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Recombinant antibodies such as nanobodies are progressively demonstrating to be a
valid alternative to conventional monoclonal antibodies also for clinical applications.
Furthermore, they do not solely represent a substitute for monoclonal antibodies but
their unique features allow expanding the applications of biotherapeutics and changes the
pattern of disease treatment. Nanobodies possess the double advantage of being small
and simple to engineer. This combination has promoted extremely diversified approaches
to design nanobody-based constructs suitable for particular applications. Both the format
geometry possibilities and the functionalization strategies have been widely explored to
provide macromolecules with better efficacy with respect to single nanobodies or their
combination. Nanobody multimers and nanobody-derived reagents were developed to
image and contrast several cancer diseases and have shown their effectiveness in animal
models. Their capacity to block more independent signaling pathways simultaneously is
considered a critical advantage to avoid tumor resistance, whereas the mass of these
multimeric compounds still remains significantly smaller than that of an IgG, enabling
deeper penetration in solid tumors. When applied to CAR-T cell therapy, nanobodies can
effectively improve the specificity by targeting multiple epitopes and consequently reduce
the side effects. This represents a great potential in treating malignant lymphomas, acute
myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma and solid tumors.
Apart from cancer treatment, multispecific drugs and imaging reagents built with
nanobody blocks have demonstrated their value also for detecting and tackling
neurodegenerative, autoimmune, metabolic, and infectious diseases and as antidotes
for toxins. In particular, multi-paratopic nanobody-based constructs have been developed
recently as drugs for passive immunization against SARS-CoV-2 with the goal of impairing
variant survival due to resistance to antibodies targeting single epitopes. Given the
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enormous research activity in the field, it can be expected that more and more multimeric
nanobody molecules will undergo late clinical trials in the next future.

Systematic Review Registration
Keywords: nanobody multimers, immunomodulation, intrabodies, imaging, nanobody functionalization
INTRODUCTION

Since the late 1990s, antibodies are largely used in the diagnosis
and therapy of neoplastic diseases, including arcitumomab (anti-
CEA), capromab (anti-PSMA), and trastuzumab (anti-Her2). At
the present, engineered monoclonal IgG antibodies represent the
majority of the drugs under development for clinical applications
(1, 2). The reasons for their success with respect to small
chemical drugs have been thoroughly reviewed (3), as well as
are known the negative characteristics of conventional
antibodies. They are large molecules with poor penetration
capacity in solid tumors, their engineering and site-specific
functionalization is difficult to accomplish and leads to the
production of heterogeneous populations with variable
distribution and efficiency features (4), and they require
expensive production and formulat ion procedures .
Recombinant antibody fragments represent a potential solution
to most of such drawbacks and, at the same time, preserve the
specificity and the sensitivity of full-length antibodies.
Historically, Fabs have been the first class of antibody
fragments to be successfully exploited (5–8). The possibility of
preparing large libraries of unique clones and to pan them
against specific antigens allowed then the isolation of antibody
fragments in scFv and VHH formats. These miniaturized
versions of IgG cannot provide Fc-dependent cellular
cytotoxicity and possess no FcRn-dependent prolonged blood
circulation but their dimension increases their capacity to
penetrate solid tissues and simplifies their humanization and
functionalization. Furthermore, they are suitable for the
inexpensive production in yeast or bacteria and the design of
multivalent or multispecific structures that should improve
specificity and apparent binding affinity (9, 10). The possibility
to create modular constructs by routine molecular biology
techniques is particularly interesting when considering that a
single binder should be easily converted into reagents with
different characteristics according to the final application. For
instance, the clearance of a circulating molecule is strictly
dependent on its mass. Consequently, an antibody fragment
can be fused to a large partner to increase its persistence in the
body for a therapeutic application but kept as small as possible to
enable rapid in vivo imaging (11). Molecular modifications to
extend the serum half-life include conjugation to branched or
linear polyethylene glycol (PEG) or fusion with albumin-binding
domains, as in the case of ALX-0761 (Table 1). Nanobodies,
being at the same time the smallest antibody fragments able to
preserve the selectivity and sensitivity of the corresponding full-
length IgG, maximize the design flexibility for creating
immunoreagents customized for specific applications. It is also
org 2
commonly reported that nanobodies are highly stable. This
statement is misleading since lab experience shows that single
clones possess very diverging levels of stability and aggregation
propensity. However, since library panning usually results in the
isolation of a large number of individual clones, in most of the
cases it is possible to select at least some candidates with optimal
biophysical features for the final applications. As a consequence,
“published nanobodies” are usually really stable, despite not
being representative of the characteristics of the overall
nanobody population.

The variety of the applications proposed so far and reported
in this work is the confirmation of the nanobody value as
reagents for innovative treatments starting from the design of
alternative molecular formats. Nanobodies can be grouped
together by fusing them to Fc domain or using linkers to
construct multimers. Compared with conventional IgG
bispecific antibodies, the structure of bispecific nanobodies
(BsNb) is simpler to produce and such constructs show
excellent solubility and stability. Due to the relevance of the
topic, several reviews dealing with general aspects of engineered
antibody fragments were published in the last years (12–15). This
review will illustrate the research trends in the field of engineered
nanobodies designed for disease treatment because this aspect
has not yet dealt with systematically. We analyzed recent studies
which dealt with the use of BsNbs and other multimeric Nb
formats in cancer, immune disease and anti-infective therapy to
explore the peculiar characteristics of such macromolecules.
NANOBODY APPLICATIONS IN
CANCER RESEARCH

Significant progresses with nanobody immunoreagents have
been achieved in the fields of a-particle radiation and
photodynamic therapy as well as in in vivo imaging (16).
Despite no nanobody has been yet approved for cancer
treatment (Table 1), nanobody-based multivalent, multispecific
and modified constructs have been tested in a multiplicity of
cancer applications with therapeutic potential (17, 18) (Table 2)
and their recombinant nature enables the production of
constructs with a wide range of biodistribution and clearance
patterns that optimally fit to different applications (43).

Imaging
Nanobodies are extremely promising imaging reagents in
different clinical applications such as fluorescence-guided
surgery (44), positron emission tomography (PET) and ingle-
photon emission computed tomography (SPECT) (45, 46).
January 2022 | Volume 12 | Article 838082
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In cancer in vivo imaging, nanobodies have been successfully
used to specifically deliver radionucleotides to tumor cells, to
biomarkers of the tumor microenvironment and to monitor
immune infiltration in animal models and clinical trials (16).
The major drawback of the conventional PET protocol that
exploits the preferential accumulation of glucose in tumors to
deliver radionucleotide-labeled glucose analogues to the
Frontiers in Immunology | www.frontiersin.org 3
cancerous site is that organs such brain or heart, which have
high glucose consumption, are difficult to imagine because of the
elevated background signal. Antibodies complexed to
radionuclides and specific for tumor surface biomarkers
represent a rational alternative for selective targeting but the
large dimension of IgGs impairs the fast clearance of
the unbound fraction. IgGs persist for a couple of days in the
TABLE 1 | Multivalent/bispecific nanobodies that entered clinical trials.

