
����������
�������

Citation: Mires, tean, C.C.; Volovăt,, C.;
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Abstract: In the last decade, the analysis of the medical images has evolved significantly, applications
and tools capable to extract quantitative characteristics of the images beyond the discrimination
capacity of the investigator’s eye being developed. The applications of this new research field, called
radiomics, presented an exponential growth with direct implications in the diagnosis and prediction
of response to therapy. Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype
with a severe prognosis, despite the aggressive multimodal treatments applied according to the
guidelines. Radiomics has already proven the ability to differentiate TNBC from fibroadenoma.
Radiomics features extracted from digital mammography may also distinguish between TNBC
and non-TNBC. Recent research has identified three distinct subtypes of TNBC using IRM breast
images voxel-level radiomics features (size/shape related features, texture features, sharpness). The
correlation of these TNBC subtypes with the clinical response to neoadjuvant therapy may lead to
the identification of biomarkers in order to guide the clinical decision. Furthermore, the variation
of some radiomics features in the neoadjuvant settings provides a tool for the rapid evaluation of
treatment efficacy. The association of radiomics features with already identified biomarkers can
generate complex predictive and prognostic models. Standardization of image acquisition and also
of radiomics feature extraction is required to validate this method in clinical practice.

Keywords: radiomics; breast cancer; TNBC; biomarker

1. Introduction

Medical imaging is viewed as one of the top developments that have changed cancer
care, as it has fundamentally changed the manner in which oncology physicians measure,
manage, diagnose and treat cancer disease. Medical images have progressed substantially in
recent decades, being a key player with an increasing role in the diagnosis and initial cancer
evaluation, but also in the follow-up of the oncological disease. As the resolution of the
images increased, a new science called radiomics was developed based on the computerized
analysis of the data extracted from different types of medical images. Transforming high
volumes of medical images into data that can be correlated with the prognosis and also can
be used to predict the tumor response to treatment opens the horizons of using radiomics
in the routine clinical setting. The concept is relatively new and the number of scientific
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papers describing applications of radiomics in medical practice has increased steadily
since 2012, the year in which this concept was first proposed. The most commonly used
imaging techniques for extracting features, in order to correlate them with clinical data, are
computed tomography (CT), ultrasonography (US), magnetic resonance imaging (MRI)
and positron emission tomography (PET-CT). Recently, the development of the molecular
and genetic analysis of tumors has made possible the development of a new research
direction based on correlating the data obtained from medical images with gene mutations,
thus opening the way for a non-invasive evaluation of tumor genomic features. This new
domain, characterized by a major development in recent years, based on the medical images
linking to the tumor genomic and molecular profile, has been named “radiogenomics”.
Being the second leading cause of cancer mortality worldwide, although advances in
molecular biology have stratified breast cancer into prognostic molecular classes, the triple
negative subtype is notable for its aggressiveness with a relatively limited therapeutic
spectrum. An overall 4-year survival of approximately 77% for TNBC is lower than the
OS of other breast cancer subtypes ranging from 82.7 to 92.5%. Radiomics is an essential
player in the race to improve the management of TNBC from the identification of new
biomarkers to therapeutic strategies, in the general context of the precision medicine
concept implementation, in order to improve the prognosis of this relatively orphan disease
in terms of less therapeutic progress in recent decades [1–4].

In contrast to the American College of Radiology Breast Imaging Reporting and Data
System (BI-RADS) lexicon, first developed in 1993 to standardize communication between
specialists involved in the diagnosis and treatment of breast cancer, radiomics offers us
as quantification tools a series of features, some more intuitive (size and shape, spherical,
asymmetry) others more abstract and harder to interpret for the clinician (kurtosis, entropy,
skewness). Currently, the 5th edition of the BI-RADS® atlas is a valuable tool for quanti-
fying mammograms, US and MRI for breast cancer. Imaging Biomarker Standardization
Initiative (IBSI) proposes since 2016 attempts to standardize radiomics features in order to
be implemented in daily clinical practice. For a number of 169 radiomic features considered
reproducible, it is estimated the verification and calibration of the different software [5–7].

2. Radiomics—Current Concepts and Future Perspectives

The association of the radiomic features with molecular, genetic and clinical data
and their correlation with information regarding the prognosis and the evolution of the
oncological disease opens the ways of creating predictive and prognostic models with
high accuracy in order to improve the diagnostic and treatment performances in the era of
precision medicine. Although the concept of computer-aided diagnosis (CAD) was first
reported in 1963, intensive use of CAD has been applied in medical imaging since the last
decade of the 20th century. Limited at that time by the computer processing power and also
by the reduced data storage capacity, the extraction of data from medical images developed
rapidly by increasing the graphic processing and storage capacity of a huge quantity of
images. Most radiomics and radiogenomics studies include a limited number of patients,
but clinical trials enrolling large cohorts of patients are needed to validate these models
in the near future. In this context, it is estimated that both The Cancer Genome Atlas and
The Cancer Imaging Archive will play an essential role in radiomics and radiogenomics
research in order to validate models with clinical applicability for a precision approach in
diagnostic and treatment of cancer [8–14].

