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Dengue fever has a huge impact on people’s physical, social, and economic lives in low-income locations worldwide. Researchers
use epidemic models to better understand the transmission patterns of dengue fever in order to recommend effective preventative
measures and give data for vaccine and treatment development. We use fractional calculus to organise the transmission
phenomena of dengue fever, including immunisation, reinfection, therapy, and asymptotic carriers. In addition, we focused our
study on the dynamical behavior and qualitative approach of dengue infection. The existence and uniqueness of the solution of
the suggested dengue dynamics are inspected through the fixed point theorems of Schaefer and Banach. The Ulam-Hyers
stability of the suggested dengue model is established. To illustrate the contribution of the input factors on the system of
dengue infection, the solution paths are studied using the Laplace Adomian decomposition approach. Furthermore, numerical
simulations are used to show the effects of fractional-order, immunity loss, vaccination, asymptotic fraction, biting rate, and
therapy. We have established that asymptomatic carriers, bite rates, and immunity loss rates are all important factors that
might make controlling more challenging. The intensity of dengue fever may be controlled by reducing mosquito bite rates,
whereas the asymptotic fraction is risky and can transmit the illness to noninfected regions. Vaccination, fractional order,
index of memory, and medication can be employed as proper control parameters.

1. Introduction

Dengue infection is a well-known tropical illness transmitted
by female Aedes aegypti mosquitoes and generated by den-
gue viruses. Due to global warming, dengue disease has
extended to approximately 128 nations around the globe,
posing a threat to public health and the economy [1]. Den-

gue virus causes headaches, joint pain, high fever, vomiting,
nausea, lower back pain, extreme weakness, muscle pain,
rash, bone pain, pain behind the eyes, red eyes, and extreme
exhaustion. After sucking blood, the virus is transferred to a
mosquito, which then distributes the infection to others.
After then, the mosquitoes are diseased for the remainder
of their lives, and there have been a few cases of vertical
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dengue virus transmission [2, 3]. Dengue vaccines have been
developed in large part due to the surge in popularity of den-
gue virus infection in recent decades. Vaccinations against
dengue illness are available in some countries [4, 5], but
completely effective vaccines have yet to be launched. The
researcher proposes several control measures for preventing
dengue illness, but additional research is required to develop
viable techniques.

It is obvious that mathematical models play an impor-
tant role in conceptualising infectious illness transmission
processes and successfully investigating illness dynamics
for control strategies [6]. The most important components
of the transmission phenomena of various illnesses may be
identified through mathematical modeling. Esteva and Var-
gas developed the basic dengue fever modelling approach;
they used a changing human population in their model
and evaluated the system’s stability [7, 8]. The influence of
vaccination and antibody-dependent enhancement (ADE)
in the phenomena of dengue fever has been hypothesized
in [9, 10], while the scientists in [11, 12] organised the trans-
missions of dengue and tested the stability of equilibrium of
the suggested system. Asymptomatic carriers of dengue dis-
ease are frequently reported and developed by scientists in
[13, 14]; these carriers are most dangerous for noninfected
areas of dengue infection. Dengue has a high rate of reinfec-
tion, making management of the disease more challenging.
To better properly reflect dengue fever, researchers must
look at the transmission procedure, including the effects of
vaccine, reinfection, medication, and asymptomatic carriers.
As a result, we have decided to model the dengue transmis-
sion phenomena in terms of asymptomatic cases, reinfec-
tion, vaccination, and therapy.

Fractional calculus enables the description of memory
effects and genetic traits of varied materials; fractional calcu-
lus has been found to be more ideal in representing real sit-
uation than typical integer order calculus. Memory is an
important component of vector-borne illnesses that affect
both the host and mosquitoes [15, 16]. Fractional derivatives
can efficiently manage the influence of memory in biological
systems. In biology, economics, mathematics, physics, and
other branches of study, many real-world issues are effi-
ciently modelled in [17, 18]. In the research [19, 20], frac-
tional operators have been used to simulate and explore
the transmission dynamics of dengue illness. The fractional
dynamics of dengue fever were examined using actual data
and parameter estimates in [21]. Defterli [22] investigated
the influence of temperature and conducted a comparative
analysis of fractional-order models. A key component of
vector-borne illnesses is the index of memory, which may be
accurately expressed using a fractional structure. Therefore,
fractional calculus is utilized to construct the transmission
phenomena of dengue fever to emphasize the importance of
memory in prevention of the infection.

The paper pattern is presented as follows: the rudimen-
tary principle and findings of fractional theory are presented
in Section 2. To depict a more realistic perspective of the
transmission phenomena of dengue fever, we developed an
epidemic model comprising vaccination, asymptotic frac-
tion, reinfection, and therapy in Section 3. Section 4 explores

the proposed model, while Section 5 provides the Ulam-
Hyers stability requirements. In Section 6, we provided a
numerical technique for solving the suggested model and
numerically examined the dengue dynamics as a function
of various input factors of the system. In the last section,
the article’s conclusion and final remark are offered.

2. Theory of Fractional Calculus

We shall list the essential notions and terminology of frac-
tional theory in this part, which will be used to analyse the
hypothesized model. Memory is a key factor in the transmis-
sion phenomena of dengue infection which can be accu-
rately represented through fractional-calculus. To be more
specific, the researchers focused on fractional systems due
to its wide applications. The rudimentary notions are given
as follows.

Definition 1 (see [23]). Assume bðtÞ be a function with the
condition bðtÞ ∈ L1ð½g, h�, RÞ and take the fractional order
ℏ, then

ℏ
 I

g
g+b tð Þ = 1

Γ ℏð Þ
ðt
0
t − rð Þℏ−1b rð Þdr ð1Þ

represents fractional integral and 0 < ℏ ≤ 1.

Definition 2 (see [23]). Consider bðtÞ be a function with bð
tÞ ∈ Cn½g, h�, then

LC
 D

ℏ
0+b tð Þ = 1

Γ n − ℏð Þ
ðt
0
t − rð Þn−ℏ−1hn rð Þdr ð2Þ

represents the renowned derivative of Caputo.

Lemma 3 (see [23]). Assume a function bðhÞ and take the
below system

LC
 D

ℏ
0+b tð Þ = v tð Þ, t ∈ 0, τ½ �, n − 1 < ℏ < n,

b 0ð Þ = v0,

(
ð3Þ

where vðtÞ ∈ Cð½0, τ�Þ, then

b tð Þ = 〠
n−1

i=0
dit

i, for i = 0, 1,⋯, n − 1, di ∈ R: ð4Þ

Definition 4 (see [24]). The following is the Laplace trans-
form for the Caputo operator.

