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Abstract
Background: Trypanosoma cruzi is a Kinetoplastid parasite of humans and is the cause of Chagas
disease, a potentially lethal condition affecting the cardiovascular, gastrointestinal, and nervous
systems of the human host. Constraint-based modeling has emerged in the last decade as a useful
approach to integrating genomic and other high-throughput data sets with more traditional,
experimental data acquired through decades of research and published in the literature.

Results: We present a validated, constraint-based model of the core metabolism of Trypanosoma
cruzi strain CL Brener. The model includes four compartments (extracellular space, cytosol,
mitochondrion, glycosome), 51 transport reactions, and 93 metabolic reactions covering
carbohydrate, amino acid, and energy metabolism. In addition, we make use of several replicate
high-throughput proteomic data sets to specifically examine metabolism of the morphological form
of T. cruzi in the insect gut (epimastigote stage).

Conclusion: This work demonstrates the utility of constraint-based models for integrating various
sources of data (e.g., genomics, primary biochemical literature, proteomics) to generate testable
hypotheses. This model represents an approach for the systematic study of T. cruzi metabolism
under a wide range of conditions and perturbations, and should eventually aid in the identification
of urgently needed novel chemotherapeutic targets.

Background
The increasing availability of complete genome sequences
has spurred efforts to model biological systems on a com-
prehensive scale [1,2]. Constraint-based modeling has
emerged in the last decade as a useful approach to the

integration of genomic and other high-throughput data
sets with more traditional, experimental data acquired
through decades of biochemical and molecular research
[3,4]. To date, constraint-based modeling has been exten-
sively applied to probe the function of intracellular
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metabolism, although the constraint-based framework is
in principle applicable to any set of chemical transforma-
tions, including signal transduction networks [5] and
transcription or translation [6]. When combined with a
specific method of analysis, e.g., flux balance analysis
(FBA), constraint-based models can be used to generate
quantitative predictions (e.g., growth rate of an organism)
and yield testable hypotheses for future experimental
investigations [7]. This permits an iterative process of
model development, hypothesis generation and testing,
and further model development and refinement [8]. The
principles and methods of building and analyzing con-
straint-based models have been comprehensively
reviewed in the literature [6,9,10]. Experimentally vali-
dated constraint-based models are providing integrative,
systems-level views of the functioning of different meta-
bolic networks of various organisms across a wide range
of specific conditions (e.g., gene deletions, pharmacolog-
ical interventions and environmental perturbations) [11-
14].

Trypanosoma cruzi is a protozoan parasite of the order
Kinetoplastida that infects humans and a wide variety of
other mammals. Like other members of its order, T. cruzi
is characterized by a single mitochondrion containing a
complex network of DNA fibrils known as the kinetoplast
[15]. T. cruzi displays many unusual biological features:
specialized intracellular compartments, such as the glyco-
some (in which the initial reactions of glycolysis occur)
[16,17], acidocalcisome [18], and reservesome [19]; wide-
spread RNA editing of mitochondrial transcripts [20];
polycistronic transcription [21]; and trans-splicing [22],
to name a few. Its life cycle is complex, involving multiple
distinct morphologic stages in both its mammalian hosts
and the triatomine insect vectors [15]. T. cruzi is the caus-
ative agent of Chagas disease, a potentially lethal condi-
tion affecting the cardiovascular, gastrointestinal, and
nervous systems of the human host. The impact of Chagas
disease is significant; approximately 10 million persons
are affected, primarily in Latin America [23], and life
expectancy is reduced by 9 years in those patients who
develop chronic symptoms [24]. Despite decades of
research, only two drugs, nifurtimox and benznidazole,
have proven useful in treating this disease [25]. However,
the efficacy of these drugs for chronic Chagas disease is far
below 100 percent [26,27] and both are associated with
significant adverse effects, such as peripheral neuropathy
and central nervous system toxicity [25].