A systematic review analyzing the current radiogenomics data revealed the highest
number of studies having as study subject high grade gliomas (35 articles) followed by
breast cancer, as a topic of interest in 10 published studies. It is possible that brain tumors
are the preferred subjects of radiomic or radiogenomic studies due to the possibility of the
tumors’ segmentation which offers a higher capacity of algorithm standardization. Func-
tional imaging methods with diffusion magnetic resonance imaging (DWI) and positron
emission tomography (PET-CT) have demonstrated the best ability to correlate radiomics
features with the tumor phenotype [15–18].
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The first of the four stages of the radiomic workflow is data acquisition. For this
purpose, it is essential to identify a lot of homogeneous features in the study group. The
best method for the region of interest (ROI) delineation is also a controversial topic. Too
low-resolution ROIs will be affected by image noise, but the delimitation methods vary in
the literature, being also a source of uncertainty. The recommended segmented volume
varies depending on the imaging method, a value of 5 cmc being recommended as a
cutoff value in the case of CT images and 45 cmc in the case of PET-CT imaging. The
homogeneity of the acquired images can be influenced by the pixel size, slide spacing,
kernel reconstruction algorithm and also by the movement management capability. There
is also uncertainty regarding the acquisition times if the contrast agent is used [8–10,18–22].

ROI segmentation is the second stage of radiomics that leads to the generation of
reproducible images parts proposed for radiomic analysis. Inspired by the manual radio-
therapy planning, delineation or segmentation is subject to the variability and physician
subjectivity regarding the limits of the tumor tissue and the correct identification of the
tumor microenvironment, drawing the barrier between healthy tissue and the tumor being
a challenge even in the age of high-resolution medical imaging. Recently, semi-automatic
or automatic ROI delimitation algorithms have been developed the potential to reduce
errors through inter-observer variability, thus increasing the uniformity of plain images or
volumetric delineation. If a single slide is chosen as an option compared to segmenting the
entire tumor volume, manual segmentation is more precise but some information that char-
acterizes the entire tumor is thus lost. The delimitation of a single slide and the selection of
a tangent circle at the inner edge of the tumor delimited on that slide is also agreed upon
in some radiomic studies. The use of low-pass and band-pass filters has demonstrated
the possibility to reduce the variability of the evaluated medical images by reducing the
number of gray levels. All these improvements in image acquisition and processing have
the final goal of obtaining generalizable and highly accurate radiomic models. Stage 3
of the radiomic analysis can be considered as the extraction, processing and reduction
of features, so that a finite number of radiomic features are selected, correlated with the
purpose of each proposed study [18,23,24].

In the paper “Radiomics: Image has More than Pictures”, the author mentions that the
development of information technology has reached the level of progress in which from
medical images can be extracted hundreds of variables related to size, shape, texture, in
order to be included in the databases for radiomic models creations (the fourth stage of
radiomics) [24].

Agnostic features, based on mathematical formulas, are first order intensity hys-
tograms, including features related to voxels: mean, median, energy, entropy, kurtosis,
skewness. Other features are related to the shape, volume, surface, characteristics of the
sphericity. Among the features related to texture, we mention “Haralick features” which
refers to the matrix of gray levels. The variation of a radiomic feature is also evaluated as a
potential biomarker of response to therapy, Boldrini et al. for example, considering that
this variation called “delta radiomics” may predict response to neoadjuvant therapy in
colorectal cancer [25].

Currently, there are approximately 170 features that are analyzed in the creation of
radiomic models and several open-source/free software has been created, being capable
of extracting features from two-dimensional or reconstructed 3D images. IBEX (Image
Biomarker Explorer) and MaZda are examples of computer applications that are able to
extract and select significant features from different types of medical images [26,27].

A simplified workflow of radiomics can be divided into two big main steps, the
training stage and the applications. A first step that represents the training phase of the
workflow aims to associate radiomic characteristics with already known medical data. A
higher number of features are initially extracted from diagnostic images via an instrument
called radiomics engine. These extracted features are further analyzed in the second
platform, called prediction engine, using the machine learning algorithms. The output
of the prediction engine transforms the high dimensional feature space of radiomics to a
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much simpler classification space where the clinical hypothesis of the dataset may be easily
assessed. The second step shows how this algorithm can be applied for the prediction of
the result on a previously unevaluated medical case. Regarding the methods of analysis
based on machine learning, unsupervised machine learning classifies the radiomic features
without taking into account information obtained from previous possible correlations of
those characteristics with clinical parameters. In this case, the algorithm selects the features
based on two data sets (a training and a test data set). In the case of supervised machine
learning, the choice of characteristics with statistical semnification will be based on results
also validated in the literature. Limiting the number of features in this case can increase
the predictive power of the radiomic model, also reducing the need for a large number
of subjects in the training set. If an unsupervised machine learning algorithm is chosen,
the biggest source of uncertainty is caused by the inhomogeneity of the data obtained
from previous research studies due to the lack of standardization. For supervised machine
learning, an unsolved problem remains the size and uniformity of the lots for the radiomic
models training [23,28–30].