£ LCDℏ
0+b tð Þ

h i
= rℏb rð Þ − 〠

n−1

k=0
rℏ−k−1bk 0ð Þ, ð5Þ

with n − 1 < ℏ < n: In addition to this, take the norm onX as

bk k = max
t∈ 0,τ½ �

bj j, for all b ∈Xf g: ð6Þ
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Theorem 5 (see [25]). Assume X to be a Banach space in a
way that G : X ⟶X is compact and continuous. Then,
one can find a fixed point of G, if

E = b ∈X : b = λGb, λ ∈ 0, 1ð Þf g ð7Þ

is bounded.

3. Formulation of Dengue Dynamics

In this formulation, we construct the interactions of female
vectors Nv and hosts Nh to indicate the transmission process
of dengue fever. The vector size is categorized into ðSvÞ sus-
ceptible, ðEvÞ susceptible, and ðIvÞ infected compartments
while the host population is divided into ðSh1Þ susceptible,
ðSh2Þ susceptible after losing immunity, ðEhÞ exposed, ðIhÞ
infected, ðIhAÞ asymptomatic, and ðRhÞ recovered compart-
ments. We indicated the rate of transmission from Sv to Ev
by ððbβv/NhÞðIh + IhAÞÞ while the rate of transmission from
susceptible ðSh1Þ and susceptible ðSh2Þ to Ev are represented
by bβh1/NhIv and ðbβh2/NhÞIv. In addition to this, the trans-
fer rate from Eh and Iv is symbolised by ρh and ρv. The nat-
ural birth and mortality rates were assumed to remain
constant for both populations, which are denoted by μv
and μh for vector and host, accordingly.

A portion ψ is assumed to be asymptomatic, and recov-
ery term is specified by γ from the infected classes. The
terms τ and p represent the treatment and vaccination rates,
whereas b represents the vector bite rate. Furthermore, a
term ν of the Rh class loses immunity and becomes Sh2 with
a lower transmission rate βh2, resulting in βh2 < βh1. Then,
we have below dynamics of dengue

LC
0 Dϑ

t Sh1 = μϑhNh −
βh1b

ϑ

Nh
Sh1Iv − pϑSh1 − μϑhSh1,

LC
0 Dϑ

t Sh2 = νϑRh −
βh2b

ϑ

Nh
Sh2Iv − μϑhSh2,

LC
0 Dϑ

t Eh =
βh1b

ϑ

Nh
Sh1Iv +

βh2b
ϑ

Nh
Sh2Iv − ρϑh + μϑh

� �
Eh,

LC
0 Dϑ

t Ih = 1 − ψð ÞρϑhEh − τϑ + γϑ + μϑh

� �
Ih,

LC
0 Dϑ

t IhA = ψρϑhEh − γϑ + μϑh

� �
IhA,

LC
0 Dϑ

t Rh = pϑSh1 + τϑIh + γϑ Ih + IhAð Þ − μϑh + νϑ
� �

Rh,

LC
0 Dϑ

t Sv = μϑvNv −
βvb

ϑ

Nh
Ih + IhAð ÞSv − μϑvSv,

LC
0 Dϑ

t Ev =
βvb

ϑ

Nh
Ih + IhAð ÞSv − ρϑv + μϑv

� �
Ev,

LC
0 Dϑ

t Iv = ρϑvEv − μϑvIv,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ

where

Sv 0ð Þ ≥ 0,
Ev 0ð Þ ≥ 0,
Iv 0ð Þ ≥ 0,
Sh1 0ð Þ ≥ 0,
Sh2 0ð Þ ≥ 0,
Eh 0ð Þ ≥ 0,
Ih 0ð Þ ≥ 0,
IhA 0ð Þ ≥ 0,
Rh 0ð Þ ≥ 0:

ð9Þ

Furthermore, the strength of species is

Nv = Sv + Ev + Iv,
Nh = Sh1 + Sh2 + Ev + Ih + IhA + Rh:

ð10Þ

Liouville-Caputo’s operator is denoted by LC
0 Dϑ

t , while
the memory index is denoted by ϑ. Because biological pro-
cesses are nonlocal, the outcomes of fractional systems are
more dependable and precise; also, fractional systems con-
tain hereditary properties and convey knowledge about their
past and present states for the future. Because it is com-
monly known that Caputo’s derivative is more trustworthy
and versatile for analysis, we used a fractional framework
to depict the dynamics of dengue disease.

Theorem 6. The solutions ðSh1, Sh2, Eh, Ih, IhA, Rh, Sv, Ev, IvÞ
of the fractional model (8) of dengue infection are positive
and bounded.

Proof. In order to obtain the required result, we proceed as
follows:

LC
0 D

ϑ

t Sh1 Sh1 =0
= μϑhNh ≥ 0,

���
LC
0 D

ϑ

t Sh2 Sh2 =0
νϑRh ≥ 0,

���
LC
0 D

ϑ
t Eh Eh=0 =

βh1b
ϑ

Nh
Sh1Iv +

βh2b
ϑ

Nh
Sh2Iv ≥ 0,

�����
LC
0 D

ϑ
t Ih Ih=0 = ρϑh 1 − ψð ÞEh ≥ 0,
���

LC
0 D

ϑ

t IhA IhA=0 = ρϑhψEh ≥ 0,
���

LC
0 D

ϑ

t Rh Rh=0 = pϑSh1 + γϑ Ih + IhAð Þ + τϑIh ≥ 0,
���

LC
0 D

ϑ
t Sv Sv=0 = μϑvNv ≥ 0,
���

LC
0 D

ϑ
t Ev Ev=0 =

βvb
ϑ

Nh
Ih + IhAð ÞSv ≥ 0,

�����
LC
0 D

ϑ
t Iv Iv=0 = ρϑvEv ≥ 0:
���

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ
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Hence, our fractional system (8) is positive. To show that
the solution is bounded, we first add all the compartments of
host population as

LC
0 Dϑ

t Sh1 + Sh2 + Eh + Ih + IhA + Rhð Þ
≤M − μϑh Sh1 + Sh2 + Eh + Ih + IhA + Rhð Þ,

ð12Þ

where M = μϑhNh. We obtained the following by solving the
above:

Sh1 + Sh2 + Eh + Ih + IhA + Rhð Þ

≤

 
Sh1 0ð Þ + Sh2 0ð Þ + Eh 0ð Þ + Ih 0ð Þ

+ IhA 0ð Þ + Rh 0ð Þ − M

μϑh

!
Eϑ −μϑht

ϑ
� �

+ M

μϑh
:

ð13Þ

We get the following by asymptotic behavior of Mittag-
Leffler function [23]:

Sh1 + Sh2 + Eh + Ih + IhA + Rhð Þ ≤ M

μϑh
≅M1: ð14Þ

In the same way, we can take the compartments of vector
population of the system (8); we have Sv + Ev + Iv ≤M2, in
which M2 =N /μϑv . Consequently, the solution of the system
(8) is positive and bounded.