Nanobody Disease Target Structure features Phase of clinical Clinical trial

ALX-0061 RA IL6R Bivalent albumin-conjugated Phase II NCT0251862
ALX-0061 SIE Phase II NCT02437890
ATN-103 RA TNF Trivalent albumin-conjugated Phase II NCT01063803
ALX-0761 Psoriasis IL17A/IL17F Trivalent bispecific Phase II NCT03384745

Albumin-conjugated
M1095 Psoriasis IL17A/IL17F Bivalent bispecific Phase II NCT03384745
Caplacizumab TTP VWF Bivalent monospecific Approved NCT02878603
ALX-0171 RSV F-protein RSV Trivalent monospecific Phase II NCT02979431
ALX-0651 Healthy volunteers CXCR4 Bivalent bispecific Phase I NCT01374503
BI836880 Solid tumors Angiopoietin/VEGF Bivalent bispecific Phase I NCT02674152
KN046 Squamous Non small-cell Lung Cancer PD-L1/TLA4 Tetravalent bispecific Phase III NCT04474119
KN046 Advanced HCC PD-L1/CTLA4 Tetravalent bispecific Phase I NCT04601610
KN035 Hepatocellular Carcinoma PD-L1 Bivalent monospecific Phase I NCT03101488
BCMA nanobody CAR-T cells Relapsed/Refractory Myeloma CD8/4-1BB CAR-T Phase I NCT03664661
CD7 CAR-T cells infusion T-lymphoblastic Lymphoma CD7 CAR-T Phase I NCT04004637
CD22 CAR-T cells B-Cell Lymphoma CD22 CAR-T Phase I NCT03999697
gdT Cell infusion agent B-cell Leukemia CAR-T Early Phase 1 NCT04439721
CD19/CD20 CAR-T cells B-Cell Lymphoma CD19/CD20 CAR-T Phase I NCT03881761
aPD1-MSLN-CAR T cells Non-small-cell Lung Cancer PD-1 CAR-T Early Phase I NCT04489862

Mesothelioma
aPD1-MSLN-CAR T cells Colorectal Cancer PD-1 CAR-T Phase I NCT05089266
M6495 Symptomatic Knee Osteoarthritis ADAMTS-5 Bivalent bispecific Phase II NCT03583346
January
 2022 | Volume 12 |
https://clinicaltrials.gov/.
TABLE 2 | Multivalent/bispecific nanobodies proposed for cancer therapy.

Nanobody Disease Target Structure features Year Reference

MaAbNA Breast cancer HER2/EGFR Bivalent bispecific 2015 (19)
ENb-TRAIL Lioblastoma EGFR/DR Bivalent bispecific 2017 (20)
dhuVHH6-PE38 Acute lymphoblastic leukemia CD7 Bivalent monospecific 2017 (21)
nanoCAR B cell leukemia HER2/CD20 Bivalent bispecific 2018 (22)
7D12-5GS-6H4 Cancer immunotherapeutic EGFR/Vg9Vd2-T Bivalent bispecific 2018 (23)
a-EGFR-EGFR TM EGFR+ tumor EGFR Bivalent monospecific 2018 (24)
RR2-H-RR4 Breast cancer Her2 epitopes Bivalent bispecific 2018 (25)
NB-hcAb Multiple myeloma CD38 Bivalent monospecific 2018 (26)
Muc1-Bi-2 Ovarian cancer Muc1/CD16a Bivalent bispecific 2018 (27)
BiNb Angiogenesis VEGF Bivalent monospecific 2019 (28)
bsVHH Chronic lymphocytic leukemia CD1d/Vg9Vd2-T Bivalent bispecific 2019 (29)
BiSS Colorectal cancer CEA/CD16a Bivalent bispecific 2020 (30)
Biss CAR Acute myeloid leukemia CD13/TIM3 Tetravalent bispecific 2020 (31)
CD47/CD20 BsAb Acute myeloid leukemia CD47/CD20 Tetravalent bispecific 2020 (32)
Bi2 EGFR+ tumor EGFR/FP Bivalent bispecific 2020 (33)
bi-Nb Angiogenesis PLGF Bivalent monospecific 2020 (34)
NbEGFR-HSA-CD16 EGFR+ tumor EGFR/HAS/CD16 Trivalent tri-specific 2021 (35)
CAM1615HER2 Breast cancer CD16/HER2/IL15 Bivalent bispecific 2021 (36)

Antibody-cytokine fusion protein
S7 ADC EGFR+ tumor EGFR Tetravalent monospecific 2021 (37)
multivalent PD-L1/TIGIT BsAb Colon cancer PD-L1/TIGIT Multivalent bispecific 2021 (38)
C21-7D12/7D12-C21 Colorectal cancer EGFR/CD16 Bivalent bispecific 2021 (39)
48-(G4S)1-32/32-(G4S)1-48 Leukemia EGFR/CD16 Bivalent bispecific 2021 (40)
Bispecific Nb CAR Lymphoma CD19/CD20 Bivalent bispecific 2021 (41)
11A4-ABD-AF Breast cancer HER2/HSA Bivalent bispecific 2021 (42)
Art
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vessels determining a diffuse background that prevents high
resolution imaging in the first 24-48 hour after administration.
However, waiting for days between radionucleotide injection and
imaging is impracticable in the clinical organization. Therefore,
the optimal solution appears using antibody fragments such
nanobodies that are cleared in 15 min by kidney filtration but
still provide excellent target accumulation, effective tumor
penetration and improved tumor-to-background signal with
respect to labeled glucose (47, 48). This approach brings a
further advantage: since the imaging can be performed within
one hour after the reagent injection, it is possible to use the short
half-life positron-emitting nuclides (18F, 68Ga or 89Zr) for PET
and the g-emitting nuclide (99mTc) for SPECT to diminish
unnecessary patient irradiation (17). Given the simple
engineering of nanobodies, they can be simply expressed as
bivalent molecules that still preserve low mass but have
increased avidity. For instance, with respect to the monovalent
a-EGFR construct, its corresponding bivalent format resulted in
higher accumulation at the tumor site and improved PET
imaging (24).

B-Cell Lymphomas/Leukemias
B cell lymphoma and leukemia are the most common subtypes of
malignant lymphomas and represent 80-85% of non-Hodgkin
lymphomas (NHLs). About 20%-40% of B-cell lymphoma/
leukemia patients die due to relapse after Rimximab treatment
(49). CAR-T cell therapy has shown potential efficacy in the
treatment of B cell leukemias and lymphomas and the
contemporary targeting of multiple antigen epitopes has been
envisaged to overcome the emergence of single antigen-resistant
leukemic cells and avoid immune escape (50, 51) (Figure 1).
Nanobodies targeting CD19, CD20, CD30 and CD22 (52) have
been successfully used for CAR applications.

De Munter et al. (22) reported the generation of a bispecific
CAR comprising two nanobodies specific for CD20 and HER2,
respectively. T cells expressing the bispecific nanoCAR were able
to kill tumor cells over-expressing CD20, HER2, or both
Frontiers in Immunology | www.frontiersin.org 4
antigens. Since the individualized manufacturing process of
(nano)CARs is costly, the attention moved to donor-derived
gdT cells to use as a CAR backbone because gdT cells lack
allogenicity and are known to mediate natural anti-tumor
responses (54). De Bruin et al. constructed a bispecific
nanobody-based structure that targets Vg9Vd2-T cells and
EGFR for cancer immunotherapeutic therapy (23). Biotech
companies such as PersonGen BioTherapeutics developed
nanobody-based CAR-gdT cells to treat B-cell leukemia. A
clinical trial is currently under way to test the safety and
effectiveness of donor gdT cell infusion to prevent relapsed/
refractory leukemia rescue relapse after allogeneic hematopoietic
stem cell transplantation. Moreover, Vg9Vd2-T cells have
become a novel potential immunotherapeutic for Chronic
Lymphocytic Leukemia (CLL) due to their capacity to be
triggered by phosphoantigens which are overproduced by CLL.
A nanobody-based CD1d-specific Vg9Vd2-T cell engager was
generated to induce robust activation and degranulation of
Vg9Vd2-T cells and consequent lysis of autologous leukemic
cells (29).

