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Abstract
The cuticular wax layer can be important for plant resistance to insects. Thrips (Frankliniella occidentalis) damage was assessed
on 11 pepper accessions of Capsicum annuum and C. chinense in leaf disc and whole plant assays. Thrips damage differed
among the accessions. We analyzed the composition of leaf cuticular waxes of these accessions by GC-MS. The leaf wax
composition was different between the twoCapsicum species. InC. annuum, 1-octacosanol (C28 alcohol) was the most abundant
component, whereas inC. chinense 1-triacotanol (C30 alcohol) was the prominent. Thrips susceptible accessions had significantly
higher concentrations of C25-C29 n-alkanes and iso-alkanes compared to relatively resistant pepper accessions. The triterpenoids
α- and ß-amyrin tended to be more abundant in resistant accessions. Our study suggests a role for very long chain wax alkanes in
thrips susceptibility of pepper.
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Introduction

The cuticular wax layer of the leaf is a first barrier for an
herbivorous insect to tackle after landing on the leaf surface.
Plant cuticular waxes can consist of very long chain (> 20C)

alkanes, ketones, alcohols, fatty acids and triterpenoids
(Eigenbrode and Espelie 1995). The primary function of this
wax layer is to protect the plant against desiccation, solar
radiation and pathogens (Jenks et al. 1995; Mariani and
Wolters-Arts 2000). The wax layer can be a physical barrier
for insects to attach to or penetrate the leaf surface
(Eigenbrode and Espelie 1995). The triterpenoids and other
metabolites in the wax layer can be feeding or oviposition
deterrents for herbivorous insects (Eigenbrode and Pillai
1998). For example, amyrins (triterpenoids) reduced feeding
by diamandback moth larvae on cabbage (Eigenbrode and
Pillai 1998). On the other hand, some wax metabolites can
also be used for host plant recognition and as feeding stimu-
lants by various insects such as sawflies and flea beetles
(Braccini et al. 2015; Mitra et al. 2017; Müller and Hilker
2001; Udayagiri and Mason 1997). Relatively high amounts
of leaf wax have been associated with higher susceptibility
against thrips in onions and leak (Damon et al. 2014). This
means that the chemical composition of the wax layer can
have positive and negative effects on herbivore resistance.

Thrips (Thysanoptera) are a major agricultural pest world-
wide. In greenhouses in Europe, western flower thrips
(Frankliniella occidentalis) is a generalist pest onmany crops.
Thrips are sucking piercing insects that cause deformations
and stunted growth, and cause damage by spreading viruses
(Steenbergen et al. 2018). Recent bans on pesticides and in-
creasing resistance to the insecticides that are still used call for
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identifying natural sources of resistance in crops. Plant metab-
olites linked to thrips resistance are amongst others alkaloids
(Liu et al. 2019), chlorogenic acid (Leiss et al. 2009), tocoph-
erols (Maharijaya et al. 2012) and diterpene glycosides (Macel
et al. 2019; Maharijaya et al. 2018). However, in most studies
the entire leaf was analyzed and not specifically the wax com-
pounds. Most of the above-mentioned compounds are not
present in the epicuticular wax layer, although very small
traces of alkaloids have been found in the wax layer of leaves
of Senecio jacobaea (Vrieling and Derridj 2003). This means
that the contribution of wax layer chemistry, which commonly
consist of apolar components, to thrips resistance are relative-
ly unknown.

Peppers (Capsicum spp., Solanaceae) are grown world-
wide and damage by several thrips species causes great eco-
nomic losses (Shipp et al. 1998, Visschers 2020).
Commercially grown peppers generally belong to the species
Capsicum annuum and C. chinense. Because of their econom-
ic interest, there has been quite some research on the wax
layers of the pepper fruits in relation to food quality and food
preservation (de Rijke et al. 2015). Major components of the
fruit wax layer were C29 and C31 n-alkanes and C24 fatty acid
(Bauer et al. 2005; de Rijke et al. 2015; Parsons et al. 2013).
Both plant ontogeny and leaf age play a role in cuticular wax
metabolite composition (Busta et al. 2017). In addition, abiot-
ic and biotic factors influence plant waxes (Shepherd and
Griffiths 2006). For example, bacterial root endophytes can
influence the concentrations of wax metabolites in the leaves
and fruits (Silva et al. 2014). How leaf wax metabolites relate
to thrips resistance in peppers has not been studied yet.