Recently the tendency is to use deep learning algorithms that differ completely from
the supervised and unsupervised machine learning radiomics analysis. These algorithms
direct medical imaging to a multi-layer network similar to a neural network with an
ability to reduce the number of features. Subsequently, these features are introduced into a
supervised algorithm that produces the predictive model with clinical application [29,30].

3. Triple Negative Breast Cancer (TNBC)—A Challenge for the Clinician

TNBC represents about 15–20% of all breast cancers, but the large number of metastatic
deaths in this category makes it necessary to understand its subtypes in order to iden-
tify effective therapeutic strategies. Being a subtype of cancer that does not benefit from
endocrine or anti-HER2 therapy, anthracyclines and taxanes neoadjuvant chemotherapy
(NAC) remains the basic treatment. The use of platinum-based chemotherapy is based
on the mechanism of action related to DNA damage and is associated with improved
pathological complete response (pCR). In the context of medical imagining development,
the possibilities of NAC response evaluation have been improved. Thus, the use of NAC
as a surrogate biomarker of chemo-sensitivity becomes possible. TNBC pCR after NAC is
considered to be associated with superior survival and residual disease after NAC is asso-
ciated with an unfavorable prognosis. Analyzing gene expression revealed that intrinsic
basal-like subtype is the most common triple negative cancer, this subtype being associated
with approximately 70% of TNBC cases. Analyzing the genetic profile on 21 data sets
consisting of 3247 cases Lehman et al. considers TNBC as divided TNBC into 7 subtypes:
2 basal-like subtypes (Bl1 and BL2), 1 mesenchymal type (M), one immunomodulatory
type (IM), 1 mesenchymal stem type (MSI), 1 luminal receptor subtype (LAR) and one type
characterized by androgen receptor (AR) signaling. These new subtypes were also con-
firmed and mentioned in another analysis by Mesuda et al. Although there are predictive
differences in the response to NAC and prognostic variations between these groups, this
classification cannot be considered as the only factor that modulates the aggressiveness of
TNBC. The present BRCA1 mutation is associated with DNA sensitivity to platinum-based
chemotherapy or to poly (ADP-ribose) polymerase (PARP) inhibitors due to homologous
recombination (HRD) deficiency. Another positive prognostic factor is the presence of
Tumor-Infiltrating Lymphocytes (TILs) > 50% for the immunomodulatory type, lympho-
cyte infiltrate being considered the TNBC pattern with the best prognosis in the absence of
any treatments. Furthermore, the presence of TILs in the tumor after NAC is associated
with a more favorable evolution. The LAR subtype is enriched in AR and all cases of LARs
exhibit a mutation in the kinase domain of PIK3CA, exhibiting a high sensitivity to PIK3CA
inhibitors [31–34].

Analyzing TNBC Lehmann subtypes, Santonja et al. demonstrates that the LAR
subtype is the least proliferative and manifests the highest chemoresistance but this fact is
not a negative prognostic factor if it is associated with AR-positives. The results regarding
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the prognosis of the LAR subtype, however, remain controversial, being associated with
both the most favorable and the most unfavorable prognosis in different clinical trials.
As evidenced by the Phase II trials, the TNBC subset with positive AR will benefit from
antiandrogens treatment [35,36].

The BL1 subtype is characterized by sensitivity to chemotherapy, including platinum
agents. Even if the results of the phase II studies are controversial, the homologous recom-
bination deficiency (HRD) has been associated with a higher response to platinum agents.
The BL2 subtype is reached in angiogenic factors, so it may respond to treatment with vas-
cular endothelial growth factor receptor (VEGFRs) inhibitors, Orantinib, an anti-angiogenic
agent that targets other receptors in this subtype, demonstrating a favorable response in
combination with docetaxel in cancer cases of metastatic breast showing anthracycline
resistance. Subtype BL2 has the lowest pCR after neoadjuvant chemotherapy [35,37,38].

The triple negative breast cancer represents one of the most interesting fields of interest
in research, considering the lack of therapeutic resources that will lead to a significant
improvement of the prognosis of this subtype of the disease [39,40].