Acute Myeloid Leukemia (AML)
Acute myeloid leukemia (AML) includes all acute non-
lymphocytic leukemia. It is related to the insurgency of
pluripotent stem cells or slightly differentiated progenitor cell
nuclear type mutations. A Sequentially Tumor-Selected
Antibody and Antigen Retrieval (STAR) system (31) was
developed for screening multiple nanobodies that specifically
target AML cells. Nanobodies were used to enhance the binding
efficacy of CAR-T cells to AML cells. To this aim, the anti-CD13
nanobody Nb157 was isolated and used to target CD13+ AML
cells. Further, bispecific CAR-T cells targeting CD13 and TIM3
were designed to eradicate patient-derived AML and to promote
decreased toxicity to human bone marrow stem cells and
peripheral myeloid cells in mouse models (Figure 1).

CD47 is overexpressed in gastric, ovarian and colon cancer, as
well as in AML (55) and an anti-CD47 nanobody (HuNb1-IgG4)
A B C

FIGURE 1 | Formats and strategies for multivalent/multispecific nanobodies. (A) Formats of multivalent mono/bispecific nanobodies that entered in clinical trials.
(B) Multivalent mono/bispecific nanobodies applications for blood/lymph cancer therapy. Several CAR-T cell therapies are based on nanobodies and have shown
promising effects, for instance in B cell lymphoma. The most commonly targeted receptors on B- and T-cells are CD19, CD20 and CD3, respectively (52).
(C) Multivalent/bispecific nanobody applications for solid cancer therapy target surface biomarkers of epithelial cancer cells. Multi-functional nanobody structures
target multiple epitopes or antigen combinations, resulting in synergistic therapeutic effects for tumors that do not respond to single-target antagonists (53).
January 2022 | Volume 12 | Article 838082
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with high affinity and specificity (32) effectively empowered
macrophage-mediated phagocytosis of tumor cells in vitro. In
vivo it showed potent anti-ovarian cancer and anti-lymphoma
activity and its efficacy was further increased when it was
combined with rituximab to build a bispecific antibody for the
simultaneous targeting of CD47 and CD20.

Acute Lymphoblastic Leukemia (ALL)
Acute lymphoblastic leukemia is a highly invasive type of blood
cancer. Blinatumomab, which was approved by FDA in late 2014
for the treatment of Fischer-negative precursor ALL (Figure 2),
is a bispecific antibody based on the BiTE technology and
employing two scFvs. One targets the CD19 antigen on the
surface of tumor cells, whereas the other targets the CD3 receptor
on the surface of cytotoxic T lymphocytes (57). Nanobodies were
used in alternative configurations to contrast ALL. CD7 is a
convenient ALL biomarker of T-cells (59) because it is rapidly
endocytosed once complexed by antibodies and therefore can be
exploited for biotherapeutic uptake. A set of humanized anti-
CD7 nanobodies was characterized. With respect to the
monovalent version, bivalent formats fused to a truncated
derivative of Pseudomonas exotoxin A showed significant
higher cytotoxicity (60, 61). The fusion dhuVHH6-PE38 was
used in vivo in NOD-Prkdcem26IL2rgem26Nju (NGG) mouse
model and significantly extended the survival of the animals.
The same nanobody was successfully used to create CAR
constructs which significantly inhibited disease progression in
xenograft mouse models of T-ALL primary tumor cells (21).

Multiple Myeloma
Multiple myeloma is a neoplastic plasma-cell disorder that arises
from an asymptomatic premalignant proliferation of
monoclonal plasma cells derived from post–germinal-center B
Frontiers in Immunology | www.frontiersin.org 5
cells. CD38 is considered as a biomarker overexpressed in
multiple myeloma and the anti-CD38 monoclonal antibody
daratumumab demonstrated its high therapeutic efficacy (62).

Schütze et al. isolated a set of nanobodies that recognized
three different non-overlapping epitopes of CD38 extracellular
domain and then prepared biparatopic constructs by fusing two
nanobodies, specific for alternative epitopes, to human IgG1 Fc-
domain (26). These constructs outscored both the monoclonal
daratumumab and bivalent constructs sharing the same
geometry by displaying two identical nanobodies when
compared for their capacity of mediating complement-
dependent cytotoxicity toward CD38-expressing myeloma cells.

B cell maturation antigen is expressed extensively in malignant
plasma cells, seems to be involved in their proliferation and survival
and is regarded as a target for CAR-T therapy, despite the possible
side effects (63, 64). Nanobody-based CAR-T molecules targeting
such receptor are under development in biotech companies but no
scientific publication confirms their efficacy.

Angiogenesis
Tumors require active angiogenesis for securing the energy
necessary for their growth and the factors regulating this
process become potential drug targets. Vascular endothelial
growth factor (VEGF) plays a critical role in the angiogenesis
(65) and the high-affinity anti-VEGFR2 nanobody (3VGR19)
(28) was tested for its capacity in inhibiting proliferation, tube
formation, and migration of human endothelial cells. When built
into a bivalent format using the hinge region of llama IgG2c, its
half-life in vivo in a C57BL/6 mice model was almost doubled
and its inhibitory activity was significantly higher than those
obtained using the monovalent nanobody.

Placental growth factor (PlGF) is a structurally related
member belonging to the same superfamily of VEGF (66) and
FIGURE 2 | Timeline of conceptual and technical innovations contributing to the development of the multi-function nanobody landscape. The Camelidae “heavy-
chain-only antibodies” were first reported by Hamers-Casterman et al. (7) in 1993 and the first bispecific antibody (Catumaxomab) was approved by EMA only in
2009 (56). In 2014, the first bispecific scFv (Blinatumomab) was approved by FDA (57) and the same agency approved, the first bivalent nanobody drug
(Caplacizumab) for treatment of acquired thrombotic thrombocytopenic purpura (TTP) in 2019 (58).
January 2022 | Volume 12 | Article 838082
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might be involved in pathogenic angiogenesis, probably by
recruiting myeloid progenitors (67). Nikooharf et al. (34)
developed a bivalent anti-PLGF nanobody to test as suppressor
of the angiogenesis progression and observed that it could inhibit
cell proliferation, capillary-like structure formation and motility.

Glioblastoma
Glioblastoma is the most common primary brain tumor in adults
and usually leads to rapid death. A therapeutic option considers
targeting the death receptor (DR) to activate tumor cell death
pathway but the variable response degree in tumor cells to DR
agonist-mediated apoptosis represents a major limitation of
this approach.

A bispecific construct (ENb-TRAIL) composed by an anti-
EGFR nanobody and the DR ligand TRAIL demonstrated
therapeutic efficacy in tumor cells that do not respond to either
EGFR antagonist or DR agonist monotherapies (Figure 1). ENb-
TRAIL induced a triple anti-tumor effect by inducing DR5
aggregation in the plasma membrane, by initiating caspase-
mediated apoptosis of tumor cells and by blocking the EGFR
signaling pathway. In vivo assays proved that ENb-TRAIL
treatment significantly alleviated tumor burden and increased
survival (20, 68). A tetravalent anti-DR5 agonistic nanobody
construct (TAS266) showed more potency than the ENb-TRAIL
compound in pre-clinical studies but did not passed Phase I due
to its strong hepatotoxicity (69).