Our suggested fractional model (8) of dengue infection’s
disease-free stable state is represented by E0ðSh1, Sh2, Eh, Ih
, IhA, Rh, Sv, Ev, IvÞ and is provided by

E0 = L1,L2, 0, 0, 0,L3,N0
v , 0, 0

� �
, ð15Þ

where L1 = μϑhNh
0/pϑ + μϑh,L2 = νϑhp

ϑ/ðpϑ + μϑhÞðνϑ + μϑhÞ,
and L3 = μϑhp

ϑNh
0/ðpϑ + μϑhÞðνϑ + μϑhÞ. In this study, we

mainly focused on the dynamical behavior and qualitative
analysis of the infection; however, stability, sensitivity, bifur-
cation, and optimal control will be explored in our future
work.

4. Theory of Existence

The qualitative character of the suggested fractional model
(8) of dengue disease will be examined in this phase of the
study using existence theory. To accomplish so, we must fol-
low the instructions outlined below:

P 1 t, Sh1, Sh2, Eh, Ih, IhA, Sv, Ev, Ivð Þ = μϑhNh −
βh1b

ϑ

Nh
Sh1Iv − pϑSh1 − μϑhSh1,

P 2 t, Sh1, Sh2, Eh, Ih, IhA, Sv, Ev, Ivð Þ = νϑRh −
βh2b

ϑ

Nh
Sh2Iv − μϑhSh2,

P 3 t, Sh1, Sh2, Eh, Ih, IhA, Sv, Ev, Ivð Þ = βh1b
ϑ

Nh
Sh1Iv +

βh2b
ϑ

Nh
Sh2Iv − μϑh + ρϑh

� �
Eh,

P 4 t, Sh1, Sh2, Eh, Ih, IhA, Sv, Ev, Ivð Þ = 1 − ψð ÞρϑhEh − γϑ + μϑh + τϑ
� �

Ih,

P 5 t, Sh1, Sh2, Eh, Ih, IhA, Sv, Ev, Ivð Þ = ψρϑhEh − γϑ + μϑh

� �
IhA,

P 6 t, Sh1, Sh2, Eh, Ih, IhA, Sv, Ev, Ivð Þ = pϑSh1 + τϑIh + γϑ Ih + IhAð Þ − μϑh + νϑ
� �

Rh,

P 7 t, Sh1, Sh2, Eh, Ih, IhA, Sv, Ev, Ivð Þ = μϑvNv − Sv
bϑβv

Nh
Ih + IhAð Þ − μϑvSv ,

P 8 t, Sh1, Sh2, Eh, Ih, IhA, Sv, Ev, Ivð Þ = bϑβv

Nh
Sv Ih + IhAð Þ − μϑv + ρϑv

� �
Ev,

P 9 t, Sh1, Sh2, Eh, Ih, IhA, Sv, Ev, Ivð Þ = ρϑvEv − μϑvIv:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð16Þ
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We can also rewrite the system (16) as

LCDϑ
0+P tð Þ =Z t,P tð Þð Þ, t ∈ 0, τ½ �,

P 0ð Þ =P 0, 0 < ϑ ≤ 1,

(
ð17Þ

where

P tð Þ = Sh1 tð Þ,
  Sh2 tð Þ,
  Eh tð Þ,
  Ih tð Þ,
  IhA tð Þ,
  Rh tð Þ,
  Sv tð Þ,
  Ev tð Þ,
  Iv tð Þ,

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

P 0 tð Þ = Sh10,
  Sh20,
  Eh0,
  Ih0,
  IhA0,
  Rh0,
  Sv0,
  Ev0,
  Iv0,

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

Z t,P tð Þð Þ = P 1 t, Sh1, Sh2, Eh, Ih, IhA, Rh, Sv, Ev, Ivð Þ,
  P 2 t, Sh1, Sh2, Eh, Ih, IhA, Rh, Sv, Ev, Ivð Þ,
  P 3 t, Sh1, Sh2, Eh, Ih, IhA, Rh, Sv, Ev, Ivð Þ,
  P 4 t, Sh1, Sh2, Eh, Ih, IhA, Rh, Sv, Ev, Ivð Þ,
  P 5 t, Sh1, Sh2, Eh, Ih, IhA, Rh, Sv, Ev, Ivð Þ,
  P 6 t, Sh1, Sh2, Eh, Ih, IhA, Rh, Sv, Ev, Ivð Þ,
  P 7 t, Sh1, Sh2, Eh, Ih, IhA, Rh, Sv, Ev, Ivð Þ,
  P 8 t, Sh1, Sh2, Eh, Ih, IhA, Rh, Sv, Ev, Ivð Þ,
  P 9 t, Sh1, Sh2, Eh, Ih, IhA, Rh, Sv, Ev, Ivð Þ:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð18Þ

Through upper mentioned Lemma 3, the system (17)
can be written in equivalent integral shape as given below:

P tð Þ =P 0 tð Þ + 1
Γ ϑð Þ

ðt
0
t − rð Þϑ−1Z r,P rð Þð Þdr: ð19Þ

For the examination of our suggested system, we use the
Lipschitz criteria listed as follows:

C1. For q ∈ ½0, 1Þ, there exists UZ ,VZ with the follow-
ing

Z t,P tð Þð Þj j ≤UP Pj jq +VZ : ð20Þ

C2. We have MZ > 0, and all P , �P ∈X , with the condi-
tion

Z t,Pð Þ −Z t, �P
� ��� �� ≤MZ P − �P

�� ��� �
: ð21Þ

Introduce a map B on X as given below:

BP tð Þ =P 0 tð Þ + 1
Γ ϑð Þ

ðt
0
t − rð Þϑ−1Z r,P rð Þð Þdr: ð22Þ

There is at least a solution of (17), if the C1 and C2 holds
true. To investigate the solution of our dengue system, we
proceed as follows.

Theorem 7. There exists at least one solution of the suggested
model (8) of dengue fever if the assumptions C1 and C2
satisfied.

Proof.We will utilize Schaefer’s fixed point theorem to show
the needed result. We will demonstrate this theorem in four
phases, as follows:

P1. In first phase, the continuity of the operator B will be
established. Take here, P i is continuous for i = 1, 2,⋯, 9;
this gives us that Zðt,P ðtÞÞ is continuous. In the upcoming
steps, P j, P ∈X such that P j ⟶P , we have BP j⟶ BP .
In addition to this, assume

BP j − BP
		 		

= max
t∈ 0,τ½ �

1
Γ ϑð Þ

ðt
0
t − rð Þϑ−1Qj r,P j rð Þ� �

dr
����

−
1

Γ ϑð Þ
ðt
0
t − rð Þϑ−1Z r,P rð Þð Þds

����
≤ max

t∈ 0,τ½ �

ðt
0

t − rð Þϑ−1
Γ ϑð Þ

�����
����� Z j r,P j rð Þ� �

−Z r,P rð Þð Þ�� ��dr
≤

τϑMZ

Γ ϑ + 1ð Þ P j −P
		 		⟶ 0 as j⟶∞:

ð23Þ

The continuity of BP j⟶ BP is achieved asZ is contin-
uous which insure the continuity of B.