TNBC is a heterogeneous disease with numerous subtypes involved in prognosis and
response to different types of therapies. Recent research concerns have taken into considera-
tion the evaluation of the subtypes that benefit from platinum-based chemotherapy and for
which standard anthracycline and taxane-based chemotherapy offers a maximal response.
Both PARP inhibitors in cases with mutant BRCA and androgen receptor inhibitors, treat-
ment with sacituzumab govitecan (an antibody-drug conjugate) and PI3K/AKT and PD-L1
inhibitors are among the topics of interest. Sacituzumab Govitecan, a metabolite of irinote-
can, has shown promising results in the ASCEND Phase III trial, with response rates of 33%
in TNBC patients treated intensively. Even if PARP inhibitors have already shown efficacy
in the case that germline BRCA mutation is detected, the OLYMPIA trial will elucidate
the role of PARP inhibitors in BRCA mutant tumors and stratify patients who will benefit
from this treatment. Immunotherapy is becoming an increasingly important component of
therapeutic associations with PARP inhibitors. Based on the idea that PARP inhibitors in
combination with checkpoint inhibitors modulate response to tumor microenvironment
therapy, the therapeutic associations between immunotherapy and PARP inhibitors are
intensively studied. The KEYNOTE-022 trial evaluates the association of the efficacy of the
addition of pembrolizumab to standard non-addictive chemotherapy based on platinum
and taxanes. Combination with veliparib, a PARP inhibitor compared to chemotherapy,
did not benefit the pCR rate, but carboplatin AUC6 demonstrated superiority in pCR in
the BrigTness trial. However, these strategies remain options in the recurrent or metastatic
settings, and chemotherapy still remains the basis of systemic treatment in TNBC [41–44].

Several promising new treatment options are undergoing active evaluation in many
clinical trials. Among these strategies such as PARP, MEK, AKT pathways inhibition and
the association of checkpoint inhibitors with chemotherapy, the most promising research
method include radiomic analysis. In this context, non-invasive identification of treatment
response predictors for TNBC identified from medical images becomes a priority. Identify-
ing valid and accessible biomarkers to predict the benefit of each therapeutic strategy is
one of the directions with the greatest impact in the treatment of TNBC to which radiomics
can make a valuable contribution [45,46].

Experimental preclinical models can accelerate new molecular target identification,
thus improving therapeutic efficacy. Patient-derived xenografts (PDX), due to their ge-
nomic and transcriptomic fidelity to the tumors from which they are derived, are able to
improve preclinical testing of target drug combinations in translational models. Despite
previous development of breast PDX and TNBC models, those derived from patients with
demonstrated triple negative breast tumors are lacking.

The use of hybrid imaging in radiomic analysis was applied on a PDX model by TNBC
in order to implement this method in clinical practice. With the help of preclinical models
developed on mice, concepts based on radiomics that can be implemented in daily clinical
practice will be proposed. The limited utility of tumor cell lines established in refining
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preclinical models in the context of new knowledge related to tumor heterogeneity has
made it necessary to use transplantable tumor xenografts, PDX models being superior for
this purpose. A study that analyzed gene expression of 93 TNBC in order to correlate it
with the five subtypes of TNBC aimed to evaluate the reproducibility of radiomic models
in PET-CT imaging in preclinical settings. The method included evaluation of tumors with
volumes varying between 100 and 450 mm3, by the PET-CT image parameters acquisition
using 18F-fluorodeoxyglucose (18F-FDG) at 45–60 min post-injection. The analysis of the
results also aims the standardization of the data acquisition and features extraction in order
to correctly identify the five subtypes of TNBC using solid and reproducible radiomic
models [47,48].

4. Radiomics in Breast Cancer Research

Breast cancer is the most commonly diagnosed cancer among women and the sec-
ond leading cause of cancer death. In an ERA when medical imaging is increasingly
used for diagnostic and evaluation of response to oncological therapy, identifying prog-
nostic and predictive biomarkers of post-therapeutic evolution is becoming increasingly
important [39].

The development of radiomics, which can extract quantitative characteristics from the
volume of interest (VOI) delineated from medical images including shape/size, intensity
and texture, has also benefited from translational research in breast cancer. In the case of
breast cancer, radiomic analysis demonstrated the ability to differentiate malignant tumors
from benign tumors, to identify molecular subtypes, to predict certain radioresistance
and chemoresistance factors, to predict malignancy and to anticipate early the response to
neoadjuvant chemotherapy (NAC) [49].

Radiomic analysis was initially validated in lung cancers, but the need for an accurate
diagnosis with the reduction of false positive US, mammography, digital breast tomosyn-
thesis (DBT) and MRI examinations are methods desirable in breast cancer radiomics
research. An increased predictive performance was demonstrated using tumor entropy as
a feature extracted from MRI imaging and DBT, a new technology with promising results
especially in the case of women with dense breasts. Implications of radiomics for breast
cancer screening are major given the anxiety effect of a potential cancer diagnosis and a
useless biopsy [40].