Brain is also the site of metastatic tumors. A bispecific anti-
VEGF-A/Ang2 nanobody was able to reduce significantly
number and volume of metastatic tumors in a mouse model (70).

Lung Cancer
Lung cancer is the leading cause of cancer death worldwide and,
among the different subtypes, non-small cell lung cancer
(NSCLC) accounts for about 85% of the whole cases (71). The
trifunctional bispecific antibody Catumaxomab based on
Quadroma (Hybrid Hybridoma) technology, which combines
the EpCAM rat antibody (IgG2b) and CD3 mouse antibody
(IgG2a) into a bispecific molecule (56), was the first multispecific
antibody approved by EMA (2009) for the treatment of NSCLC
malignant ascites (Figure 2). Other not exclusive biomarkers,
such epidermal growth factor receptor (EGFR), are often
considered as therapeutic targets in NSCLC because highly
overexpressed and often mutated. An anti-EGFR nanobody
combined with photosensitizer and catalase succeeded in
improving tumor hypoxia and consequently killed A549
primary tumor and inhibited lung metastasis, prolonging
mouse surv iva l (72) . Also ant i -EGFR nanobodies
functionalized with a cell-penetration poly-arginine peptide
were highly cytotoxic to the same human adenocarcinomic
alveolar basal epithelial cells A549 (73).

About 33% of patients with NSCLC tumors and epidermal
growth factor receptor mutations develop brain metastasis (74).
Osimertinib is effective against mutated EGFR but drug
resistance raises in 1 to 2 years (75). To overcome this
limitation, dual-targeting liposomes were generated that
display an anti-PD-L1 nanobody and a transferrin receptor-
binding peptide. This construct is still able to pass the blood-
Frontiers in Immunology | www.frontiersin.org 6
brain barrier and mediate simvastatin/gefitinib delivery to the
NSCLC-EGFRmut metastatic tumor (76).

Nanobodies were also exploited to assess alternative
biomarkers and therapeutic options. A technetium-99 m-
labeled anti-CEA nanobody was used to prove that the
carcinoembryonic antigen (CEA) was a potentially interesting
marker for NSCLC (77), whereas bright nanoprobes based on
quantum dots conjugated to anti-HER2 nanobodies provided
better immunolabeling of lung cancer cell lines than dyes Alexa
Fluor 488 and Alexa Fluor 568 (78). Multivalent anti-CCR8
nanobodies fused to Fc were also effective in NSCLC treatment
by eliciting antitumor immunity through tumor-promoting Treg
cells depletion and ADCC activation (79). Since angiogenesis is
critical in tumor development, VEGFR2 was targeted by an anti-
VEGFR2 nanobody conjugated with the enzyme urease that can
convert endogenous urea into ammonia, a product toxic to
tumor cells (80).

Breast Cancer
Breast cancer is the secondmost common cancer inwomen and the
one causingmore deaths. According to the genetic and biochemical
characteristics, breast tumors are grouped into three major classes
(Estrogen/Progesterone receptor positive, Her2 positive, Triple
Negative - TN), with further stratification describing the subtypes
of Triple Negative (81). About 20% of breast cancers are
characterized by amplification of the HER-2/neu gene (82). HER2
is a tyrosine kinase receptor the overexpression of which causes
increased tumor cell proliferation, tumor invasiveness, accelerated
angiogenesis, and reduced apoptosis (83). Anti-HER2 monoclonal
IgG antibodies trastuzumab (Herceptin) and pertuzumab, which
target independent epitopes, are widely used alone or in
combination in clinical treatment of HER2-positive breast
cancers (84, 85). Nanobodies that bind to the same epitopes
recognized by such IgGs have a potential therapeutic interest (36,
42, 86), whereas those that do not interfere with their binding
because target further epitopes are suited for imaging or can be used
as complementary theranostic reagents (87–90).

Since nanobodies specific for Her2 are simple to generate (43)
and as recombinant proteins are simple to engineer, anti-Her2
nanobodies have been exploited to develop an enormous variety
of reagents, such as bivalent and biparatopic molecules (25),
immunotoxins (91, 92), activated nanoparticles (25, 93–95),
biosensor immunocapture surfaces and other nanostructures
suitable for receptor detection (96–101) and have been also in
silico modeled to increase their biophysical features (102). As a
general rule, multivalent formats provide higher apparent affinity
for their antigen due to the avidity effect. Furthermore,
multispecific formats are often more effective in inhibiting cell
proliferation because of their capacity to block contemporarily
alternative activation pathways (19, 103). The number of
nanobodies available for TN breast cancers is extremely lower.
TN positive cells have been successfully targeted with
anti-EGFR-activated Quantum-Dot theranostic micelles,
anti-STAT3 and anti-Protein C Receptor nanobodies and anti-
TNFa nanobodies used alone or fused to a recognition peptide
binding to the avb3 receptor on tumor cell membranes (104–
108).The common limit of these approaches is that the targeted
January 2022 | Volume 12 | Article 838082
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biomarkers are not exclusive of TN cells and therefore their
clinical usefulness remains to be demonstrated. There is no
report of nanobodies used for the diagnostic or the therapy of
Estrogen/Progesterone receptor positive breast tumors.

Ovarian Cancer
Ovarian cancer is characterized by tumor heterogeneity and by
controversial diagnostic methodology (109). Nanobody-activated
nanosphereswere successfullyused fordevelopingahighly sensitive
(detection limit of 0.560 pg mL-1) photoelectrochemical biosensor
able to detect the serum biomarker Human Epididymis Protein 4
(HE4) and clearly distinguish ovarian cancer patients from healthy
individuals (110). Mucins are type I membrane O-glycoproteins
with single transmembrane domains that are usually highly
upregulated during tumorigenesis and could represent a
therapeutic target (111). In this perspective, Li et al. (27) designed
a bispecific construct (Muc1-Bi) constituted by two nanobodies,
one specific forMuc1and the second forCD16that couldbeapplied
for ovarian cancer treatment. This reagent can recruit NK cells and
drive them toMuc1-overexpressing tumor cells and, in a xenograft
model, significantly suppressed tumor growth.

Colon Carcinoma
Despite being expressed in several tumors, CEA is often used as a
biomarker of colon carcinoma (112). CdSe/ZnS quantum dots
conjugated to an anti CEA nanobody have been used as efficient
two-photon excitation probes for imaging colon carcinoma
tissue (113), whereas a bispecific construct formed by linking
anti-CEA and anti-CD16a nanobodies succeeded in engaging
NK cells and inhibiting CEA-overexpressing tumor growth in
vivo (30) (Figure 1). A novel bispecific nanobody with dual PD-
L1/TIGIT demonstrated high inhibitory activity towards both
PD-1/PD-L1 and TIGIT/CD155 interactions. Its application
synergistically enhanced T cell activity in vitro compared to
that of the two parental nanobodies (38) and such strategy for
treating tumors might improve the reliability of therapies aiming
at immune checkpoint blockade.
NANOBODY APPLICATIONS FOR
AUTOIMMUNE DISEASES

Antibodies represent a powerful means for the treatment of
immune diseases because they can target ligands or receptors
involved in the abnormal amplification of molecular signals
responsible for the symptoms. Currently, there are antibodies
Frontiers in Immunology | www.frontiersin.org 7
approved for treating autoimmune diseases such as rheumatoid
arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis,
lupus, and multiple sclerosis (114). Even though this implies the
necessity of more frequent treatments, antibody fragments with
short half-life period are considered safer because of their
reduced retention time and their engineering into dual-target
reagents provides the advantage of blocking pairs of
inflammatory cytokines at the same time, increasing the
treatment efficacy (7) (Table 3).