P2. In the second phase, the boundedness of B will be
established. Let us take P ∈ X, then the following are satis-
fied through the operator B:

5Computational and Mathematical Methods in Medicine



BPk k = max
t∈ 0,τ½ �

P o tð Þ + 1
Γ ϑð Þ

ðt
0
t − rð Þϑ−1Z r,P rð Þð Þdr

����
����

≤ P 0j j max
t∈ 0,τ½ �

1
Γ ϑð Þ

ðt
0

t − rð Þϑ−1
��� ��� Z r,P rð Þð Þj jdr

≤ P 0j j + τϑ

Γ ϑ + 1ð Þ UZ Pk kq +VZf g:

ð24Þ

Next, the boundedness of BðTÞ will be established for a
bounded subset T of X . Assume P ∈ T as S is bounded; as
a result of this, there is a U ≥ 0 such that

Pk k ≤U ,∀P ∈ T: ð25Þ

As a result, we get the following through the above for
any P ∈ T :

BWk k ≤ P 0j j + τϑ

Γ ϑ + 1ð Þ UZ Pk kq +VZ½ �

≤ P 0j j + τϑ

Γ ϑ + 1ð Þ UZU
q + VZ½ �:

ð26Þ

Consequently, the boundedness of the operator BðTÞ is
obtained.

P3. For the equi-continuity, take t1, t2 ∈ ½0, τ� with t1 ≥ t2
, then we have

BP t1ð Þ − BP t1ð Þj j
= 1

Γ ϑð Þ
ðt1
0

t1 − rð Þϑ−1
��� ��� Z r,P rð Þð Þj jdr

����
−

1
Γ ϑð Þ

ðt2
0

t2 − rð Þϑ−1
��� ��� Z r,P rð Þð Þj jdr

����
≤

1
Γ ϑð Þ

ðt1
0

t1 − rð Þϑ−1
��� ��� − 1

Γ ϑð Þ
����
�
ðt2
0

t2 − rð Þϑ−1
��� ������� Z r,P rð Þð Þj jdr

≤
τϑ

Γ ϑ + 1ð Þ UZ Pk kq +VZ½ � tϑ1 − tϑ2
h i

,

ð27Þ

which goes to zero as t1 goes to t2. This insures the relative
compactness of BðTÞ through Arzela-Ascoli theorem.

P4. In fourth phase, the following set is considered:

E = P ∈X : P = λBP , λ ∈ 0, 1ð Þf g: ð28Þ

To show that set E is bounded, we assume P ∈E; then
for any t ∈ ½0, τ�, the below condition satisfies

Pk k = λ BPk k ≤ λ P 0j j τϑ

Γ ϑ + 1ð Þ UZ Pk kq + VZ½ �

 �

: ð29Þ

This indicates that the set E is bounded. As a result of
Schaefer’s theorem, the operator B has a fixed point. Conse-

quently, our suggested system (17) of dengue has at least one
solution.

Remark 8. If C1 fulfills for q = 1, then Theorem 7 can be
proved for ðτϑUZ/Γðϑ + 1ÞÞ < 1.

Theorem 9. If ðτϑUZ/Γðϑ + 1ÞÞ < 1 is satisfied, then the den-
gue fever fractional system (17) has a unique solution.

Proof. For the proof, Banach’s contraction theorem is
applied with the assumption P , �P ∈X as

BP − B �P
		 		 ≤ max

x⟶∞

1
Γ ϑð Þ

ðt
0

t − rð Þϑ−1
��� ���

� Z r,P rð Þð Þ −Z r, �P rð Þ� ��� ��dr
≤

τϑUZ

Γ ϑ + 1ð Þ P − �P
		 		:

ð30Þ

Thus, there is a unique fixed point of B; therefore, a
unique of model (17) of dengue fever exists.

5. Ulam-Hyers Stability

Here, our main focus is to investigate the suggested model of
dengue for the Ulam-Hyers stability (UHS). First, Ullam
proposed the concept of stability in 1940, and Hyers [26,
27] expanded it. Several researchers have applied the
Ulam-Hyers stability concept to several fields of study
[28–30]. The fundamental theory is as follows.

Let us consider K : X ⟶X in a way that

KV =V forV ∈X: ð31Þ
Definition 10. Upper mentioned (31) is UHS if for every
solution P ∈X and ζ > 0, one can find

V −KVk k ≤ ζ for t ∈ 0, τ½ �: ð32Þ

Furthermore, there exists a unique solution �P of the
upper mentioned (31) in a way that 0 <Cq and the following
holds true

�V −V
		 		 ≤Cqζ, t ∈ 0, τ½ �: ð33Þ

Definition 11. Let P and �P be solution of (31); then, the sys-
tem (31) is generalized UHS if

�V −V
		 		 ≤Z ζð Þ, ð34Þ

in which the image of 0 is 0 and Z ∈ CðR, RÞ.

Remark 12. If the solution �P ∈X satisfies (33) and for all t
∈ ½0, τ� the below satisfied

(a) jϖðtÞj ≤ ζ, in which ϖ ∈ Cð½0, τ� ; RÞ
(b) K �V ðTÞ = �V + ϖðTÞ
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Then, system (17) after small changes becomes as

CD
ϑ
0+V tð Þ =P t,V tð Þð Þ + ϖ tð Þ,

V 0ð Þ =V 0:

(
ð35Þ

Lemma 13. System (35) also fulfills

V tð Þ − TV tð Þj j ≤ aζ, in which a = τϑ

Γ ϑ + 1ð Þ : ð36Þ

Utilizing Lemma 3 and Remark 12, we can easily prove
this theorem.

Theorem 14. If the condition ðτϑLP /Γðϑ + 1ÞÞ < 1 holds true,
then the solution of (17) is UHS and generalized UHS on
Lemma 13.

Proof.We assume the solutions V ∈ X and �V ∈ X of the sys-
tem (17) for the required proof, thus

V tð Þ − �V tð Þ�� �� = V tð Þ − �V tð Þ�� �� ≤ V tð Þ − T �V tð Þ�� ��
≤ V tð Þ − T �V tð Þ�� ��
≤ aζ + τξLU

Γ ξ + 1ð Þ V tð Þ − �V tð Þ�� ��
≤

aζ

1 − τξLU/Γ ξ + 1ð Þ� � :
ð37Þ

Thus, the UHS and GUHS of the suggested noninteger
system (17) of dengue fever are insured.

Definition 15. The solution of (31) is the Ulam-Hyers-
Rassias stable (UHRS) if for any V ∈X , we write

V −KVk k ≤Ω tð Þζ, for t ∈ 0, τ½ �, ð38Þ
where Ω ∈ C½½0, τ�, R� and ζ > 0. If Cq > 0, then there exists a

unique solution �V of the system (31) satisfying

�V −V
		 		 ≤CqΩ tð Þζ, ð39Þ

for all t in ½0, τ�.