Avanzo et al. performed a systematic review focused on the use of artificial intelligence
(AI) in medical imaging, based on scientific articles published in Italy. The authors also
assessed the areas of interest in which AI was used. In a second phase of the analysis, the
AI4MP working group dedicated to artificial intelligence from the Italian Association of
Physics in Medicine (AIFM) also performed an analysis of the results from the literature.
Excluding reviews and articles published outside the 2015–2020 period, the authors iden-
tified 122 publications in Pubmed and 46 studies in the working group. Cancer was the
subject of 25% of AI studies and MRI was the most commonly used diagnostic method
for radiomics. The authors note a significant increase in interest regarding AI in medical
imaging, especially after 2018 [50].

The Italian MAGIC-5 trial aims to implement a database that facilitates the diagnosis
of a CAD algorithm, based on the digitization of mammography images. Within the project,
3369 images obtained from 967 patients were digitized. The classification of images was
based on the type of lesion, morphology and pathology of the breast, also developing a
graphical interface to facilitate image analysis and their use as a basis for radiomic analysis
or classification using neural networks, but also for epidemiological studies. Given the
large amount of data collected in screening projects from different geographical areas,
expanding and interconnecting the network will be a challenge for the future [51].

In an attempt to eliminate the operator-dependent factor that affects the diagnostic
capacity of Contrast-Enhanced Spectral Mammography (CESM), Fanizzi et al. propose a
CAD, based on the features extraction from low-energy and recombined images. The study
used 48 ROIs obtained from 53 patients, evaluated by previously trained Random Forest
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type algorithms. The authors select only significant radiomic features for the building
of the diagnostic model. The radiomic algorithm demonstrates an improved diagnostic
capacity by 8% compared to the human subjective examiner, the specificity and selectivity
being 87.5% and 91.7%, respectively. Massafra et al. analyzed 58 ROIs from 53 patients
extracting 464 radiomic features, including both characteristics obtained from original ROIs
and Haar decomposition image gradient. With a specificity of 88.37% and a selectivity of
100%, the authors demonstrate the ability of the radiomic model to discriminate between
benign and malignant tumors. In this case, the Principal Component Analysis (PCA) was
used to reduce the dimensions in the classification scheme [52–54].

Radiomics was also proposed as a method for early evaluation of the oncological
neoadjuvant therapy results, with background parenchymal enhancement (BPE) parameter
from breast MRI images being evaluated for the predictive potential. Thus, the authors
want to evaluate the ability of BPE to become an imaging biomarker with a predictive role
of the response to therapy in breast cancer. The study benefited from the experience of three
expert imagist physicians who evaluated MRI images obtained from 80 patients before and
after the completion of chemotherapy, but also at 3 months after surgery. BPE reduction
was significantly associated with the administration of the first anthracycline/taxane-based
chemotherapy cycle, being more significant than in the case of anti-HER2 therapy. Another
factor associated with BPE reduction after initiating neoadjuvant therapy was tumor size.
Analyzing the BPE obtained from breast MRI images, La Forgia and collaborators highlight
the potential of the method to predict early the response to therapy but also mention the
potential of including radiomic analysis in the algorithm for early prediction of response to
neoadjuvant therapy in breast cancer [55].

5. Radiomics and Breast Cancer Imaging Methods: A Brief Comparative Assessment

Medical imaging is essential both in diagnosis and staging and in treatment planning
and monitoring during the course of the disease. At this time all imaging methods involved
in the management of breast cancer are associated with radiomic analysis. In an analysis
that synthesizes data regarding the use of radiomics in breast cancer focused on MRI,
mammography and DBT, Lee and collaborators identify a majority (16 studies) from a
total of the 25 radiomic studies considered representative for breast cancer. Four studies
used features extracted from the US, four were associated with mammography and one
with DBT. The number of features extracted varied greatly (from 45 to 13,950). Entropy,
textural and gray level matrix features are the most commonly used radiomic features.
The radiomic score (rad-score) and the radiomic nomograms are mentioned in two and
three studies, respectively. Of note are the studies of Braman et al. who approach the
identification of radiometric features extracted from peritumoral DCE-MRI to predict the
response to NAC and anti-HER2 + target therapy for the HER2 + subtype. Four of the
twenty-five studies aim to predict the response to therapy and five studies aim to predict
therapeutic failure by lymph node metastasis (three studies) and local recurrence (two
studies). Radiomic and Rad-score nomograms were more commonly used in predictive
models than in diagnostic ones [56–58].

