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The world congress on insulin resistance, diabetes, and
cardiovascular disease (WCIRDC)

1 | THE BETA CELL IN DIABETES

The meeting began with a discussion addressing the
underrecognized importance of the beta cell in type 2 dia-
betes (T2D). Mohammad Abdul-Ghani, San Antonio, TX,
presented evidence of beta cell failure in T2D, discussing
the Efficacy and Durability of Initial Combination Therapy
for Type 2 Diabetes (EDICT) study of 323 persons newly
found to have T2D randomized to conventional sequential
treatment with metformin, followed by a sulfonylurea,
and then by insulin, or to initial treatment with a combi-
nation of metformin, pioglitazone, and exenatide. Over
72 months, the latter intervention was effective even with
initial HbA1c > 9%, appearing to be mediated by sustained
improvement in beta cell function as well as in insulin
sensitivity.1 In the study, approximately one quarter of
those randomized to metformin alone had sustained stable
glycemic control with metformin, with Abdul-Ghani
showing evidence that these were the patients with higher
baseline levels of beta-cell function, as measured using the
ratio of C-peptide levels before to that 120 min after glu-
cose loading, whereas baseline HbA1c was not predictive
of response to metforminmonotherapy.1,2 The similarly
structured Qatar study enrolled patients with more
longstanding T2D on metformin and sulfonylurea ran-
domized to the addition of pioglitazone plus a glucagon-
like peptide-1 receptor agonist (GLP-1RA) vs addition of
insulin, similarly showing sustained improvement with
the former approach.3 Abdul-Ghani reviewed the evidence
of improvement in beta cell function of the GLP-1RA
liraglutide,4 but also showed improved insulin secretion
with pioglitazone,5 over time well-exceeding the effect of
sulfonylurea.6

Jack L. Leahy, Burlington, VT, discussed evidence
that elevated levels of glucose and lipids play roles in beta
cell dysfunction in T2D, proposing a self-perpetuating
cycle in which the inability of the beta cell to fully com-
pensate for the metabolic stresses beginning at the onset
of glucose intolerance is followed by progressive decline
in beta cell mass and function resulting in further

worsening of hyperglycemia, perhaps a direct effect of
hyperglycemia, but potentially attributable to “beta-cell
exhaustion,” perhaps caused by endoplasmic reticular or
oxidative stress, or perhaps a consequence of elevations
in free fatty acids (FFA). However, Leahy pointed out
that lipid infusion to elevate FFA levels reduces insulin
secretion only in persons with positive family history of
T2D.7 Additional potential mechanisms of the detrimental
effect of hyperglycemia include amyloid or inflammatory
infiltration of islets and epigenic changes. Importantly,
studies carried out more than 4 decades ago demonstrated
improved insulin secretion after a period of glycemic
normalization,8,9 so that there may be a variable initial
period of potentially reversible beta-cell dysfunction, after
which beta-cell mass progressively declines.10 The initial
reversible period can, Leahy suggested, be one of beta-cell
dedifferentiation, as suggested by downregulation of β-cell
insulin, glucokinase, pancreatic and duodenal homeobox
1PDX-1, and peroxisome proliferator-activated receptor
alpha (PPARα) gene expression, whereas hexokinase, lac-
tate dehydrogenase, and PPARγ gene expression are
upregulated in a 90% pancreatectomy model11 and with
high fat feeding.12