Definition 16. Take the unique solution �P and P be any
other solution of (31) such that

�V −V
		 		 ≤ Cq,ΩΩ tð Þζ, ð40Þ

in which t belongs to ½0, τ�, Ω ∈D½½0, τ�, R� in a way that Cq,Ω
and ζ > 0. This implies that the solution of (31) is general-
ized UHRS.

Remark 17. Take �V ∈ X; this solution will satisfy (33) if ∀t
∈ ½0, τ�, we write

(a) jϖðtÞj ≤ ζΩðtÞ, in which ϖðtÞ ∈Cð½0, τ� ; RÞ

(b) K �V ðtÞ = �V + ϖðtÞ

Lemma 18. The perturb system (17) holds the conditions

V tð Þ − TV Tð Þj j ≤ aΩ tð Þζ, in which a = τϑ

Γ ϑ + 1ð Þ : ð41Þ

Utilizing Lemma 3 and Remark 17, we can easily
obtained the required proof.

Theorem 19. The solution of (17) is UHRS and generalized
UHRS on Lemma 18 if ðτϑLU/Γðϑ + 1ÞÞ < 1 holds true.

Proof. Assuming a unique solution �V ∈X and any other
system (17) solution V ∈X , we get that

V tð Þ − �V tð Þ�� �� = V tð Þ − �V tð Þ�� �� ≤ V tð Þ − T �V tð Þ�� ��
≤ V tð Þ − T �V tð Þ�� ��
≤ aΩ tð Þζ + τϑLP

Γ ϑ + 1ð Þ V tð Þ − �V tð Þ�� ��
≤

aΩ tð Þζ
1 − τϑLP /Γ ϑ + 1ð Þ� � :

ð42Þ

As a result, UHRS and generalized UHRS are the solu-
tions of (17).

6. Dynamical Behavior of the Model

Here, the dynamical behavior of the system of dengue infec-
tion will be investigated. The Laplace transform will be used
to construct a scheme for the system (8). The method steps
are given as

L Sh1 tð Þ½ � = Sh10
s

+ 1
sϑ
L μϑhNh −

βh1b
ϑ

Nh
Sh1Iv − pϑSh1 − μϑhSh1

" #
,

L Sh2 tð Þ½ � = Sh20
s

+ 1
sϑ
L νϑRh −

βh2b
ϑ

Nh
Sh2Iv − μϑhSh2

" #
,

L Eh tð Þ½ � = Eh0
s

+ 1
sϑ
L

βh1b
ϑ

Nh
Sh1Iv +

βh2b
ϑ

Nh
Sh2Iv − μϑh + ρϑh

� �
Eh

" #
,

L Ih tð Þ½ � = Ih0
s

+ 1
sϑ
L 1 − ψð ÞρϑhEh − τϑ + γϑ + μϑh

� �
Ih

h i
,

L IhA tð Þ½ � = IhA0
s

+ 1
sϑ
L ψρϑhEh − γϑ + μϑh

� �
IhA

h i
,

L Rh tð Þ½ � = Rh0
s

+ 1
sϑ
L pϑSh1 + τϑIh + γϑ Ih + IhAð Þ − μϑh + νϑ

� �
Rh

h i
,

L Sv tð Þ½ � = Sv0
s

+ 1
sϑ
L μϑvNv −

bϑβv

Nh
Sv Ih + IhAð Þ − μϑvSv

" #
,

L Ev tð Þ½ � = Ev0
s

+ 1
sϑ
L

bϑβv

Nh
Sv Ih + IhAð Þ − μϑv + ρϑv

� �
Ev

" #
,

L Iv tð Þ½ � = Iv0
s

+ 1
sϑ
L ρϑvEv − μϑvIv
h i

,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð43Þ
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where

Sh1 tð Þ = 〠
∞

j=0
Sh1j tð Þ, Sh2 tð Þ = 〠

∞

j=0
Sh2j tð Þ,

Eh tð Þ = 〠
∞

j=0
Ehj tð Þ, Ih tð Þ = 〠

∞

j=0
Ihj tð Þ,

IhA tð Þ = 〠
∞

j=0
IhAj tð Þ, Rh tð Þ = 〠

∞

j=0
Rhj tð Þ,

Sv tð Þ = 〠
∞

j=0
Svj tð Þ, Ev tð Þ = 〠

∞

j=0
Evj tð Þ,

Iv tð Þ = 〠
∞

j=0
Ivj tð Þ:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð44Þ

We use Adomian polynomials to decompose the nonlin-
ear terms as

Sh1 tð ÞIv tð Þ = 〠
∞

j=0
Dj tð Þ, with

 Dj tð Þ =
1
j!
dj

dzj
〠
j

k=0
zkSh1k tð Þ〠

j

k=0
zkIhk tð Þ

" #
z = 0,

Sh2 tð ÞIv tð Þ = 〠
∞

j=0
Ej tð Þ, with

  Ej tð Þ =
1
j!
dj

dzj
〠
j

k=0
zkSh2k tð Þ〠

j

k=0
zkIvk tð Þ

" #
z = 0,

Sv tð Þ Ih tð Þ + IhA tð Þð Þ = 〠
∞

j=0
F j tð Þ, with

 Fj tð Þ =
1
j!
dj

dzj
〠
j

k=0
zkSvk tð Þ〠

j

k=0
zk Ihk tð Þ + IhAkð Þ

" #
z = 0:

ð45Þ

Therefore, we get

L 〠
∞

j=0
Sh1j tð Þ

" #
= Sh10

s
+ 1
sα
L μϑhNh −

βh1b
ϑ

Nh
〠
∞

j=0
Dj tð Þ − pϑ 〠

∞

j=0
Sh1j tð Þ − μϑh 〠

∞

j=0
Sh1j tð Þ

" #
,

L 〠
∞

j=0
Sh2j tð Þ

" #
= Sh20

s
+ 1
sϑ
L νϑ 〠

∞

j=0
Rhj tð Þ −

βh2b
ϑ

Nh
〠
∞

j=0
Ej tð Þ − μϑh〠

∞

j=0
Sh2j tð Þ

" #
,

L 〠
∞

j=0
Ehj tð Þ

" #
= Eh0

s
+ 1
sϑ
L

βh1b
ϑ

Nh
〠
∞

j=0
Dj tð Þ +

βh2b
ϑ

Nh
〠
∞

j=0
Ej tð Þ − μϑh + ρϑh

� �
〠
∞

j=0
Ehj tð Þ

" #
,

L 〠
∞

j=0
Ihj tð Þ

" #
= Ih0

s
+ 1
sϑ
L ρϑh 1 − ψð Þ〠

∞

j=0
Ehj tð Þ − γϑ + μϑh + τϑ

� �
〠
∞

j=0
Ihj tð Þ

" #
,

L 〠
∞

j=0
IhAj tð Þ

" #
= IhA0

s
+ 1
sϑ
L ρϑhψ〠

∞

j=0
Ehj tð Þ − γϑ + μϑh

� �
〠
∞

j=0
IhAj tð Þ

" #
,

L 〠
∞

j=0
Rhj tð Þ

" #
= Rh0

s
+ 1
sϑ
L pϑ 〠

∞

j=0
Sh1j tð Þ + γϑ 〠

∞

j=0
Ihj tð Þ + IhAj tð Þ
� �

+ τϑIh − νϑ + μϑh

� �
〠
∞

j=0
Rhj tð Þ

" #
,

L 〠
∞

j=0
Svj tð Þ

" #
= Sv0

s
+ 1
sϑ
L μϑvNv −

βvb
ϑ

Nh
〠
∞

j=0
Fj tð Þ − μϑv 〠

∞

j=0
Svj tð Þ

" #
,

L 〠
∞

j=0
Evj tð Þ

" #
= Ev0

s
+ 1
sϑ
L

βvb
ϑ

Nh
〠
∞

j=0
Fj tð Þ − ρϑv + μϑv

� �
〠
∞

j=0
Evj tð Þ

" #
,

L 〠
∞

j=0
Ivj tð Þ

" #
= Iv0

s
+ 1
sϑ
L ρϑv 〠

∞

j=0
Evj tð Þ − μϑv 〠

∞

j=0
Ivj tð Þ

" #
,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
L Sh10 tð Þ½ � = Sh10

s
,

L Sh20 tð Þ½ � = Sh20
s

,

L Eh0 tð Þ½ � = Eh0
s
,

L Ih0 tð Þ½ � = Ih0
s
,

L IhA0 tð Þ½ � = IhA0
s

,

L Rh0 tð Þ½ � = Rh0
s

,

L Sv0 tð Þ½ � = Sv0
s
,

L Ev0 tð Þ½ � = Ev0
s
,

L Iv0 tð Þ½ � = Iv0
s
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð46Þ
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Thus, we have

L Sh11 tð Þ½ � = 1
sϑ
L μϑhNh −

bϑβh1
Nh

D0 tð Þ − pϑSh10 tð Þ − μϑhSh10 tð Þ
" #

,

L Sh21 tð Þ½ � = 1
sϑ
L νϑRh0 tð Þ − bϑβh2

Nh
E0 tð Þ − μϑhSh20 tð Þ

" #
,

L Eh1 tð Þ½ � = 1
sϑ
L

βh1b
ϑ

Nh
D0 tð Þ + βh2b

ϑ

Nh
E0 tð Þ − ρϑh + μϑh

� �
Eh0 tð Þ

" #
,

L Ih1 tð Þ½ � = 1
sϑ
L 1 − ψð ÞρϑhEh0 tð Þ − γϑ + τϑ++μϑh

� �
Ih0 tð Þ

h i
,

L IhA1 tð Þ½ � = 1
sϑ
L ψρϑhEh0 tð Þ − γϑ + μϑh

� �
IhA0 tð Þ

h i
,

L Rh1 tð Þ½ � = 1
sϑ
L pϑSh10 tð Þ + τϑIh0 tð Þ + γϑ Ih0 tð Þ + IhA0 tð Þð Þ − μϑh + νϑ

� �
Rh0 tð Þ

h i
,

L Sv1 tð Þ½ � = 1
sϑ
L μϑvNv −

bϑβv

Nh
F0 tð Þ − μϑvSv0 tð Þ

" #
,

L Ev1 tð Þ½ � = 1
sϑ
L

bϑβv

Nh
F0 tð Þ − μϑv + ρϑv

� �
Ev0 tð Þ

" #
,

L Iv1 tð Þ½ � = 1
sϑ
L ρϑvEv0 tð Þ − μϑvIv0 tð Þ
h i

,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

L Sh12 tð Þ½ � = 1
sϑ
L μϑhNh −

bϑβh1
Nh

D1 tð Þ − pϑSh11 tð Þ − μϑhSh11 tð Þ
" #

,

L Sh22 tð Þ½ � = 1
sϑ
L νϑRh1 tð Þ − bϑβh2

Nh
E1 tð Þ − μϑhSh21 tð Þ

" #
,

L Eh2 tð Þ½ � = 1
sϑ
L

bϑβh1
Nh

D1 tð Þ + bϑβh2
Nh

E1 tð Þ − μϑh + ρϑh

� �
Eh1 tð Þ

" #
,

L Ih2 tð Þ½ � = 1
sϑ
L 1 − ψð ÞρϑhEh1 tð Þ − γϑ + μϑh + τϑ

� �
Ih1 tð Þ

h i
,

L IhA2 tð Þ½ � = 1
sϑ
L ψρϑhEh1 tð Þ − γϑ + μϑh

� �
IhA1 tð Þ

h i
,

L Rh2 tð Þ½ � = 1
sϑ
L pϑSh11 tð Þ + τϑIh1 tð Þ + γϑ Ih1 tð Þ + IhA1 tð Þð Þ − νϑ + μϑh

� �
Rh1 tð Þ

h i
,

L Sv2 tð Þ½ � = 1
sϑ
L μϑvNv −

bϑβv

Nh
F1 tð Þ − μϑvSv1 tð Þ

" #
,

L Ev2 tð Þ½ � = 1
sϑ
L

bϑβv

Nh
F1 tð Þ − μϑv + ρϑv

� �
Ev1 tð Þ

" #
,

L Iv2 tð Þ½ � = 1
sϑ
L ρϑvEv1 tð Þ − μϑvIv1 tð Þ
h i

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð47Þ
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Furthermore, we attain

Initial conditions are stated as

Sh10 tð Þ = Sh10Sh20 tð Þ = Sh20,
Eh0 tð Þ = Eh0Ih0 tð Þ = Ih0,
IhA0 tð Þ = IhA0Rh0 tð Þ = Rh0,
Sv0 tð Þ = Sv0Ev0 tð Þ = Ev0,
Iv0 tð Þ = Iv0:

8>>>>>>>><
>>>>>>>>:

ð49Þ

Table 1: In numerical analysis, the values of input parameters with descriptions are used.