To permit a systems-level understanding of this parasite
and to provide a basis for detailed modeling of host-para-
site interactions, we present a validated, constraint-based
model of T. cruzi strain CL Brener core metabolism. The
model, hereafter referred to as iSR215 (see Methods for
model naming convention), includes four compartments,

51 transport reactions, and 93 metabolic reactions cover-
ing carbohydrate, amino acid, and energy metabolism. In
addition, we make use of several replicate high-through-
put proteomic data sets to specifically examine metabo-
lism of the morphological form of the parasite in the
insect gut, or epimastigote stage of T. cruzi (see Methods
for details on T. cruzi life-cycle). In doing so, we demon-
strate the utility of constraint-based models for integrating
various sources of information (e.g., genomics, primary
biochemical literature, proteomics) to generate testable
hypotheses. Previous work has used sequence analysis of
the T. cruzi genome to produce improved annotations and
thus extend our understanding of T. cruzi metabolism
[28,29]. However the model reported here is the first con-
straint-based model of T. cruzi of which we are aware. It
represents an approach to the systematic study of T. cruzi
metabolism under a wide range of conditions and pertur-
bations for the identification of novel chemotherapeutic
targets.

Results
Properties of iSR215
The iSR215 network reconstruction accounts for the func-
tion of 215 genes and includes 162 reactions, of which
144 are metabolic reactions and 18 are exchange reactions
(Table 1, see also additional file 1: DetailedResults.xls, for
model in spreadsheet form and additional file 2: tcr.xml,
for model in SBML format). Of the exchange reactions, 17
are input-output exchanges that allow metabolites to
enter and/or leave the model system, and one is the bio-
mass demand reaction used to drain metabolites assumed
critical to the growth of T. cruzi (e.g., glucose-6-phos-
phate, pyruvate and oxaloacetate). Of the reactions in
iSR215, 76 are supported by both genomic and direct bio-
chemical evidence (e.g., enzyme activity measured) in T.
cruzi, and 100 reactions are supported by genomic or lit-
erature-derived evidence in T. cruzi or related organisms.
Most reactions not associated with literature-based evi-
dence are intracellular transports, reflecting the fact that
little is known about such processes in T. cruzi.

Table 1: Properties of iSR215

Property Count

Genes 215
Reactions 162

Gene associated 92
Non-gene associated (intracellular) 1
Non-gene associated (transport) 51
Exchange 18
Input-output 17
Demand (biomass) 1

Metabolites 158
Compartments 4
Literature References 182
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Figure 1 provides an overview of the reactions of iSR215
as grouped by pathway and compartment. As illustrated
in panel A, several central pathways of metabolism are
fully or partially included: glycolysis, tricarboxylic acid
(TCA) cycle, the pentose phosphate pathway, oxidative
phosphorylation, and metabolism of various amino
acids. Most reactions are part of carbohydrate metabolism
(including glycolysis, the pentose phosphate pathway,
and pyruvate metabolism). Further, as depicted in panel
B, reactions are distributed across three intracellular com-
partments – cytosol, glycosome, and mitochondrion –
and the extracellular compartment. The membrane-span-

ning group consists of reactions that involve the transfer
of metabolites between subcellular compartments as well
as between the cytosol and extracellular space. Because
iSR215 contains four compartments, there are many
membrane-spanning reactions included (a total of 58).
The glycosome of T. cruzi is thought to be relatively
impermeable to metabolites, especially to adenine nucle-
otides and NAD(H) [30]; thus, this compartment must be
both energy and reduction-oxidation balanced. Accord-
ingly, iSR215 contains no reactions transporting ATP/
ADP/ATP or NAD(H) between the glycosome and cytosol,
i.e., in any feasible solution, there is no net change in ATP/
ADP ratio or in NAD+/NADH ratio within the glycosome.
Furthermore, the model also accounts for substrate level
and proton motive force coupled ATP synthesis, as well as
the synthesis of various intermediate metabolites critical
to the formation of biomass (e.g., acetyl-CoA).

Defining epimastigote stage-specific metabolism
We used cultured T. cruzi epimastigotes to generate several
large replicate proteomic data sets (see Methods). A total
of 1047 distinct proteins were identified across 8 epimas-
tigote samples. Many of the identified proteins were not
associated with any well-defined function (660 proteins
annotated as hypothetical). Of the identified proteins that
were linked to functions, the most commonly occurring
functional categories were metabolic processes (133) and
translation (110). Some of the more commonly occurring
functional subcategories of metabolic processes were:
nucleobase, nucleoside, nucleotide and nucleic acid met-
abolic processes (68); amino acid and derivative meta-
bolic processes (61); and carbohydrate metabolism (44).
The complete proteomics results can be found in addi-
tional file 1: DetailedResults.xls.