The use of CT imaging in radiomic analysis related to breast cancer is associated
with a relatively small number of studies, probably justified by the limited value of CT in
diagnosis and the superior sensitivity of MRI and PET/CT in the detection of lymph node
metastases. However, Yang’s study demonstrates 89.1% and 88.5% accuracy in assessing
lymph node metastases in the test, respectively, of the validation cohort in a radiomic
study using CT imaging. Piñeiro-Fiel evaluates 20 publications that propose the use of
PET-associated radiomics in breast cancer, most of them (75%) extracting images from PET
images alone, and the rest of the studies being dedicated to hybrid imaging (PET-MRI
(20%) and PET-CT (5%)). The study by Antunovic et al. proposes PET-CT radiomics for
the prediction of pCR after NAC for patients with locally advanced breast cancer. The
analysis also identifies HER2 + and TNBC subtypes as being associated with an unfavorable
response. Roy et al. proposes a radiomic analysis on patient-derived tumor xenografts
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(PDX) to optimize the radiomic signature so as to obtain a robust FDG-PET signature in
order to predict response to therapy. In contrast to MRI, DBT and mammography studies,
in this case of PET radiomics, only 20% of the studies aim at diagnosis and tumor staging.
Most cases in which PET radiomics is proposed for the management of breast cancer (45%)
are associated with the prognostic correlation of extracted features or feature sets [59–61].

6. Radiomics and TNBC
6.1. TNBC Molecular Differential Diagnosis

An association method study investigated the role of optoacoustic imaging combined
with gray-scale ultrasound (OA/US) for molecular breast cancer subtypes detection. Using
the Kruskal–Wallis test, US and OA/US the molecular subtypes of breast cancer were
identified. With the support of two methods—OA analysis combined with the US grayscale,
the difference between luminal subtypes and TNBC and HER2 was evaluated. The same
favorable results in differentiating between the TNBC and HER2 positive breast cancer
were obtained in a retrospective analysis by Dogan and collaborated on a lot of 532 cases of
breast cancers in 519 patients with molecular markers available [62,63].

Radiomic signatures extracted from contrast-enhanced magnetic resonance imaging
(EC-MRI) also demonstrated the possibility of evaluating the status of breast cancer re-
ceptors in a study of 143 breast cancer patients for assessing breast cancer receptor status
and subtypes. Tumors were manually segmented and subsequently the radiomic analysis
included features such as first-order histogram co-occurrence matrix, run-length matrix,
absolute gradient and tumor geometry. Significant radiomic features were selected and
the patients were divided into a training set and a validation set. The radiomic analysis
proved an accuracy of 79.4% for the differentiation of the luminal A and luminal B subtypes.
For the luminal B differentiation from TNBC the accuracy of the method was 77.1%. The
authors conclude that breast CE-MRI imaging may be the basis of radiomic analysis in
order to detect the molecular subtypes of this type of cancer [64].

Another study aims to determine the value of the surrounding tumors parenchyma
enchancement included in the analysis, simultaneously with tumor analysis of DCE-NMR
images. Identifying images obtained from 84 women diagnosed with 88 invasive breast
carcinomas, the authors proposed the evaluation of the images by both an expert imagist
physician and by radiomics analysis. In total, 85 features extracted from the tumor and
from the surrounding parenchyma were analyzed. A reduced number of radiomic features
were selected as significant and a predictive model based on support vector machines was
created. The radiomic features extracted from the tumor region images as the only method
of evaluation proved inferiority compared to the case where the parenchyma enchancement
characteristics were also analyzed. Among the most useful features for predicting TNBC
were the textures and heterogeneity of background parenchymal enhancement [65].

To test the power of a radiomic model in making a differential diagnosis between TNBC
and non-TNBC breast cancer using preoperative CT, a retrospective study was proposed that
included 200 non-TNBC patients and 100 TNBC patients. Of these, 180 cases were used in the
discovery cohort and 120 in the validation group. Five radiomic features were identified as
predictive to discriminate the TNBC subtype from non-TNBC. The mean predictive value for
TNBC was identified as 0.881 and 0.851 in the discovery case group and in the validation group,
respectively. The study demonstrates the ability of a radiomics signature based on preoperative
CT imaging to identify TNBC from other molecular subtypes of breast cancer. Using a radiomic
signature based on 15 quantitative features extracted from DCE-MRI images of breast cancer,
Ma and collaborators were able to make a differential diagnosis of TNBC/non-TNBC. In this
study, ROIs were automatically segmented by a deep learning algorithm and subsequently
validated by two radiologists [66,67].

Based on radiomic features extracted from images from 120 breast cancer patients
and manually delineated tumors (90 non-TNBC and 30 TNBC), Zhang et al. were able to
identify TNBC and differentiate it from other types of breast cancer by identifying four
radiomic features (roundness, concavity, gray average and skewness) that are different
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between TNBC and non-TNBC breast cancers. Triple negative tumors are more round and
regular (less concave), with increased gray density and low skewness [68].

6.2. Differentiation between TNBC and Fibroadenoma

Differential diagnosis of TNBC with fibroadenoma is sometimes difficult, TNBC often
presents in breast ultrasound a benign morphology. A study that aims to use the US for
differential diagnosis between TNBC and fibroadenoma by radiomic analysis included
715 fibroadenomas, 186 TNBC, all cases pathologically confirmed. In total, 730 features
were extracted from acquired images (14 intensity-based features, 132 textures features
and 584 wavelet-based features). Radiomic analysis highlights favorable results, even for
lesions in the three or four BI-RADS category, probably considered benign or suspected to
be malignant by expert imaging physicians. In the future, after overcoming the problems
related to standardization, radiomic analysis is expected to reduce the number of biopsies
for false-positive imaging diagnoses [69].