Rohit N. Kulkarni, Boston, MA, reviewed modifica-
tions in mRNA as mediators of the inability of the beta
cell to compensate in T2D for insulin resistance by appro-
priately increasing insulin secretion. The main RNA
modification is the formation of N6-methyladenosine
(m6A), a reversible process that has an important role in
neuronal development13 and in beta cell survival, growth
and secretory function.14 Beta cell insulin signaling is
also affected by changes in methylation both of insulin-
like growth factor and of insulin receptors. Steven Kahn,
Seattle, WA, reviewed evidence of genetic polymorphisms
involved in beta cell failure, contributing to the decrease
in insulin secretory function of T2D development,15 not-
ing that different genes involved in various aspects of
beta cell function can be characterized, and play roles in
differing type 2 diabetes presentations,16 such as those of
youth versus adult T2D.17
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Ralph DeFronzo, San Antonio, TX, discussed poten-
tial roles of different antidiabetic agents in addressing
beta cell failure. He commented that T2D is based on the
combination of tissue insulin resistance with impairment
in insulin secretion, with more than half of beta-cell
function lost before T2D onset, leading him to note that
impaired glucose tolerance is “really advanced diabetes
as far as I’m concerned,” as shown in the San Antonio
study of pre-T2D.18 He pointed out that many treatment
approaches, such as sulfonylurea, metformin, insulin and
the dipeptidyl peptidase 4 inhibitors have little effect on
beta cell function, and noted that metformin should not
be considered an insulin sensitizer, contrasting this with
the combined benefit of thiazolidinediones in improving
both insulin sensitivity and insulin secretion,19 with evi-
dence that the GLP-1 receptor activators also have benefi-
cial effects on beta-cell function20 and that the sodium
glucose transporter 2 inhibitors improve insulin action.21

Richard Pratley, Orlando, FL, discussed the evidence
of latent autoimmune diabetes of adults (LADA) having
similarities to both type 1 diabetes (T1D) and T2D.
Approximately half of type 1 diabetes occurs in adults,
whereas 5%–10% of persons with T2D have positive glu-
tamic acid decarboxylase (GAD) antibodies, but genetic
association studies show that transcription factor 7-like
2 polymorphisms are associated with LADA, and approx-
imately 40% of persons with LADA are overweight or
obese, making it appear that there are similarities to T2D
as well. Peter Reaven, Phoenix, AZ, brought together
observations pertaining to relationships between C-
peptide levels and cardiovascular disease (CVD) out-
comes. Low C-peptide appears to be a measure of
decreased endogenous insulin secretion in T2D as well as
in T1D,22 and long-term follow-up of patients with T2D
shows low C-peptide to be associated with microvascular
complications, although not with mortality.23 Reaven
reviewed studies with C-peptide measurements on partic-
ipants in the Veteran’s Administration Diabetes Trial,
showing that those in the lowest quartile had longer dia-
betes duration, and more use of insulin, whereas the
highest quartile had lower high-density lipoprotein
(HDL) cholesterol and higher triglyceride (TG) levels,
suggesting greater degrees of insulin resistance. Those
with the lowest C-peptide had higher levels of HbA1c,
greater glucose variability, and greater likelihood of
developing hypoglycemia. Similar findings were reported
in the Action to Control Cardiovascular Risk in Diabetes
(ACCORD) trial of the relationship between C-peptide
and risk of severe hypoglycemia.24 CVD events were
more common both in the lowest and highest C-peptide
quartile, an association not explained by treatment
assignment, HbA1c, hypoglycemia, or glucose variability.
Both the C-peptide and LADA studies suggest that there
is high heterogeneity of T2D, with implications that

better patient characterization may be useful in treat-
ment decisions, perhaps using C-peptide measurement in
characterizing different T2D phenotypes. Additional
measurement of insulin resistance and insulin secretion,
as well as obesity and GAD antibody measurements, may
further optimize T2D treatment approaches.25