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is a multifactorial disorder
characterized by chronic and relapsing intestinal inflammation.
IBD includes ulcerative colitis (UC) and Crohn’s disease (CD)
that affects the ileum, rectum, and colon. Nowadays,
inflammatory bowel disease cannot be completely cured, but
anti-TNF-a monoclonal antibodies, such as infliximab and
adalimumab, have made a significant breakthrough by
enabling the delay of IBD progression (121). Moreover, their
rapid mucosal healing ability has improved the response and
remission rate of patients with IBD, especially for CD treatment
(122). Tumor necrosis factor (TNF) is a pro-inflammatory
cytokine that represents a critical mediator of the autoimmune
process, playing a key role in several inflammatory diseases,
including rheumatoid arthritis (RA), ulcerative colitis, and CD.
An innovative therapeutic approach for treatment of chronic
colitis considered the in situ secretion of anti-TNF nanobodies by
orally administered L. lactis bacteria engineered to secrete
monovalent and bivalent anti-TNF nanobodies that neutralized
TNF in vivo (115). TNF is the target of further inhibitory
nanobodies. A trispecific anti-TNF construct could effectively
inhibit the TNF/TNFR1 signaling pathway and its inhibitory
activity was successfully tested ex vivo using colon biopsies of CD
patients (117). In another study, three anti-TNF nanobodies
with sub-nanomolar affinity for their antigen were selected and
the crystal structures of the TNF–nanobody complexes showed
that they targeted (partially) overlapping epitopes (119).
Nevertheless, bivalent molecules showed increased blocking
activity due to the fact that, differently from conventional
antibodies, these constructs can bind simultaneously to two
independent receptor binding sites of the trimeric TNF.

Recent studies have shown that IL-23 mediates the over-
proliferation of T(H)-17 cells and the resulting accumulation of
IL-17 and IL-22 pro-inflammatory cytokines promotes dermal
inflammation and CD pathogenesis (123). Anti-human IL-23
nanobodies with low nanomolar affinity for hIL-23 and targeting
TABLE 3 | Multivalent mono/bispecific nanobodies for autoimmune diseases.

Nanobody Disease Target Structure features Year Reference

MT1 – MT1 Inflammatory Bowel disease TNF-a Bivalent monospecific 2010 (115)
ATN-103 Rheumatoid artheiris TNF-a Bivalent monospecific 2012 (116)
TROS Inflammatory Bowel disease TNFR1 Bivalent bispecific 2015 (117)
37D5-Alb1-124C4 Chronic inflammation IL23 Bivalent monospecific 2017 (118)
VHH#3-9GS-VHH#1 Inflammatory Bowel disease TNF-a Bivalent monospecific 2017 (119)
M1095 Psoriasis IL-17A/F Bivalent bispecific 2017 (120)
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independent epitopes were assembled together with an anti-
human serum albumin nanobody into multivalent constructs.
They showed prolonged in vivo half-life and improved hIL-23
neutralization capacity in vitro and in vivo with respect to the
single monomeric nanobodies (118).

Psoriasis
The above described anti-IL23 multivalent nanobodies might be
suitable for treating psoriasis as well. Furthermore, current
studies suggest that another effective treatment method would
be the inhibition of IL-17 (120). M1095 is a trivalent bispecific-
nanobody that can effectively neutralize the pro-inflammatory
cytokines IL-17A and IL-17F as well as bind to human serum
albumin. The initial clinical trials to evaluate the safety and
effectiveness of the immunoreagent in patients with moderate to
severe psoriasis showed that M1095 was well tolerated whereas
psoriasis-related inflammatory markers were significantly
decreased (120).

Rheumatoid Arthritis
Rheumatoid Arthritis (RA) is a common chronic autoimmune
disease. Tumor necrosis factor-a (TNF-a), as a pleiotropic
cytokine, induces adverse pro-inflammatory and cytotoxic effects
in the course of RA. A preliminary work showed that antagonistic
anti-TNF nanobodies linked to an anti-serum albumin nanobody
were 500 times more effective than monovalent nanobodies in
controlling rheumatoid arthritis development in a mouse model
(124). The bispecific nanobody format showed also higher
antagonistic potency than the commercial IgG antibodies
infliximab and adalimumab. On the base of such experience, it
was designed the compound ATN-103 (ozoralizumab), a trivalent
bispecific albumin-conjugated nanobody that targets TNF-a. In
Phase II clinical trials it showed to cause no immunogenic
response (116). Taisho Pharmaceuticals performed an
apparently successful Phase III with this multimeric nanobody
and recently submitted an application for approval tomanufacture
and market the immunodrug (Table 1).

Since also interleukin 6 plays a key role in the pathogenesis of
RA, such cytokine was targeted by the bispecific nanobody ALX-
0061 that binds as well to human serum albumin, recruited to
extend the construct half-life. In cynomolgus monkeys, ALX-
0061 induced a dose-dependent inhibition of IL-6-induced
inflammatory parameters (125).
NANOBODY APPLICATIONS IN
INFECTIOUS DISEASES

The development of new vaccines and of antibiotics effective on
multi-resistant bacteria is difficult and time-consuming. In recent
years, nanobodies with neutralizing toxin activity have been
studied for the treatment of bacterial toxins, such as those
produced by Clostridium difficile, Bacillus anthracis, ricin and
anthrax. These accomplishments show that nanobodies
represent an alternative anti-infection therapeutic opportunity
against bacterial and viral outbreaks (126, 127) (Table 4).
Frontiers in Immunology | www.frontiersin.org 8
Acute Inflammation and Sepsis
The lack of specific treatment for sepsis leads to the worldwide
incidence of 31.5 million of cases and to 5.3 million deaths per
year. Sepsis severity is associated with plasma levels of matrix
metalloproteinase-8 (MMP8) and tumor necrosis factor receptor
(TNFR1) and, therefore, the effect of a bispecific nanobody able to
block simultaneously MMP8 and HTNFR1 was evaluated (135).
The results obtained inmousemodel indicated that the nanobody-
dependent neutralization of MMP8 and HTNFR1 had a beneficial
effect in terms of survival rate. Different combinations of
biparatopic nanobodies conferred 100% survival upon
prophylactic or up to 24 hour post-infection administration in
pneumonia mouse models challenged with Pseudomonas
aeruginosa (150).