Here, we analyzed the leaf cuticular wax layer composi-
tion of previously identified thrips resistant and susceptible
Capsicum annuum and C. chinense accessions, using Gas
Chromatograph coupled to Mass Spectrometry (GC-MS).
We grew the 11 selected accessions in the greenhouse and
analyzed the cuticular wax metabolites of young leaves
from flowering plants. We related differences in wax chem-
ical composition to the outcome of thrips (F. occidentalis)
leaf disc and whole plant preference and performance as-
says. An earlier study that analyzed entire leaves of nine
Capsicum accessions of four species (C. annuum, C.
chinense, C. frutescens, C. baccatum) showed that thrips
susceptible accessions had relatively high concentrations
of C25-C28 n-alkanes (Maharaijya et al. 2012). Because al-
kanes are the major constituents of the wax layer, we hy-
pothesized that the concentration of n-alkanes in the epicu-
ticular wax would be higher in thrips susceptible Capsicum
accessions. Triterpenoids (phytosterols) are known to be
involved in constitutive and herbivore induced plant de-
fenses (Eigenbrode and Pillai 1998; Zhang et al. 2018).
Therefore, we hypothesized that triterpenoid concentrations
in the wax layer would be higher in thrips resistant
Capsicum accessions.

Materials and Methods

Leaf Wax Metabolites GC-MS Analyses

Plant Material Seeds of all accessions were obtained from the
Center for Genetic Resources Netherlands (Table S1) and se-
lected based on prior knowledge on insect resistance. The
seeds were multiplied in the greenhouses of the Radboud
University Nijmegen. Seeds were germinated on glass beads
and seedlings transferred to 1.5 L pots filled with commercial
potting soil 1–2 weeks after germination. The pots were
placed on tables in a greenhouse, inside an insect-free net cage
(Rovero 0.30 mm gauze, 7.50 m x 3 m x 2.75 m) at 16 h
photoperiod and minimum temperatures set to 20 °C/17 °C
(day/night). Natural light was supplemented with Greenpower
lights (400V/1000W, Phillips, Amsterdam, the Netherlands)
when below 200Watt m-2. Predatory mites, Amblyseius
swirskii (Koppert Biological Systems, Berkel en Rodenrijs,
the Netherlands), were released in the greenhouse to control
for accidental thrips infection. Plants were transferred to 3L
pots when they were three months old and provided with
nutrients once a week.

Thrips Resistance Assessments

Leaf Disc No-choice Assay These experiments were previously
published as part of Visschers et al. 2019a. The purpose of no-
choice assays was to determine thrips resistance of the pepper
accessions per se and not thrips preference. In brief, three
plants of the selected accessions were grown in the green-
house. After four months, when all plants were flowering,
one standardized leaf of each plant was collected. Leaf discs
(1.5 cm diameter) were punched from the leaves. One leaf disc
of each accession was put in a small petri dish with five L1/L2
F. occidentalis larvae (reared on green beans) and left to feed
for 48hrs. Leaf damage was assessed using imaging software
(Visschers et al. 2018a, b).

Leaf Disc Choice Assay These experiments were previously
published as part of Macel et al. 2019. In brief, the same
accessions were used in a leaf disc choice assay. Ten plants
of each accessions were grown in the greenhouse and leaf
discs were taken from a standardized set of leaves of four
months old flowering plants. One disc of each accession
was placed in a petridish, which contained in total 11 discs
(one of each accession, in randomized order for each petri
dish). Twenty-two L1/L2 F. occidentalis larvae were
added to the petri dish and left to feed for 48hrs. Leaf
damage was assessed in the same manner as the no-
choice leaf disc assay.