The proteomics data were used to constrain iSR215 (the
"full model," with all reactions available) to an epimastig-
ote stage-specific model (the "epimastigote model," with
some reaction fluxes set to zero). If there was no evidence
for the expression of a given protein in the epimastigote
stage, the upper and lower bounds of the corresponding
reaction (catalyzed by the protein) were constrained to
zero, thereby restricting the flux of the reaction to zero. In
the case of a reaction catalyzed by an enzyme complex, we
allowed the reaction to occur (i.e., did not constrain the
flux to zero) if any protein component of the complex was
detected by the proteomics experiment.

A graphical depiction of a section of the compartmental-
ized reconstruction is shown in figure 2 (the entire recon-
struction is depicted in additional file 3:
CruziCoreMetabolicNetwork.pdf). All of the reactions
illustrated in the map are present in the "full" model.
However, the fluxes of the reactions colored in black are
constrained to zero in the "epimastigote" case, effectively

Breakdown of T. cruzi core metabolic networkFigure 1
Breakdown of T. cruzi core metabolic network. Depic-
tion of the content of iSR215 with reactions categorized by 
pathway (panel 1A) or by compartment (panel 1B). The 
model includes several of the core pathways of metabolism. 
Transport, or membrane spanning reactions are a sizeable 
fraction of all reactions since this is a multicompartment 
model of T. cruzi metabolism, including glycosomal and mito-
chondrial compartments.
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T. cruzi core metabolic network model, sectionFigure 2
T. cruzi core metabolic network model, section. A map illustrating a section of the core metabolic network model of T. 
cruzi. The model accounts for 144 intracellular and transport reactions, 17 input/output exchange reactions and 1 biomass 
demand reaction across four compartments: cytosol, mitochondria, glycosome and extracellular space. Reactions colored in 
green are present in both the full and epimastigote specific reconstructions. Those reactions present only in the full network 
and not present in the epimastigote (i.e. flux is constrained to zero) are depicted in black. Exchange reactions are shown in red 
(metabolites allowed to only enter the system), blue (metabolites allowed to only leave the system) and yellow (metabolites 
allowed to enter and/or leave the system). The map also indicates the lower and upper flux constraints for each reaction 
shown. For a depiction of the entire model, please see additional file 3: CruziCoreMetabolicNetwork.pdf.
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removing them from the network. Exchange reactions that
allow metabolites to only enter the system from the sur-
rounding environment are colored in red. Further,
exchange reactions that allow metabolites to only leave
the system are in blue, and those reactions that allow
metabolites to either enter or leave the system are colored
in yellow. Intracellular reactions that are colored green are
associated with default constraints at the start of the sim-
ulation experiments.

Graphical representations of flux distributions calculated
using the genome-based full model and the epimastigote,
stage-specific model are depicted as additional files (addi-
tional file 4: FullModelFluxes.pdf and additional file 5:
EpimastigoteFluxes.pdf). Comparison of these results
reveals redistribution of fluxes involving multiple areas of
the metabolic map. One example is substrate level phos-
phorylation in the mitochondrion. In the full model, ATP
is generated by succinate-CoA ligase (SUCOASm) as part
of a cycle involving acetate-succinate CoA-transferase
(ASCTmr); in the epimastigote model, this same reaction
generates ATP as part of the TCA cycle. This is due to the
fact that ASCTmr flux is constrained to zero in the epimas-
tigote model. Mitochondrial fumarate reductase (FRDm)
activity increases from zero flux in the full model to rela-
tively high flux in the epimastigote model. This is likely
due to the inactivity of complex I in the epimastigote, with
reoxidation of NADH largely taken over by FRDm. Cor-
rectly accounting for stage-specific features of metabolism
is an important step to more accurately modeling metab-
olism.