Viral Infection
Viral infectious diseases have been one of the leading killers in the
history of mankind. Influenza A virus is the main pathogen
causing human influenza, it can infect a variety of animals and
cause cross-species infection (151). Influenza virus neuraminidase
(NA) plays an important role in the release and spread of the virus
as well as in the cellular infection and consequently is a potentially
interesting therapeutic target (152). Cardoso et al. (2014) isolated a
set of anti-H5N1 NA nanobodies and generated bivalent
molecules either connecting two single-domains with a flexible
linker or by exploiting the dimerization properties of a mouse
IgG2a-Fc domain fused to each single domain (153). The results
showed that bivalent nanobodies had an in vitro antiviral potency
30- to 240-fold higher than monovalent nanobodies and protected
BALB/c mice from H5N1 infections when used as a prophylactic
therapy. Multimeric constructs were also conceived to protect
simultaneously from different viruses. Specifically, Hultberg et al.
(2011) prepared a trimeric construct linking nanobodies specific
for H5N1 Influenza (able to neutralize both clade1 and 2),
Respiratory Syncytial Virus and Rabies virus that protected from
any of the three viruses (128). The authors also demonstrated that
playing on the format (different bivalent and biparatopic
combinations of single nanobodies), it was possible to increase
the potency of the neutralizing anti-viral reagents and concluded
that multimerization of nanobody fragments targeting multiple
epitopes on viral trimeric spike proteins is a powerful tool for anti-
viral therapy with broader neutralization capacity. The trivalent
nanobody construct ALX-0171, designed for the inhalation
treatment of respiratory syncytial virus infection, had a
remarkable capacity to reduce escape mutant selection and
showed promising results in animal models (154, 155) but was
finally unable to improve clinical course in patients with
established infection in the lower respiratory tract (156). Based
on the results of such Phase IIb dose-ranging study, the Sponsor
decided to discontinue ALX-0171 trials.

Enterovirus A71 (EVA71) is a major cause of viral
encephalitis and severe hand, foot, and mouth disease (HFMD)
in young children worldwide. Neither preventive not therapeutic
treatments are available for limiting EVA71 infection. Huang
et al. (2020) isolated a nanobody (F1), which inhibited EVA71
infection both in vitro and in vivo. The neutralizing activity was
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improved when multivalent formats were used and the most
effective constructs were the ones in which the structure
geometry enabled to maximally exploit the avidity effect (141).

Gastroenteritis induced by rotavirus infection is a major
health problem in development countries. Bispecific nanobody
constructs targeting independent rotavirus epitopes were used to
transform Lactobacilli. Next, Lactobacilli cultures were used to
deliver the neutralizing nanobodies to the intestinal lumen and
such posology showed high anti-virus efficiency (129).

HIV-Dependent Immunodeficiency
Syndrome
Acquired immunodeficiency syndrome (AIDS) causes about 1.8
million AIDS-related deaths each year (157) and is caused by
infection with HIV (Human Immunodeficiency Virus). HIV
leads to extensive destruction of T-helper cells, macrophages,
dendritic cells, and other cellular components associated with
cell-mediated immunity, eventually leading to the destruction of
the immune system. Consequently, the organism becomes the
target of many opportunistic diseases (158). At the present, the
effective antiretroviral therapy (HAART) renders HIV a chronic
disease (159) but this treatment is expensive and has many
adverse effects (160). Therefore, there is still an urgent demand
for effective and low-cost treatment of HIV infection.

Experiments made with combinations of patient-derived HIV
neutralizing antibodies targeting complementary epitopes
demonstrated that the inhibition effect was increased when
Frontiers in Immunology | www.frontiersin.org 9
more virus epitopes were blocked contemporarily (161). A
contribution to the effort of isolating antibodies with
complementary characteristics was the method described by
Koh et al. that allowed the recovery of nanobodies with distinct
binding features (162). However, no further studies with
multispecific constructs built using the selected binders were
published, despite the encouraging results showing that
nanobody homo- or heteromultimers could neutralize a wide
array of virus subtype (163). A bivalent nanobody targeting the
proximal external region of gp120 had a neutralization capacity 20
times higher than the monovalent ligand (164) and a bispecific
construct targeting gp41 and gp120 epitopes possessed a
neutralizing potency up to 1400-fold higher than the mixture of
the individual nanobodies (139). Liposomes displaying
nanobodies were also proposed to increase avidity, but the
results were deceiving because the low nanobody density
impaired the simultaneous binding to more than one target
protein (133). More promising it seems the alternative of using
neutralizing nanobodies displayed on the surface of Lactobacillus
rhamnosus cells (165).

An alternative approach considered targeting the CXCR4
receptor that participates in the viral uptake (134). Bivalent
constructs were constructed by linking nanobodies to a human
IgG1 antibody Fc domain and were compared with their
monovalent counterparts. The Nb-Fc constructs had higher
binding affinity, blocked more efficiently the CXCR4-mediated
HIV entry and induced ADCC- and CDC-mediated cell-death of
TABLE 4 | Multivalent/bispecific nanobodies for infectious diseases.

Nanobody Disease Target Structure features Year Reference

D3n(GS)2 Respiratory Fusion protein Bivalent 2011 (128)
D3/E4 Syncytial Virus Biparatopic
C12 n(GS)2 Rabies virus Glycoprotein Bivalent 2011 (128)
E8/H7 Biparatopic
C8 n(GS)2 H5N1 Influenza Hemagglutinin 5 Bivalent/trivalent 2011 (128)
ARP1–ARP1 Rotavirus RRV Bivalent 2011 (129)
ARP3–ARP1 Bispecific
T5-V36 Tetanus Toxin TerC/Mac-1 Bispecific 2015 (130)
JJX12 Ricin Toxin RTA/RTB Bispecific 2016 (131)
Ad/ Bacillus anthracis Lethal factor/edema factor Bispecific 2016 (132)
VNA2-PA Lethal/edema toxin
Liposomal Vhhs HIV gp120 Multivalent monospecific 2016 (133)
VUN401-Fc HIV CXCR4 Bivalent monospecific 2018 (134)
Nb70-alb-14 Acute Inflammation and Sepsis TNFR1/MMP8 Bivalent bispecific 2018 (135)
NbF12-10 Androctonus australis hector scorpion venom toxins AahI/AahII Bispecific 2018 (136)
V H H-V H H dimers Clostridium difficile toxin B CROPs domain Bivalent 2018 (137)
Nb1132 Escherichia coli Shiga toxin Stx2a Bivalent 2018 (138)
J3-2E7 HIV gp41/gp120 Bivalent bispecific 2019 (139)
Nb 2TCE49 Human toxocariasis TES Bivalent 2019 (140)
F1×F1-hFc Hand, foot, and mouth disease (HFMD) Enterovirus A71 Tetravalent 2020 (141)
H11-D4-Fc COVID-19 SARS-CoV-2 spike RBD Bivalent 2020 (142)
H11-H4-Fc
Nb-Fc COVID-19 Multivalent 2020 (143)
Cocktail nanobody COVID-19 Multivalent 2020 (144)

Multi-epitope cocktail
Nbs 20/21 COVID-19 SARS-CoV-2 spike RBD Trivalent 2020 (145)
sACE2-anti-CD16 VHH COVID-19 RBD/CD16 bispecific 2021 (146)
Nb15-NbH-Nb15 COVID-19 SARS-CoV-2 spike glycoprotein/HSA Trivalent bispecific 2021 (147)
hIgG1Fc-VHH Bunyaviruses RVFV/SBV Tetravalent bispecific 2021 (148)
aRBD-2-5; aRBD-2-7 COVID-19 RBD Bispecific 2021 (149)
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CXCR4-overexpressing cells, a condition that renders such
molecules attractive to treat also CXCR4-overexpressing tumors.