Whole Plant Assay Seeds of the eleven accessions were sown
in potting trays for germination and transferred to 1L pots with
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potting soil. One to three plants per accession were grown
individually in closed nylon mesh bags (1 m length x 0.5 m
diameter) in the greenhouse. Temperatures were set to 24/
24 °C and light was supplemented when below 400 W/m²
using 10.000 lux Son-T lamps. When the plants were four
weeks old they were infested with 50 adult F. occidentalis
females. Five weeks after thrips inoculation, the damage on
the plants was scored on a scale from one to nine (1 = severe
damage, 9 = no damage). The number of larvae and adult
thrips on the plants was counted by washing the entire plant
with ethanol and filtering out the thrips.

Wax Layer Metabolite Extraction Methods adapted from
Haslam and Kunst (2013). Two leaves, the second pair
from the top (similar to the leaves used in the thrips leaf
disc experiments), were collected from each plant (n = 2–7
plants per accession) when they were four months old and
flowering. Wax metabolites were extracted by dipping the
leaves for 30 seconds in 10 ml chloroform with 10 μl in-
ternal standard (tetracosane (Sigma-Aldrich) 1 ug/μl chlo-
roform solution) using a glass vial. Chloroform was evap-
orated under a stream of nitrogen gas (5.0) and the wax
residue resuspended in 200 μl chloroform and trans-
ferred to a glass 1.5 ml vial. After evaporation of the
chloroform, 10 μl dried pyridine and 10 μl BSFTA
(N,O-Bis(trimethylsilyl)trifluoroacetamide) (Merck) were
added and the vials were sealed with phenolic
polytetrafluoroethylene (PFTE) lined caps. Samples were
incubated at 80° C for 1 hour. Samples were allowed to
cool off and evaporate, after which the samples were
resuspended in 40 μl chloroform and transferred to glass
1.5 ml vials with 200 μl inserts.

Leaf AreaDirectly after dipping in chloroform, the leaves were
placed flat on a transparent sheet with a centimeter and
photographed. Leaf surface area was calculated using the
magic wand tool in Adobe Photoshop CC 2018.

Gas Chromatography – Mass Spectrometry (GC-MS) Settings
GC-MS analyses were performed on an Agilent 7890A
GC (Agilent Technologies, Santa Clara, CA, USA)
equipped with a HP-5MS column (30 m x 0.25 mm x
0.25 μm) and an autosampler (7693A), injector tempera-
ture 250°, interface temperature 250 °C. The GC was
connected to a JEOL AccuTOF-GCv JMS-100 mass spec-
trometer (JEOL Ltd., Akishima, Tokyo, Japan). For the
analysis, 2 μl of each sample was injected onto the GC
column using a split ratio of 10:1 and the following tem-
perature program: 50 °C for 2 min., ramp 40 °C/min. to
200 °C, hold 1 min., ramp 3 °C/min. to 320 °C, hold
13.25 min. using a helium (5.0 ) column flow of 1.0 ml/
min Electron Impact Spectra were acquired at 10 Hz
(spectra per second) mass range 35–650.

Data Processing GC-MS peaks were manually integrated
using MassCenter (JEOL Ltd., Akishima, Tokyo, Japan).
Peaks after 16 minutes were selected, which included all
wax metabolites and not the cutin metabolites (Fernandez-
Moreno et al. 2016). Peaks were identified based onMS spec-
tra (NIST library) and reference standards (C21-C40 n-alkanes,
1-octacosanol, α-amyrin (Sigma-Aldrich), ß-sitosterol, stig-
masterol (LGC)). Iso-alkanes were identified by their
[M-43]+ peak (Fernandez-Moreno et al. 2016). Five unidenti-
fied peaks were present in all samples in similar proportions
and accounted for < 5% of the total wax content (data not
shown). Each peak area was corrected for total leaf area and
the internal standard to obtain the concentration of metabolites
in μg/dm2 leaf area.

