10%) orthologous genes that have the most negative coefficients for this pattern, in both worm

(p<1.6e-8) and fly (p<4.5e-6). The very negative coefficients for the fast decaying pattern means high positive coefficients for a fast-

growing pattern (red curve). The original expression patterns of those top orthologous genes actually do not have fast-growing patterns

(black curve).

doi:10.1371/journal.pcbi.1005146.g007
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during embryo development; e.g., the maternal proteins need to be cleaned as the embryogene-
sis proceeds). Previous reports also showed that different species usually have different mater-
nal mRNA in the oocyte, which indicates that species-specific strategies might be utilized to
regulate the protein degradation process [28]. In this study, after separating the effect of con-
served and non-conserved regulatory networks, we observed that the protein degradation is
significantly enriched in the genes majorly driven by species-specificTFs in worms. In contrast,
the Top 300 orthologous genes with fast growing fly ePDP3 are enriched in ‘mitotic cell cycle’
(p<3.5e-29), ‘translation’ (p<1e-30) and ‘mitochondrion’ (p<7.7e-20). Those enriched func-
tion related to energy generation is probably indicative of the large energy requirement during
fly embryogenesis [29], which did not provide the evolutionary conservation of this energy-
related gene regulation. Our result reveals that the fly genes associated with respiration are
more up-regulated by fly-specificTFs relative to conservedTFs, and that this up-regulation
evolved after the separation of worm and fly.

Besides the fast-growing pattern driven by species-specificTFs, we also observed some other
interesting patterns. For example, worm ePDP3 displays a dramatic peak about 5 hours after fer-
tilization. Among the Top 300 worm orthologous genes of this pattern, genes involved in synap-
tic transmission (p<5.6e-9) and cell-cell signaling (p<1e-7) are over-represented, suggesting that
they are transiently activated in this stage of embryogenesis by worm-specificTFs. This observa-
tion indicates the gene regulatory network for these genes have evolved after the speciation.

Human-specific transcription factors respond to hormonal stimulation

during breast cancer cell cycle

We applied DREISS to another example (also see supplement) about cancer. We are also inter-
ested to identify the gene expression dynamic patterns driven by conserved and human-specific
regulatory networks during breast cancer cell cycle. Thus, we applied DREISS to a time-series
gene expression data for human estrogen-responsive breast cancer cell line (ZR-75.1) before
and after hormonal stimulation, which has 12 time points covering a complete mitotic cell
cycle (0–32 hours) of hormonal stimulated cells [30]. The internal group, O is defined as a set
of cross-species conservedhuman genes (i.e., 1132 worm-fly-human orthologs including 150
orthologous TFs), and the external group, C consists of 1870 human-specific TFs. As shown in
S3 Fig, the internally driven principal dynamic patterns (iPDPs) of conservedhuman genes
include an oscillation trajectorywhose period is roughly equal to a full cell cycle (iPDP No. 4),
but the externally driven patterns (ePDPs No. 2–4) oscillates more frequently than internal
one, which suggests that though the evolutionarily conservedTFs regulate the normal cell
cycle, the human specific TFs potentially drive the abnormal cycling behaviors of conserved
gene expression responding to the hormonal stimulation.

Discussion

In this paper, we presented a novel computational method, DREISS, which decomposes time-
series expression data of a group of genes into the components driven by the regulatory net-
work inside the group (internal regulatory subsystem), and the components driven by the
external regulatory network consisting of regulators outside the group (external regulatory sub-
system). DREISS is a general-purpose tool that can be used to study the gene regulatory effects
of any interested biological subsystems such as protein-coding transcription factors, micro-
RNAs, epigenetic factors and so on. As an illustration, we applied DREISS to the time-series
gene expression datasets for worm and fly embryonic developments from the modENCODE
project [10], and compared the worm-fly orthologous gene expression dynamic patterns driven
by the conserved regulatory network (i.e., regulation effects from orthologous TFs), with the
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patterns driven by the species-specific regulatory networks (i.e., regulation effects from worm
or fly specific TFs). We found that the conservedTFs drive similar genomic functions, but
non-conservedTFs drive species-specific functions of orthologous genes betweenworm and
fly, implying that, in addition to having ancient conserved functions, orthologous genes have
been regulated by evolutionarily younger GRNs to execute species-specific functions during
the evolution. This work can be easily extended to study the regulatory effects from ortholo-
gous TFs and species-specificTFs to species-specificgenes. For example, one can find the
expression dynamic patterns of worm/fly specific genes driven by specific TFs, and identify the
genes with strong patterns associated with worm/fly specific functions, such as body forma-
tions. To the best of our knowledge, DREISS is the first method to reveal how the evolution of
GRNs affects gene expression during embryogenesis.

We emphasize that DREISS is a general-purposemethod (a free downloadable R tool avail-
able from github.com/gersteinlab/dreiss). Users can define the internal group (O) and external
group (C) according to their interests. For example, if users want to identify the protein-coding
expression patterns driven by miRNAs, they can definemiRNAs as an external group and pro-
tein-coding genes as an internal group. Additionally, DREISS can be applied to more than two
datasets, such as comparing worm, fly and human embryonic stem cell developmental data,
and finding their conserved and specific developmental expression patterns. The expression
patterns driven by human-specific regulatory factors will potentially help us understand
human-specific developmental processes along with the associated human genes.

Due to the limited time samples in gene expression datasets, DREISS uses the simple linear
state space model (i.e. the first order linear invariant difference equation) to model the tempo-
ral gene expression dynamics, and identify principal temporal dynamic patterns. This model
assumes that the gene regulatory networks controlling temporal gene expression dynamics
does not change across the entire biological process such as (A, B) in Eq 1. Thus, based on the
analytic analysis, the principal dynamic patterns (PDPs) must follow a small set of canonical
temporal trajectories (Fig 3). With the rapidly increasing gene expression data, we can extend
DREISS to more advanced models such as switched and hybrid systemmodels, non-linear
models [31], which will allow us to study the gene regulatory networks are time varying, and
potentially find the more temporal gene expression patterns capturing the more complex gene
regulatory activities.

Supporting Information

S1 Fig. Principal dynamic patterns and their eigenvalues. Internal principal dynamic pat-
terns (iPDPs) of orthologs during worm and fly embryonic development. Barplots show the
eigenvalues of iPDPs. The error bar for each eigenvalue tells the its variation range. We left one
gene out, and calculated eigenvalues for the remaining genes thus obtaining the eigenvalue var-
iations. The curves show the canonical temporal expression trajectories of iPDPs.
(TIF)

S2 Fig. The expression dynamic patterns driven by the interactions betweenworm-fly
orthologs and species-specificTFs. The first five singular vectors (>95% covariance in total)
of ½~XINTERt ; t ¼ 1; 2; 3; . . . ;T� defined at the end of Section “Identification of internally and
externally driven principal dynamic expression patterns of meta-genes (ca-nonical temporal
expression trajectories)”.
(TIF)

S3 Fig. Internally and externally principal dynamic patterns of cross-speciesconserved
gene expression during human breast cancer cell cycle after hormonal stimulation. The
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horizontal axis represents 12 time points from 0 to 32 hours during a complete mitotic breast
cancer cell cycle (E-TABM-631, ArrayExpress). The vertical axis represents the normalized
PDP expression with the vector norm equal to one. The internal group is defined as a set of
cross-species conservedhuman genes (i.e., 1132 worm-fly-human orthologs; including 150
orthologous TFs), and the external group consists of 1870 human-specific TFs.
(TIF)

S1 Table. Examples of internal and external regulatorynetworks.
(DOCX)
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