SARS-CoV-2 Infection
SARS-CoV-2 is a single-stranded RNA virus that belongs to the
CoVs family. The receptor-binding domain (RBD) of the spike
protein binds to the host cell surface receptor angiotensin-
converting enzyme 2 (ACE2). Several anti-spike/anti-RBD
neutralizing antibodies have been isolated from both patients
and by in vitro selection, some of them have entered clinical trials
and cocktails of ligands binding to different epitopes have been
proposed to overcome resistance due to the virus mutations (127,
166). Multispecific antibody fragments are an alternative
solution to prevent mutation-dependent resistance, as it has
been already summarized in recent reviews (34, 127, 167).
Since the research on anti-SARS-CoV-2 is particularly active
and new publications appear constantly, here we report only
those relevant to the subject of the present review and published
in the first 2021 quarter.

Heterodimers formed by nanobodies recognizing
independent epitopes and connected by fusion with the human
Fc fragment exhibited the strongest RBD-binding affinity and
neutralizing ability against SARS-CoV-2 pseudoviruses (143). In
this case, the nanobodies were isolated from a naïve library but
the same strategy of using nanobody-based Fc-dependent
heterodimers to increase both the apparent affinity and the
neutralizing activity of the immune reagents was successfully
exploited by another group that used immunized alpaca as the
source of the ligands (149). The recognized advantage of
targeting independent epitopes was also used to change
paradigm in the preparation of multivalent constructs: instead
of assembling randomly isolated, not overlapping nanobodies,
these were chosen according to the available structural
information (168). This strategy enabled to design biparatopic
constructs with apparent affinity in the pM range starting from
nanobodies with 10-100 times lower affinities (169, 170).

The other actual acute problem posed by the pandemic is the
emergency of virus variants. Specifically targeting the single
mutations might be extremely demanding, but a recent work
(171) demonstrated that it is possible to have a large array of
neutralizing nanobodies specific for several independent epitopes
of the conserved regions, the combined use of which should offer
protection options even in the case of highly mutated
virus forms.

Anti-Toxin Nanobodies
In the case of toxin infection, nanobodies have the pivotal
advantage over IgG that most of them can be expressed as
functional intrabodies and therefore can be directly produced
inside host mammalian cells as a protective antidote. The toxin
neutralizing capacity of a prophylactic gene therapy has been
successfully demonstrated in the case of Bacillus anthracis
infection, the causative agent of anthrax (132). The protective
antigen (PA) is the common component of B. anthracis toxins.
The sequences of two anti-PA nanobodies targeting two
independent antigen epitopes were cloned in an adenovirus
vector to produce a bispecific immunoreagent. Mice were
Frontiers in Immunology | www.frontiersin.org 10
injected with the vector and the resulting nanobody construct
that accumulated in their sera protected the animals by infections
with anthrax toxins and spores.

Clostridium difficile is a problematic nosocomial pathogen
that can cause diarrhea, pseudomembrane colitis and even death
due to the effect of the virulence factors TcdA and TcdB toxins
(172). Monomeric nanobodies targeting different TcdB epitopes
were incapable of preventing TcdB-induced cytotoxicity in cell-
based assays, despite their very high-affinity. However, the toxic
effect inhibition was achieved when nanobodies were prepared
into Fc-dependent bivalent constructs (137).

Shiga toxin-producing Escherichia coli (STEC) are a subset of
potentially lethal pathogens. Tandem repeats of nanobodies
targeting the Shiga toxin-2a B subunit provided toxin
neutralization capacity 100 times higher than the monovalent
constructs (138). For the neutralization of tetanus neurotoxins,
the best results were obtained by fusing an anti-toxin nanobody
to another specific for Mac-1, a surface integrin receptor expressed
on most innate immune cells that plays an essential role in the
elimination of complement opsonized microorganisms (130). The
bispecific construct allowed mice to survive a 10-fold lethal dose
with respect to monomeric anti-toxin and outperformed a sheep
anti-toxin polyclonal IgG. Another bispecific nanobody construct
alleviated ricin toxin effects by promoting its aggregation and by
modifying the dynamics of ricin uptake and its cellular
trafficking (131).

Multivalent/multispecific nanobody constructs were also
beneficially used for diagnostic goals. Bispecific nanobodies
were used to construct an electrochemical biosensor to detect
the scorpion venom toxins AahI and AahII (136). In the case of
human toxocariasis, the most effective ELISA test was obtained
using bivalent nanobodies for antigen capture (140). The
Alternaria mycotoxin tenuazonic acid was conveniently
detected with high sensitivity using a one-step bioluminescent
enzyme immunoassay that required the bifunctional fusion
formed by nanobody and nanoluciferase (173).
NANOBODIES FOR FURTHER
THERAPEUTIC APPLICATIONS

Despite most of the applications for nanobody-based reagents
were conceived for few specific research areas, their potential
usefulness appears confirmed also in further fields (Table 5).

Type 2 Diabetes Mellitus
Type 2 diabetes mellitus is a chronic metabolic disorder disease
characterized by hyperglycemia and associated comorbidities
(179). Glucagon-like peptide-1 (GLP-1) plays an essential role
in glucose homeostasis by binding to and activating the GLP-1
receptor but its extremely short half-life (3 min) limits the effect
its therapeutic administration. Everestmab is a tri-functional
construct developed to overcome this drawback. It is a fusion
protein consisting of a mutated GLP-1, necessary for the
biological activation of the GLP-1 receptor, an anti-GLP-1
nanobody suitable for the construct targeted delivery, and an
January 2022 | Volume 12 | Article 838082
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anti-HSA nanobody to prolong its circulation time of the
construct to several days. Everestmab treatments produced
promising results in animal models (176).

Retinal Neovascular Diseases
Neovascular age-related macular degeneration and diabetic
retinopathy are major causes of visual impairment and
blindness, requiring frequent intravitreal injections of anti-
angiogenesis biotherapeutics (180). The trispecific nanobody
construct BI-X was designed for targeting simultaneously both
the angiogenesis factors VEGF-A and Ang-2 and human
albumin to increase the molecule half-life (178). BI-X showed
superior efficacy and significant half-life extension when tested in
cynomolgus monkeys after intravitreal injection. However,
intravitreal injection is a burden for patients and has potential
complications, such as infections and topic applications will
be tested.

Neurodegenerative Diseases
Nanobodies have been highly used to study the structure and the
development of protein aggregates involved in the progression of
neurodegenerative diseases (52, 181–183). A recent review
illustrates how multimeric constructs based on antibody
fragments can be used as effective intrabodies (184) for re-
targeting antigen-antibody complexes. Specifically, nanobodies
were engineered to favor PEST-dependent degradation of a-
Synuclein (a-Syn) (185, 186). Nanobody bioconjugates were also
successfully used as imaging probes able to cross the blood brain
barrier and label amyloid-beta deposits after intravenous
injection (187) as well as to functionalize gadolinium-based
nanoparticles that allowed the visualization of amyloid fibril
deposits in pathological tissues (188). Anti-a-Syn nanobodies
fused to a fluorescent probe enabled to monitor the cytosolic
presence of the antigen and to reveal the presence of
transmittable aSyn in human cerebrospinal fluid (189).