Statistical Analyses

Statistical analyses were performed in R version 3.5.1 (R core
team 2008). Differences in damage among the accessions in
the thrips leaf disc choice assay were tested with a Friedman-
ANOVA for dependent samples. The differences between ac-
cessions in the no-choice assays (whole plant and leaf disc)
were analyzed with ANOVA, except for the damage classes in
the whole plant assay which were analyzed with a non-
parametric Kruskal-Wallis test. Accessions were set as fixed
factors in these models. Leaf wax metabolites were first ana-
lyzed with Principal Component Analyses (PCA) for overall
differences among the two Capsicum species. Difference in
concentrations of individual metabolites between resistant and
susceptible accessions within each species (C. annuum or
C. chinense) were analyzed with non-parametric Mann-
Whitney U-tests. P-values were corrected for multiple com-
parisons with FDR correction, and significance levels set at
P < 0.014. Differences in total wax content between resistant
and susceptible accessions were tested with ANOVA with
resistance as fixed factor, total wax content data were log
transformed to meet the assumption of normal distribution
and homoscedasticity.

Results

Thrips Resistance Assessment

The classification of relative thrips resistance or susceptibility
of the accessions was based on the leaf disc choice assays
(Table 1, Macel et al. 2019). This resistance classification
was compared with resistance in whole plant thrips perfor-
mance assays and in no-choice leaf discs feeding damage
assays (Visschers et al. 2019a) (Table 1). All three thrips tests
showed that accession 43 is consistently susceptible, whereas
accession 63 and 23 were the most resistant C. annuum acces-
sions in all assays (Table 1). Thrips resistance of the other

1084 J Chem Ecol  (2020) 46:1082–1089



accessionswas variable among the different assays. Accession
52 received the most damage in the leaf disc choice assay and
was also one of the most susceptible accessions in the whole
plant assay. Accession 19 was relatively resistant in the leaf
disc assays, but less so in the whole plant test where it har-
bored a high number of thrips adults and larvae. Accession 34
showed a reverse pattern, being relatively susceptible in the
leaf disc choice assay, but more resistant in the no-choice
whole plant test. The C. chinense accessions were all relative-
ly resistant in the no-choice whole plant assay, but in the no-
choice leaf disc assay accession 13 and 70 were more suscep-
tible (Table 1).

Leaf Wax Metabolites

The GC-MS cuticular wax analyses of leaves of the 11 acces-
sions of the two Capsicum species yielded 35 metabolites
(Table 2). These metabolites belonged to the classes of n-
alkanes, branched iso-alkanes, long chain alcohols, and
triterpenoids. We also detected a tropane alkaloid, identified
by a NIST library match of 965 and accurate mass as
tropacocaine, in most of the C. annuum accessions (Table 2,
Table S2, Figure S1). The PCA plot of all data showed that
leaves of C. annuum and C. chinense differed in wax metab-
olite composition (Fig. 1). Most metabolites were present in
all samples, but 1-octacosanol (C28 alcohol) was the most
abundant wax metabolite of C. annuum, while 1-triacotanol
(C30 alcohol) was the most abundant wax metabolite of
C. chinense (Table 2).

Wax metabolites varied among the different accessions
(Table S2). Within C. annuum, thrips susceptible accessions
had on average significantly higher levels of C25-C29 n-al-
kanes as well as of some iso-alkanes and an unknown alkyl
ester, compared to resistance accessions (Table 2). For

C. chinense, the susceptible accessions had significantly
higher levels of C37 n-alkane. Resistant C. chinense had
higher levels of the phytosterol β-amyrin (Table 2). Our anal-
yses did not reveal any metabolites that had significantly
higher concentrations in thrips resistant accessions of
C. annuum, although there is a trend for higher levels of α-
amyrin in the wax layer of resistant accessions (P = 0.047,
Table 2). Total wax content tended to be higher in susceptible
accessions of C. annuum compared to resistant accessions
(P = 0.04, Table 2).