Input factors Interpretations Values Reference

μh Natural fatality and birth frequency of humans 0.000046 and 0.004500 [31]

βv Transmission probability from hosts to vectors 0.75 [11]

τ Treatment rate of humans 0.5 Supposed

ν The rate at which humans loss immunity 0.05 Supposed

b Vectors biting frequency 0.5 [11]

ψ Asymptomatic fraction of infected individuals 0.6 Supposed

βh1 The rate at which mosquitoes are transferred to Sh1 0.75 [11]

βh2 The rate at which mosquitoes are transferred to Sh2 0.375 Supposed

p Fraction of susceptible Sh1 that is vaccinated 0.3 Supposed

γ Recovery rate of host 0.3288330 [31]

μv Natural fatality and birth frequency of mosquitoes 0.032300 and 0.029410 [31]

ϑ Fractional order 0.6 Assume

L Sh1 j+1ð Þ tð Þ
h i

= 1
sϑ
L μϑhNh −

bϑβh1
Nh

Dj tð Þ − pϑSh1j tð Þ − μϑhSh1j tð Þ
" #

,

L Sh2 j+1ð Þ tð Þ
h i

= 1
sϑ
L νϑRhj tð Þ −

bϑβh2
Nh

Ej tð Þ − μϑhSh2j tð Þ
" #

,

L Eh j+1ð Þ tð Þ
h i

= 1
sϑ
L

βh1b
ϑ

Nh
Dj tð Þ +

βh2b
ϑ

Nh
Ej tð Þ − μϑh + ρϑh

� �
Ehj tð Þ

" #
,

L Ih j+1ð Þ tð Þ
h i

= 1
sϑ
L 1 − ψð ÞρϑhEhj tð Þ − γϑ + τϑ + μϑh

� �
Ihj tð Þ

h i
,

L IhA j+1ð Þ tð Þ
h i

= 1
sϑ
L ψρϑhEhj tð Þ − γϑ + μϑh

� �
IhAj tð Þ

h i
,

L Rh j+1ð Þ tð Þ
h i

= 1
sϑ
L pϑSh1j tð Þ + τϑIhj tð Þ + γϑ Ihj tð Þ + IhAj tð Þ

� �
− μϑh + νϑ
� �

Rhj tð Þ
h i

,

L Sv j+1ð Þ tð Þ
h i

= 1
sϑ
L μϑvNv −

βvb
ϑ

Nh
Fj tð Þ − μϑvSvj tð Þ

" #
,

L Ev j+1ð Þ tð Þ
h i

= 1
sϑ
L

bϑβv

Nh
F j tð Þ − μϑv + ρϑv

� �
Evj tð Þ

" #
,

L Iv j+1ð Þ tð Þ
h i

= 1
sϑ
L ρϑvEvj tð Þ − μϑvIvj tð Þ
h i

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð48Þ
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Sh11 tð Þ =L−1 1
sϑ
L μϑhNh −

bϑβh1
Nh

D0 tð Þ − pϑSh10 tð Þ − μϑhSh10 tð Þ
" #" #

,

Sh21 tð Þ =L−1 1
sϑ
L νϑRh0 tð Þ − bϑβh2

Nh
E0 tð Þ − μϑhSh20 tð Þ

" #" #
,

Eh1 tð Þ =L−1 1
sϑ
L

bϑβh1
Nh

A0 tð Þ + bϑβh2
Nh

E0 tð Þ − ρϑh + μϑh

� �
Eh0 tð Þ

" #" #
,

Ih1 tð Þ =L−1 1
sϑ
L 1 − ψð ÞρϑhEh0 tð Þ − γϑ + μϑh + τϑ

� �
Ih0 tð Þ

h i
 �
,

IhA1 tð Þ =L−1 1
sϑ
L ψρϑhEh0 tð Þ − γϑ + μϑh

� �
IhA0 tð Þ

h i
 �
,

Rh1 tð Þ =L−1 1
sϑ
L pϑSh10 tð Þ + τϑIh0 tð Þ + γϑ Ih0 tð Þ + IhA0 tð Þð Þ − μϑh + νϑ

� �
Rh0 tð Þ

h i
 �
,

Sv1 tð Þ =L−1 1
sϑ
L μϑvNv −

bϑβv

Nh
F0 tð Þ − μϑvSv0 tð Þ

" #" #
,

Ev1 tð Þ =L−1 1
sϑ
L

bϑβv

Nh
F0 tð Þ − μϑv + ρϑv

� �
Ev0 tð Þ

" #" #
,

Iv1 tð Þ =L−1 1
sϑ
L ρϑvEv0 tð Þ − μϑvIv0 tð Þ
h i
 �

,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Sh12 tð Þ =L−1 1
sϑ
L μϑhNh −

bϑβh1
Nh

D1 tð Þ − pϑSh11 tð Þ − μϑhSh11 tð Þ
" #" #

,

Sh22 tð Þ =L−1 1
sϑ
L νϑRh1 tð Þ − bϑβh2

Nh
E1 tð Þ − μϑhSh21 tð Þ

" #" #
,

Eh2 tð Þ =L−1 1
sϑ
L

bϑβh1
Nh

D1 tð Þ + bϑβh2
Nh

E1 tð Þ − ρϑh + μϑh

� �
Eh1 tð Þ

" #" #
,

Ih2 tð Þ =L−1 1
sϑ
L ρϑh 1 − ψð ÞEh1 tð Þ − γϑ + μϑh + τϑ

� �
Ih1 tð Þ

h i
 �
,

IhA2 tð Þ =L−1 1
sϑ
L ρϑhψEh1 tð Þ − γϑ + μϑh

� �
IhA1 tð Þ

h i
 �
,

Rh2 tð Þ =L−1 1
sϑ
L pϑSh11 tð Þ + τϑIh1 tð Þ + γϑ Ih1 tð Þ + IhA1 tð Þð Þ − μϑh + νϑ

� �
Rh1 tð Þ

h i
 �
,

Sv2 tð Þ =L−1 1
sϑ
L μϑvNv −

bϑβv

Nh
F1 tð Þ − μϑvSv1 tð Þ

" #" #
,

Ev2 tð Þ =L−1 1
sϑ
L

bϑβv

Nh
F1 tð Þ − μϑv + ρϑv

� �
Ev1 tð Þ

" #" #
,

Iv2 tð Þ =L−1 1
sϑ
L ρϑvEv1 tð Þ − μϑvIv1 tð Þ
h i
 �

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð50Þ

To further simplify it, we proceed as follows:
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Furthermore, we get that

Therefore, we have the following answer in series form:

Sv tð Þ = Sv0 tð Þ + Sv1 tð Þ + Sv2 tð Þ + Sv3 tð Þ+⋯,
Ev tð Þ = Ev0 tð Þ + Ev1 tð Þ + Ev2 tð Þ + Ev3 tð Þ+⋯,
Iv tð Þ = Iv0 tð Þ + Iv1 tð Þ + Iv2 tð Þ + Iv3 tð Þ+⋯,
Sh1 tð Þ = Sh10 tð Þ + Sh11 tð Þ + Sh12 tð Þ + Sh13 tð Þ+⋯,
Sh2 tð Þ = Sh20 tð Þ + Sh21 tð Þ + Sh22 tð Þ + Sh23 tð Þ+⋯,
Eh tð ÞEh0 tð Þ + Eh1 tð Þ + Eh2 tð Þ + Eh3 tð Þ+⋯,
Ih tð Þ = Ih0 tð Þ + Ih1 tð Þ + Ih2 tð Þ + Ih3 tð Þ+⋯,
IhA tð Þ = IhA0 tð Þ + IhA1 tð Þ + IhA2 tð Þ + IhA3 tð Þ+⋯,
Rh tð ÞRh0 tð Þ + Rh1 tð Þ + Rh2 tð Þ + Rh3 tð Þ+⋯:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð52Þ

The upper mentioned numerical technique is utilized to
investigate the dynamics (8) of dengue infection. For numer-
ical reasons, the parameter values in Table 1 are utilized.
Here, we will perform distinct numerical scenario to illus-
trate the impact of input factors on the system of dengue.
As a result of our findings, we will recommend effective con-
trol strategies that will minimize the frequency of dengue

fever in population. Using simulations, we showed the time
series of infected, exposed, and asymptotic carriers in the
host population, while we emphasized the time series of
exposed and diseased people in the vector population.