Reaction lethality predictions
In silico predictions of lethality can be made at the level of
genes or reactions using constraint based models. Many of
the reactions in iSR215 are associated with isozymes (see
additional file 1: DetailedResults.xls). In these cases, in sil-
ico deletion of one gene will not result in a lethal predic-
tion, even if the reaction itself is critical for the growth of
the parasite. Thus, we focus here on the set of reactions pre-
dicted to be lethal, as this provides a better view of critical
points in the network, i.e., those reactions which if
blocked by a chemotherapeutic would lead to the inabil-
ity of the parasite to replicate (a complete listing of reac-
tions predicted to be essential can be found in the
additional file 1: DetailedResults.xls).

All reactions in iSR215 were classified as lethal or nonle-
thal by systematically constraining the upper and lower
flux bounds of each reaction to be zero flux, and attempt-
ing FBA under defined in silico medium conditions (see
Methods). As shown in table 2, total of 26 reactions were
predicted to be essential in the full model, and 40 were
predicted to be essential in the epimastigote-specific
model. Of the 14 reactions with different essentialities in
the full and epimastigote models, three were the result of
the zero flux constraint on aldose-1-epimerase in the epi-
mastigote model. Without this capability, reactions that
circumvent the inability to interconvert alpha- and beta-
glucose anomers became critical. Four reactions had dif-
ferent essentialities that resulted from the zero flux con-
straint on glycosomal glycerol-3-phosphate
dehydrogenase and glycerol kinase in the epimastigote
model. Without these activities, reactions allowing the
regeneration of NAD via glycosomal fumarate reductase
became critical. Six reactions had different essentialities
between the two networks because of the zero flux con-
straint on threonine dehydrogenase in the epimastigote
model. In the absence of this activity, reactions permitting
acetyl-CoA production via pyruvate became critical.

We also simulated all possible double reaction deletions,
i.e., simultaneous elimination of two reactions. In total,
there were 10440 double deletions. In the full model,
1968 of these cases proved to be lethal. Most of these
(1872) were "trivial" in that the double deletion involved
at least one reaction that was lethal in a single deletion.
There were 96 non-trivial double deletions, i.e., involving
reactions that, while not lethal individually, were lethal
when deleted together. In the epimastigote model, there
were 3063 lethal double deletions, including 2880 trivial
and 183 non-trivial cases. For a complete listing of all sin-
gle and non-trivial double reaction deletions, see addi-
tional file 1: DetailedResults.xls. Each of these predictions
represents a potentially testable hypothesis. Reactions
that are experimentally shown to be lethal are of special
interest, as these may correspond to novel chemothera-
peutic targets.

Validating network analysis with experimental data
As a simple check on the validity of iSR215 network
reconstruction, we used the model to determine byprod-
ucts of metabolism under aerobic and anaerobic in silico

Table 2: Predicted reaction lethality

Deletion Level Lethal Trival Lethal NonTrivial Lethal NonTrivial Total Total Cases

Full Model Single 26 0 26 145 145
Double 1968 1872 96 8568 10440

Epimastigote Single 40 0 40 145 145
Double 3063 2880 183 7560 10440
Page 5 of 15
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culture conditions (see table 3). While there is some
inconsistency in the literature, most experiments indicate
that byproducts of T. cruzi metabolism include succinate
[31-34], L-alanine [31,33], and CO2 [30]. Other byprod-
ucts that have been experimentally detected include ace-
tate [31-33] and glycine [35]. These general observations
are reproduced by iSR215. In the epimastigote model,
CO2, succinate, and L-alanine are predicted byproducts of
metabolism using defined in silico conditions. We also
observed secretion of acetate and glycine using the full
model. It is possible that different sets of byproducts
could be secreted under alternative optimal solutions. To
address this possibility, we used flux variability analysis
[36]. In FVA, one seeks to find a range of flux values on
specific reactions that are compatible with maximal
growth. We found that the reactions draining succinate
and L-alanine must have non-zero flux to achieve optimal
growth in the epimastigote. In the full model, the flux on
the reaction draining succinate must be non-zero. For the
fluxes draining glycine and acetate, at least one of the two
must have a non-zero value to achieve optimal growth.