Another study that aims to evaluate radiomics analysis in the differential diagnosis
uses images from 169 tumors (84 benign fibroadenomas and 85 TNBC tumors). After tumor
segmentation using the level-set method, radiomic texture features are analyzed. Both
conventional morphology and multiresolution gray-scale invariant texture feature were
evaluated in the study. Computer-assisted diagnostics (CAD) uses best-fitting ellipse, gray-
level co-occurrence matrices and the ranklet transform methods. The authors concluded
that the use of radiometric texture features extracted by ranklet transformatiom can be
successfully used in differential diagnosis between fibroadenomas and TNBC [70].

6.3. Prognosis and Prediction of Response to Neoadjuvant Chemotherapy

Another research direction in TNBC radiomics is the evaluation of the method’s ability
to analyze intratumoral and peritumoral regions using DCE-NMR, in order to predict the
complete pathological response (pCR) to NAC. For this purpose, 117 patients who received
NAC, were included in the study that analyzed the intratumoral and peritumoral regions
of DCE-NMR scans in T1 sequence. After VOI segmentation, 99 radiomic textural features
were subsequently extracted. The training set included 78 images aiming at the training of
multiple machine learning classifiers, in order to predict the probability of pCR for other
newly diagnosed patients. The evaluation lot included 39 patients. In a second stage of the
study data related to HR status and HER status were included.

The results highlighted the concept that a set of combined intratumoral and peri-
tumoral radiomic features lead to superior results, the HR+, HER2, non-pCR subtypes
being characterized by higher peritumoral heterogeneity during initial contrast enhance-
ment. TNBC and HER2 + tumors are associated with an enhancement pattern within
the peritumoral regions for the therapy non-responder cases. The authors concluded
that independently of the classifier choice the radiomics analysis of the DCE-NMR im-
ages demonstrates the possibility of predicting the response to NAC before the treatment
whether or not we know the status of the receptors [58].

Until the study of Koh et al., dynamic contrast-enhanced radiographic (DCE) MRI
analysis of the entire tumor (three-dimensional) is not known to have been used to evaluate
the prognosis of TNBC. This study aims not only to identify the prognostic power of the
radiomic model proposed, but also to validate it for various types of MRI scanners. Data
were extracted from 231 cases of TNBC ranging in age from 23 to 88 years. Out of a total of
3995 radiomic features through 10 fold cross validation for LASSO, 32 features were finally
selected and a radiomic score (Rad-score) was generated. It should be noted that seven
features were selected from the gray level co-occurrence matrix (GLCM), 24 from gray level
run length matrix (GLRLM) and 1 from histogram analysis. The size of the pathological
invasion, lymphovascular invasion, number of metastatic axillary nodules and type of
surgery are features identified as predictive in the clinical model. The Rad-score and the
clinical model were more accurate in predicting the clinical model than the clinical model
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alone, but external validation on other MRI scanners did not confirm the superiority of the
radiomic over the clinical model [71].

A multicenter study based on radiomic features extracted from the US that included
486 TNBC cases proposed the validation of a nomogram that included a radiomic Rad-
score and clinicopathological criteria to predict DFS after surgery. Elevated values of
the proposed Rad-score from greyscale ultrasound features were correlated with worse
outcomes. The nomogram had superior predictive power to the clinicopathological marrow
and the number-based prediction of metastatic lymph nodes. The authors conclude that the
addition of clinicopathological data to the radiomic model increases the power of prediction
compared to any of the independently evaluated models [72].

Early recurrence after NAC in TNBC was successfully predicted by the radiomic
model based on pre- and post-NAC MRI imaging. Including 147 patients divided into
the training set (104 cases) and the test set (43 cases) and a deep learning algorithm for
automatic tumor segmentation from contrast enhanced MRI images, the study proposed
3 radiomic models (pre-chemotherapy, post-chemotherapy and combined) and a model
with clinical parameters. Recurrence 3 years after NAC was accurately accurate when using
both pre- and post-chemotherapy features [73].

The correlation between radiomic features and the level of Tumor-Infiltrating Lymfcite
(TILs) identified in patients diagnosed with TNBC proposed by Yu and colleagues aims
to identify the early identification (from mammography images) of predictors of response
to chemotherapy and immunotherapy in TNBC. 204 features including morphological,
textural, and greyscale features were extracted from tumors delineated on mammogram
images and statistically correlated with tumor TILs. A cutoff value of 50% was used to
evaluate the “low” and “high” values of the TILs. The study identified 6 significant radiomic
features (unformity, variance, and four gray matter matrix-related features) between “low
TILs” and “high” TILs. The prognostic and predictive value is given by the concept that
tumors with “high” TILs are associated with a higher rate of complete pathological response
and higher survival rates [74].