2 | INSULIN RESISTANCE:
TISSUE-SPECIFIC CONCEPTS

Ronald Krauss, Berkeley, CA, discussed the association
between the metabolic syndrome and atherogenic dys-
lipidemia, with high TG levels, TG-rich lipoproteins and par-
tially catabolized remnants (very low-density lipoprotein
[VLDL] and intermediate-density lipoprotein [IDL]), Low
levels of HDL cholesterol, mainly due to reduced large HDL
particles, and increased numbers of small dense cholesterol-
depleted LDL (sdLDL) particles, without increase in LDL
cholesterol but with increased levels of apolipoprotein B
(apoB), the structural protein of LDL, IDL, and VLDL,
which can be considered a measure of total particle number.
Individuals with LDL phenotype B, defined by predomi-
nance of sdLDL particles, show a cut point at a TG level of
95 mg/dL,26 considerably lower than the TG typically
thought of as marking insulin resistance. Small LDL parti-
cles are formed from metabolism of large VLDL by lipopro-
tein lipase (LPL) to IDL remnants, which in turn are
metabolized by LPL and hepatic lipase to progressively
smaller LDL particles,27 which have 60% longer plasma LDL
residence time than the larger LDL particles formed from
small VLDL under the action of LPL.28 A meta-analysis of
more than 250 000 persons from 29 studies showed that
fasting TG levels are associated with increased coronary
heart disease (CHD) risk.29 Krauss commented, “it’s not the
TG itself, it’s the remnants,” reviewing a combined observa-
tional and Mendelian randomization study suggesting a
stronger relationship of remnants than of LDL cholesterol to
CHD risk.30 A more recent study showed significant associa-
tion of the combination of high LDL with high levels of rem-
nant cholesterol with risk,31 underscoring the limited risk
associated with larger LDL size,32,33 whereas there is a dose-
response relationship between either sdLDL cholesterol or
sdLDL particle number and CVD risk.34,35 ApoB shows
greater association with CHD risk than LDL cholesterol or
TG levels in a Mendelian randomization model,36 although
Krauss stressed that ApoB, as a measure of all atherogenic
particles, particularly those in LDL, can misrepresent the
sdLDL level. He commented on the notion of residual risk
beyond LDL cholesterol-lowering, which may be associated
with elevations in the LDL-like particle lipoprotein(a)37 or in
other risk factors, but which has led to a recognition that
progressively lower LDL cholesterol levels have come to be
thought of as optimal targets.

164 EDITORIAL



E Dale Abel, Iowa City, IA, discussed relationships
between heart failure (HF) and insulin resistance. Diabetes
is associated with doubling of rates of HF, with likelihood
greater in T1D than T2D,38 so that nearly half of persons
with HF have diabetes, particularly with preserved ejection
fraction.39 Furthermore, there is evidence of subclinical
myocardial damage in persons with T2D not having clini-
cal CVD,40 and the pathogenesis of HF appears to resemble
that of insulin resistance itself, including elevation in FFA
and proinflammatory cytokine levels, ectopic lipid accumu-
lation, and hyperglycemia itself,41 with a meta-analysis of
10 studies of 178 929 persons with diabetes and 14 176 HF
cases showing a 15% increase in likelihood of HF for each
1% increase in HbA1c.42 Myocardial glucose toxicity
appears to have a variety of potential effects on nuclear
and mitochondrial function,43 with further effects of lipo-
toxicity, and reactive oxidative stress impairing mitochon-
drial function along with the effect of insulin resistance
and obesity leading to abnormal contractility.44

Gerald Shulman,NewHaven,CT, discussed insulin action
and insulin resistance in the kidney, noting that the kidney is
a gluconeogenic organ. Shulman suggested a teleologic expla-
nation that insulin resistance acts as a defense against starva-
tion.45 In the kidney, starvation increases lipolysis leading to
accumulation of protein kinase C-epsilon in renal cortical cell
membranes, resulting in insulin resistance.46,47

Ronald Evans, La Jolla, CA, discussed the suppression
of adipocyte lipolysis by convergent pathways under the
influence of insulin and fibroblast growth factor (FGF)1,
FGF1 activating phosphodiesterase 4D (PDE4D), whereas
insulin inhibits PDE3B.48 The physiologic role of FGF1 is
as a paracrine/autocrine mediator, the “immediate prod-
uct” of PPARγ, leading to the concept that “the adipocyte
is the control center for insulin resistance,” Evans
described the potential that FGF1 can be “endocrinzed”
to act as an insulin sensitizer.49 He noted that FGF21,
produced by skeletal muscle, has similar effects to those
of FGF1 in the adipocyte, both promoting lipolysis and
acting through the FGF receptor. Both are being studied
as potential insulin sensitizing therapeutic agents.
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