Discussion

Our analyses of the cuticular wax metabolites of the leaves
of Capsicum accessions showed that accessions that were
relatively susceptible to western flower thrips had higher
concentrations of cuticular n-alkanes and branched iso-al-
kanes than accessions that were more resis tant .
Triterpenoid amyrins tended to be higher in more resistant
pepper accessions. The thrips assays could consistently
identify the most and least resistant Capsicum accessions,
even though the assays varied a little with regards to the
exact ranking of the accessions.

Our study suggests that susceptibility to western flower
thrips in pepper plants correlates with high concentrations
of wax alkanes. Onion thrips (Thrips tabaci) also preferred
onion accessions with high concentrations of epicuticular
n-alkanes and total wax content (Damon et al. 2014).
Partly, the effect of wax chemical composition depends
on the insect and the plant species (Eigenbrode and
Espelie 1995). Some insects can use the plant wax metab-
olites, and specifically the alkanes, as oviposition stimu-
lants (e.g. Spencer 1996, Müller and Hilker 2001, Mitra
et al. 2017). The reasons why thrips or other insects prefer

Table 1 Thrips (Frankliniella occidentalis) preference (damage % in
choice assay) and performance (numbers of larvae and adults) on
Capsicum annuum and Capsicum chinense accessions in different tests

(data of the leaf disc choice test from Macel et al. 2019, data of the leaf
disc no-choice test from Visschers et al. 2019a)

Means C. annuum accessions Means C. chinense accessions

Scale Test Trait 14-S 34-S 43-S 52-S 19-R 23-R 63-R 38-S 13-R 41-R 70-R P-value

Leaf disc Choice Damage
(%)

13.9 13.9 18.3 20.6 4.6 5.8 1.9 9.8 4.5 2.8 4.1 <0.001

No-choice Damage (mm2) 9.4 6.5 19.7 3.1 2.8 1.2 1 7.3 23.2 5.0 26.1 <0.001

Whole plant No-choice Damage
(level 1- 9)

5.5 5.7 2.2 3.0 4.2 5.6 5.7 7.8 7.5 8.0 8.2 <0.001

Larvae 73 75 441 204 283 30 74 7 23 16 5 < 0.001

Adults 92 30 122 172 44 40 47 9 19 7 7 < 0.001

RU accessions numbers are given, R indicates an accession classified as resistant, S susceptible as determined inMacel et al. 2019. Damage levels at the
whole plant tests range from 1 (severe damage) to 9 (no damage). P-values of Friedman-ANOVA (leaf disc choice test) and ANOVA (no-choice tests:
damage mm2 , larvae and adults) or Kruskal-Wallis (no-choice test: damage level) for differences among accessions
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plants with more alkanes are thus far unknown. Possibly,
the alkanes of the plant cuticular wax layer act as feeding
stimulant to thrips. The epicuticula of insects consists of
compounds very similar to the plant waxes, and insects
may acquire these cuticular hydrocarbons through their
food (Silverman and Liang 2000). Strikingly, the
epicuticula of F. occidentalis consists of C25 - C29 n-al-
kanes (Gołebiowski et al. 2007), and exactly these same n-
alkanes were more abundant in cuticular waxes of thrips
susceptible Capsicum accessions. Whether thrips, like
ants, acquire alkanes through their food is still unknown
(Silverman and Liang 2000). It is also possible that other
defensive traits that are correlated with wax alkanes deter-
mine thrips feeding damage. A third possibility could be
that low amounts of alkanes increases the permeability of
the cuticle, and more easily exposes plant defense metab-
olites to the leaf surface (Bessire et al. 2007).