The main radiomics studies involving both different non-medical imaging methods
and different clinical endpoints have been summarized and presented in a table (Table 1).

Table 1. Radiomics for TNBC: the table includes the imaging method chosen for radiomic analysis, the
type, the number of features used in creating the model including the radiomic score and nomograms,
study objectives, authors and year of publication [58,62–74].

Imaging Method Radiomic Features/Features
Number/Radiomic Signature Study Objective

US optoacoustic imaging (OA)
combined with gray-scale US

identify the differences
between molecular subtype Menezes et al. (2019) [62].

MRI

first-order histogram (HIS),
co-occurrence matrix (COM),
run-length matrix (RLM),
absolute gradient (GRA),
autoregressive model (ARM),
discrete Haar wavelet
transform (WAV), and lesion
geometry (GEO)

asessment of breast cancer
receptor status and molecular
subtypes.

Leithner et al. (2019) [64].

MRI
85 radiomic features
(morphologic, densitometric,
texture)

distinguish triple-negative
cancers from other subtypes Wang et al. (2015) [65].

CT radiomic signature based on
preoperative CT

guidance in choosing the
treatment Feng et al. (2020) [66].
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Table 1. Cont.

Imaging Method Radiomic Features/Features
Number/Radiomic Signature Study Objective

MRI 15 features

to differentiate triple-negative
breast cancer (TNBC) and
nontriple-negative breast
cancer (non-TNBC).

Ma et al. (2021) [67].

X-ray mammography roundness, concavity, gray
average and skewness

distinguish between TNBC
and non-TNBC Zhang et al. (2019) [68].

US

730 features (14
intensity-based features, 132
textural features and 584
wavelet-based features)

differential diagnosis between
triple-negative breast cancer
and fibroadenoma

Lee et al. (2018) [69].

US

morphology, conventional
texture, and multiresolution
gray-scale invariant texture
feature

distinguishing between TNBC
and benign fibroadenomas Moon et al. (2015) [70].

MRI both peritumoral and
intratumoral features

prediction of pathological
complete response (pCR) to
neoadjuvant chemotherapy
(NAC).

Braman et al. (2015) [58].

MRI Rad-score prediction of systemic
recurrence Koh et al. (2020) [71].

US Rad-score and radiomic
nomogram

prediction of disease-free
survival Yu et al. (2021) [72].

MRI
Three radiomic models based
on pre- and post-NAC
magnetic resonance images

prediction of systemic
recurrence after NAC Ma et al. (2022) [73].

Mammography radiomics nomogram that
incorporates Rad-score

prediction of invasive
disease-free survival Jiang et al. (2020) [74].

7. Conclusions

Radiomics, a relatively new but promising translational research field, adds value to
precision oncology, with TNBC already benefiting from the results. Differentiation between
fibroadenoma and TNBC, identification of molecular subtypes from US, MRI and other
medical imaging and early prediction of response to NAC is already validated applications
of radiomics. Future research in radiomics with major clinical applications would target
sensitivity to platinum-based chemotherapy, target therapies and immunotherapy response
prediction, in order to improve the prognosis of this aggressive breast cancer subtype.
Thus, we estimate that radiomics will become a key player in the precision oncology of
TNBC. The correlation between radiomics markers, response to different therapeutic pro-
tocols, prognosis and molecular subtypes of TNBC, radiomics will offer the perspective
of treatment personalization with minimal costs. Already having clinical results regard-
ing the benefit of combination platinum-based chemotherapy-PARP inhibitors—immune
checkpoint inhibitors, radiomics models can provide predictive biomarkers of therapeutic
response in order to stratify the oncological therapy and to offer in each case of TNBC the
best therapeutic option. Deep learning algorithms tend to replace the classic supervised
and unsupervised radiomics, but radiomics is easier to implement and we estimate that the
method will still play an important role in translational cancer research. In the ERA of “big
data” we expect the rapid initiation of studies that will translate radiomics into the current
clinical oncology practice of TNBC. If radiomics combining standard screening and diag-
nostic methods seems to be more focused on differential diagnosis and staging, MRI, PET
and hybrid PET-CT and PET-MRI in association with radiomics score and nomograms tend
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to be key players in precision diagnosis, contributing to the stratification of patients and the
identification of potential candidates for each therapeutic agent, being key elements in fu-
ture precision TNBC therapy. Radiomic analysis, especially by MRI and mammography, is
estimated to improve the specificity and maintain a high rate of diagnostic sensitivity, thus
reducing the necessary biopsies, but will also open new horizons in the precise selection of
patient groups, candidates for the omission of surgery after complete response to NAC.
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