The influence of vaccination on dengue transmission
patterns has been depicted in the first simulation shown in
Figure 1. The human and mosquito time series are indicated
with varied vaccination p values. It has been discovered that
vaccination can reduce the degree of infection; hence, it is
advised that vaccine efficacy be improved in order to elimi-
nate dengue infection. In Figure 2, we highlighted the influ-
ence of treatment τ on the system of dengue in the second
simulation. We proposed that therapy can be utilized as a
control parameter to minimize infection levels in society.
The role of mosquito bite rate is depicted in Figure 3 which
illustrated that the biting rate is vital and can transmit the ill-
ness; therefore, controlling this aspect is crucial to avoid
infection transmission.

The effect of the asymptotic carrier on the system is seen
in the fourth scenario in Figure 4. It was demonstrated that
this input component is crucial and can be a source of infec-
tion in dengue-endemic locations. In Figure 5, the role of the
losing rate of immunity ν has been visualised. This parame-
ter is equally harmful, as shown by the results, and can
enable dengue process more complicated. In Figure 6, we

Sh1 j+1ð Þ tð Þ =L−1 1
sϑ
L μϑhNh −

bϑβh1
Nh

Dj tð Þ − pϑSh1j tð Þ − μϑhSh1j tð Þ
" #" #

,

Sh2 j+1ð Þ tð Þ =L−1 1
sϑ
L νϑRhj tð Þ −

bϑβh2
Nh

Ej tð Þ − μϑhSh2j tð Þ
" #" #

,

Eh j+1ð Þ tð Þ =L−1 1
sϑ
L

βh1b
ϑ

Nh
Aj tð Þ +

bϑβh2
Nh

Bj tð Þ − ρϑh + μϑh

� �
Ehj tð Þ

" #" #
,

Ih j+1ð Þ tð Þ =L−1 1
sϑ
L 1 − ψð ÞρϑhEhj tð Þ − γϑ + μϑh + τϑ

� �
Ihj tð Þ

h i
 �
,

IhA j+1ð Þ tð Þ =L−1 1
sϑ
L ψρϑhEhj tð Þ − γϑ + μϑh

� �
IhAj tð Þ

h i
 �
,

Rh j+1ð Þ tð Þ =L−1 1
sϑ
L pϑSh1j tð Þ + τϑIhj tð Þ + γϑ Ihj tð Þ + IhAj tð Þ

� �
− μϑh + νϑ
� �

Rhj tð Þ
h i
 �

,

Sv j+1ð Þ tð Þ =L−1 1
sϑ
L μϑvNv −

bϑβv

Nh
F j tð Þ − μϑvSvj tð Þ

" #" #
,

Ev j+1ð Þ tð Þ =L−1 1
sϑ
L

bϑβv

Nh
F j tð Þ − μϑv + ρϑv

� �
Evj tð Þ

" #" #
,

Iv j+1ð Þ tð Þ =L−1 1
sϑ
L ρϑvEvj tð Þ − μϑvIvj tð Þ
h i
 �

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð51Þ
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Figure 1: Graphical view analysis of system (8) with distinct values of p, i.e., p = 0:535, 0.435, 0.335, and 0.235, for dengue dynamics.
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Figure 2: Graphical view analysis of system (8) distinct values of τ, i.e., τ = 0:040, 0.035, 0.30, and 0.025, for dengue dynamics.
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Figure 3: Plotting the time series of the system (8) with distinct values of b, i.e., b = 0:55, 0.50, 0.45, and 0.40, for dengue dynamics.
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Figure 4: Representation of the system (8) with distinct values of the input factor ψ, i.e., ψ = 0:7, 0.6, 0.5, and 0.4, for dengue fever.
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Figure 5: Plotting the time series of the system (8) with distinct values of ν, i.e., ν = 0:005, 0.010, 0.015, and 0.020, for dengue fever.
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Figure 6: Plotting of the system (8) with distinct values of memory, i.e., ϑ = 1:0, 0.9, 0.8, and 0.7, for dengue fever.
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graphically represented the influence of memory on the time
series of dengue infection. The plot of the infected individ-
uals was illustrated with various values of memory ϑ. This
parameter seems to be effective and recommended to the
policymakers for better control of the infection.

Memory plays a crucial part in vector-borne disease
transmission dynamics because vector-borne sickness has
knowledge of previous stages and an associative learning
experience [15, 16]. In dengue transmission, mosquitoes
use their prior experience about the human’s location, blood
selection, colour, and the smell of humans sweat to reduce
the contact rate between vector and hosts. Fractional-order
models give information about the past and present states
of biological systems for the future. Moreover, fractional-
order models possess hereditary properties and represent
the nonlocal behavior of biological systems. Therefore, the
results of fractional models are more accurate than that of
integer models, and the index of memory may be utilized
as a control measure. Fractional-order systems may readily
reflect these kinds of phenomena in mathematical models
of infectious diseases. As a result, it is crucial to consider
memory’s role in the spread of dengue disease. We primarily
focused on such elements in our study to demonstrate their
influence on infection dynamics. Our findings showed that
the memory index can limit infection levels, which is some-
thing policymakers should consider. We proved that vacci-
nation and diagnosis can help to stabilize dengue fever and
the index of memory may be utilized as a control measure.

7. Conclusion

Dengue fever is a life-threatening and severe sickness that
affects people all over the globe. Introducing effective tech-
niques for the management of this viral infection is now a
problem for policymakers, scientists, and public health profes-
sionals. Through a fractional framework, we developed a new
for dengue fever that includes asymptotic carriers, immunisa-
tion, reinfection, and therapy. With the use of the fixed-point
theorem, the existence and uniqueness of the solution of the
hypothesized system are explored in the context of Banach’s
and Schaefer’s. We created the necessary parameters for the
Ulam-Hyers stability in our dengue system. The effect of var-
ious variables on the dynamics of dengue is evaluated using
the LADM approach to describe the effect of various input fac-
tors on the time series of dengue. We found that biting rates,
asymptomatic carriers, and immunity loss rates are significant
characteristics that make control more challenging, but den-
gue infection can be eliminated by vaccine, memory index,
and therapy. We demonstrated the impact of memory on
the time series of dengue and proposed that it may be
employed as a control parameter for infection management.
We shall demonstrate the influence of incubation andmatura-
tion delay on dengue transmission in future studies.
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