C. annuum and C. chinense accessions had distinct leaf
wax compositions. Wax metabolite profiles are known to
be plant species specific (Mariani and Wolters-Arts 2000),
which may be why insects have evolved to use wax com-
ponents as reliable oviposition cue to select their host plant
species. Wax composition also varies with plant age and
plant organ (Lee and Suh 2015) and can change upon her-
bivory (Zhao et al. 2020). In our study of waxes of pepper
leaves, C27, C31 and C33 n-alkanes were the most abundant

alkanes. The major alkanes in pepper fruit wax were C29

and C31 n-alkanes (Bauer et al. 2005; de Rijke et al. 2015;
Parson et al. 2013), which shows that the wax composition
may differ among organs. Genes involved in biosynthesis
of cuticular waxes have been identified in Arabidopsis and
other models species such as Hordeum (Lee and Suh
2015). The pepper genome has been sequenced (Kim
et al. 2014), but the effort to unravel the genes involved
in cuticular wax biosynthesis in pepper is not as advanced
as in Arabidopsis or tomato. So far, mainly candidate
genes involved in cuticle development have been identified
(Popovsky-Sarid et al. 2017). Next to genetic factors, abi-
otic conditions such as drought stress can also influence
cuticular wax composition (Shepherd and Griffiths 2006).
In addition, microbes and insects, for example feeding by
the Hessian fly, can alter plant leaf wax profiles (Aragón
et al. 2017; Kosma et al. 2010; Silva et al. 2014). Leaf
cuticular wax composition is thus both genetically and en-
vironmentally determined. Furthermore, microbes that live
in or on the plant surface can also produce specific metab-
olites (Schmidt et al. 2018). Endophytic fungi are known to
produce tropane alkaloids (Naik et al. 2018). It is possible
that the tropane alkaloid we detected in low amounts in the
pepper leaf wax is of microbial origin, rather than pro-
duced by the plant itself. Although the compound could
only be detected in some C. annuum accessions, the

Fig. 1 Principal component
analysis plot of the relative
abundance of 35 epicuticular leaf
wax metabolites of Capsicum
annuum (red dots) and Capsicum
chinense (blue dots). The dots
represent individual plant samples
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tropane alkaloid does not seem to be related to thrips resis-
tance (Table S2). Further studies are needed to determine
the origin and the function of this alkaloid in Capsicum.

Some triterpenoids, the amyrins, were higher in resis-
tant pepper accessions. Maharijaya et al. (2012) also found
high concentrat ions of an unknown tri terpenoid
(phytosterol) in resistant pepper accessions. Triterpenoids
are known to have a deterrent effect on feeding and ovi-
position of some insects, such as Plutella xylostella and
Phyllotreta nemorum (Eigenbrode and Pillai 1998; Kuzina
et al. 2009). Amyrins are the backbone structures for
insect-deterrent saponins (Khakimov et al. 2015). In our
study, the variation in α-amyrin levels among the different
C. annuum accessions was considerable and therefore only
weakly significant different between resistant and suscep-
tible plants. β-Amyrin concentrations were low in the sus-
ceptible C. chinense accession compared to the resistant
C. chinense accessions. However, within the C. chinense
group our statistical power was low. Our analysis indicates
that amyrins and structurally related compounds may
serve as leads for thrips resistance breeding.

We tested thrips damage on the Capsicum accessions in
three different thrips assays. Damage levels of the accessions
varied among the three tests, but the least and most resistant
accessions remained constant throughout all three trials
(Visschers et al. 2019a, Macel et al. 2019). Plant resistance
to insects is at least partly determined by plant age and by the
environment, as is shown in many other studies (e.g. Damon
et al. 2014; Visschers et al. 2019a 2019b). Nevertheless,
Capsicum accessions that had consistent relatively low feed-
ing damage and thrips numbers, had low concentrations of the
cuticular wax C25-C29 alkanes. Further validation with, for
example, wax mutant lines could elucidate the role of these
alkanes in thrips resistance or susceptibility. This could also
reveal whether wax layer composition is more important for
insect resistance than the total amount of wax (Aragon
et al. 2017). The cuticular wax layer also plays an important
role in resistance to pathogens and protection against desicca-
tion and UV light. Breeding for thrips resistance in peppers by
manipulating the leaf and fruit wax layer composition and
quantity therefore will have to balance the different costs
and benefits of these wax metabolites.
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