Gelsolin amyloidosis, also known as familial amyloidosis of
the Finnish type, is an autosomal dominantly inherited systemic
disorder with ophthalmologic, neurologic, and dermatologic
symptoms (190). A single point mutation (D187N) results in a
pathological proteolytic cascade with the formation of
amyloidogenic peptides which aggregate in multiple tissues and
cause disease-associated symptoms. Nanobodies exclusively
selective for one of the amyloidogenic fragment, but not for
the wild type protein, acted as molecular chaperones and
mitigated the aggregation process (174). Their effect in vivo
Frontiers in Immunology | www.frontiersin.org 11
was significantly improved when the animals were treated with
a bispecific molecule obtained by coupling the anti-gelsolin
nanobody with an anti-albumin nanobody. The same group
demonstrated the protective effect of such construct when it
was directly expressed by mutant mice that underwent
adenovirus-based gene therapy (175).

Others
A nanobody inhibiting the proprotein convertase subtilisin/
kexin type 9 (PCSK9) was expressed fused to an Fc domain
and effectively reduced the production of low density lipoprotein
(LDL) and cholesterol in a rat model (177). The results were
comparable to those obtained with the approved monoclonal
evolocumab but at extremely lower production costs.

The bispecific nanobody ALX-0962 that targets both IgE and
human serum albumin can neutralize soluble IgE as well as
displace preformed IgE-FcϵRI complexes and therefore was
considered for the treatment of allergic asthma (191).
DISCUSSION

Since Nisonoff and his colleagues proposed the concept of
bispecific antibody 60 years ago, therapeutic bsAbs have made
great progresses (192). At the present, over 85 bsAbs are
progressing through clinical development for a wide variety of
indications (193). The most attractive feature of BsAbs is that
they have features and provide effects that are not present in a
simple combination of single antibodies, such as increased
avidity and selectivity. Furthermore, by targeting multiple
molecular targets simultaneously, multi-specific antibodies can
block independent signal pathways, a condition that contributes
effectively to prevent drug resistance and immune escape. For
instance, targeting simultaneously EGFR and VEGFR2 by means
of a bispecific construct composed by fragments of the parental
IgGs cetuximab and ramucirumab was effective in inhibiting
EGFR-dependent tumor growth and VEGFR2 angiogenic
pathway in a mouse model of Triple Negative Breast Cancer
(194), whereas a bispecific antibodies targeting TGF-b and PD-
L1 showed a superior anti-tumor effect with respect to
monotherapy due to enhanced anti-tumor immune response in
multiple in vivo models (195).

Nowadays, nanobodies are regarded as an alternative to
monoclonal antibodies because they overcome some of the IgG
drawbacks, such as their low penetration in solid tumors and
TABLE 5 | Other multivalent/bispecific nanobodies with therapeutic potential.

Nanobody Disease Target Structure features Year Reference

FAF-Nb Gelsolin amyloidosis D187N/Y gelsolin/HSA Bivalent 2014 (174)
Bispecific

Nb22-FAF-Nb Gelsolin amyloidosis C68/amyloidogenic gelsolin-fragment Bivalent 2017 (175)
Bispecific

Everestmab Type 2 diabetes mellitus GLP-1R/HSA Bivalent 2020 (176)
Bispecific

VHH-B11 Cardiovascular diseases Low density lipoprotein cholesterol Bivalent 2020 (177)
BI-X Retinal vascular diseases VEGF/Ang-2/HSA Multivalent 2021 (178)

Multi-specific
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tissues, the difficulty to control their functionalization process
and their elevated production costs in mammalian cells (15).
Nanobodies small dimension allows deeperpenetration in solid
tumors with respect to IgGs the effect of which is usually limited
to the superficial cells. On the other hand, their limited mass
favors also a rapid kidney filtration with consequent very short
circulation half-life. This represents an advantage for in vivo
imaging because rapidly reduces the background signal but it is
the major shortcoming for therapeutic applications. However,
the recombinant nature of nanobodies can be exploited to
produce fusions with relevant proteins and tags that possess
reduced clearance and even additional useful functions such as
fluorescence or cytotoxicity or enable the building of multivalent
and multi-specific constructs with largely diversified formats (10,
196–198). Multi-specific nanobodies retain at least part of the
advantages of nanobodies, providing a mass that is still
significantly smaller than IgGs and the capacity of targeting
hidden epitopes by means of their protruding paratopes.
Furthermore, their in vivo half-life can be fine-tuned according
to the application needs (199). It must be also considered that
nanobody biophysical features allow their administration via
delivery routes that are not accessible to conventional IgGs. In
addition to subcutaneous and intravenous injections, nanobodies
can be nebulized directly into the respiratory tract (156), taken
orally for gut treatment (165) and topically for ophthalmic
applications. The PubMed data indicated that sixty research
Frontiers in Immunology | www.frontiersin.org 12
papers/year dealing with multi-valent/multi-specific
nanobodies, half of them dedicated to cancer research, were
published in the last two years (Figure 3). The research output
indicates that multivalent and multi-specific constructs are more
effective that their corresponding monomers. This evidence was
confirmed any time that the monovalent and multivalent formats
were compared, with no exception and independently on the
strategies used to obtain multivalent structures. Also, nanobody
derivatization with enzymes, dyes, chelators and other functional
tags resulted in reliable and effective immunoreagents. In this
case, the decisive advantage with respect to IgG was that the
derivatization process was controlled, namely 1:1 and at a
specific residue. This condition avoids the generation of
heterogeneous populations of reagents characterized by
different number of added functions at different residues, as
detected when lysine amino groups are used (196).

Nanobodies are not particularly immunogenic and different
humanization strategies have been conceived (86, 200) and such
condition might simplify the clinical trials of nanobody-derived
medicaments. Caplacizumab was the first nanobody-based
approved drug (58) but despite several multivalent or multi-
specific nanobodies entered clinical trials, so far none has been
approved (201). Companies usually do not divulgate the reasons
of clinical trial failures but we can argue that these are the result
of several factors. The delivery kinetic of such molecules can be
affected by single patient proteome profile and they can show
FIGURE 3 | Overview of the publications dedicated to BsNbs. Number of published papers reported in PubMed dedicated to studies describing the use of
multispecific/multivalent nanobodies and grouped according to the addressed pathology.
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higher immunogenicity due to the creation of new epitopes
corresponding to the linking sequences. Furthermore, such
complex molecular structures require the precise three-
dimensional positioning of the single domains to achieve
cooperative interaction with the antigen but so far there is no
single evidence that a bispecific antibody could simultaneously
bind to both epitopes in vivo. More probably, the generally
observed higher efficacy of bispecific antibodies over
treatments with monospecific antibodies or combination of
them is due to an avidity effect allowed by the co-presence of
both target epitopes in the same environment. Therefore, it will
be necessary to further improve the structure design of
multidomain binders by calculating the optimal distance
between the paratopes in a way that enables the simultaneous
binding to their corresponding epitopes. The research aimed at
the high-resolution mapping of the receptors on the cell surface
has provided meaningful information relatively to cluster density
and composition (93, 202). These data are the base on which the
next generation of multispecific antibodies will be probably
designed. In this perspective, nanobody short sequence
represents a decisive advantage because the computing
requirements for their modeling are extremely less expensive
than those necessary for larger binders. Computer-aided
nanobody design technology has strongly improved in the last
few years (86, 203–208) and will be more and more reliable for
providing solutions also to these challenges.

Altogether, the accumulated experimental data and the
available tools suggest that multimeric and functionalized
molecules built using nanobodies will become a major
component of future diagnostic and therapeutic reagents.
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