We next sought to validate iSR215 using available data on
gene or gene product essentiality in T. cruzi or related spe-
cies (see table 4) [37-51]. The experimental data were col-
lected using a variety of techniques (e.g., RNAi based
methods, pharmacological inhibition of the enzymatic
action of a certain gene product). In all, 58 test cases were
derived based on evidence from the literature, including
both the full and epimastigote models. In 46 of these
cases, our simulations correctly reproduced the experi-
mental results, yielding 79.3% accuracy. All reactions that
were nonlethal in published literature were correctly pre-
dicted as such in the case of the full model. There were
three instances of reactions incorrectly predicted as nones-
sential in the full model (when compared to published
data) that were corrected by the imposition of the epimas-
tigote constraints: 1) glycosomal triose phosphate isomer-
ase, 2) coinhibition of fumarate reductase and succinate
dehydrogenase, and 3) coinhibition of pyruvate dehydro-
genase and alpha-keto glutarate dehydrogenase. Three

reactions were wrongly predicted to be essential in the
case of the epimastigote model: 1) glycosomal fumarate
reductase, 2) pyruvate dehydrogenase, and 3) pyruvate
dehydrogenase and succinate dehydrogenase combined
inhibition. Finally, there were three cases where our pre-
dictions were incorrect in both the full and epimastigote
models: 1) malic enzyme, 2) pyruvate kinase, and 3) suc-
cinate – CoA ligase.

Discussion
Our first attempts at integrating the metabolic network
reconstruction with epimastigote stage proteomic data
provide a specific example of how constraint-based mod-
els can serve to help refine/interpret existing data. Ini-
tially, when the additional constraints arising from the
proteomic data were imposed on the genome-based
reconstruction, no solution was possible by FBA. By map-
ping these constraints on to iSR215, we determined that
they resulted in the loss of three critical enzyme activities:
fumarate hydratase, ribulose-5-phosphate 3-epimerase,
and glucose-6-phosphate 1-dehydrogenase. The latter two
reactions are part of the pentose phosphate pathway, lead-
ing directly to the production of key components for the
biomass demand reaction. Subsequently, we found bio-
chemical evidence for the activity of these enzymes in epi-
mastigotes [52]. Thus, we removed the imposed
constraints on ribulose-5-phosphate 3-epimerase and glu-
cose-6-phosphate 1-dehydrogenase. Fumarate hydratase
was the only enzyme of the TCA cycle not detected in the
proteomics experiments. Since the TCA cycle is known to
be active in T. cruzi epimastigotes [53], we decided it was
reasonable to remove the imposed zero flux constraint
from this reaction, as well. By making these three adjust-
ments, we obtained a positive growth rate by FBA. Thus,
the constraint-based model helped identify three cases of
probable false negative findings from the proteomics
experiments. By providing a framework for the systematic
consideration of the functional relationships between
components, the model allowed us to make more
informed judgments on the validity of the proteomic
data. An algorithmic method for integrating gene expres-
sion data into analysis of constraint-based models was
recently published [54]. Approaches such as this will
likely be invaluable for integrating proteomic and tran-
scriptomic data with future iterations of iSR215, especially
as the scope of the model increases.

Our attempts to validate the model by comparing pre-
dicted and experimentally observed reaction lethality
should all be interpreted in light of three caveats. First, as
noted in Table 4, most of these comparisons are made,
not to T. cruzi, but to related trypanosomatid species. All
species used for our comparisons are metabolically quite
similar [30], but there are differences [32]. Second, there
are certain limitations that arise from the fact that iSR215

Table 3: Predicted metabolic by products

Excreted Full Full anaerobic Epimastigote Epi anaerobic

acetate X
L-alanine X
co2 X X
glycine X
glycerol
h+ X X X
h2o X X X X
nh4
o2
succinate X X X X
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Table 4: Comparison of predicted and experimental reaction lethality.

Organism and stage Experimental Method 
[ref]

Experimental Target Model reaction(s) 
constrained

Finding from literature F

bloodstream T. brucei*** drug-2-
hydroxybenzaldehyde-5-
phosphate [37]

fructose-1,6-
bisphosphate aldolase

FBAg lethal

T. cruzi amastigotes drug- 6-
phosphogluconate 
analogues [38]

phosphogluconate 
dehydrogenase

PGDH lethal

T. cruzi amastigotes drug- adenosine analogs 
[39]

glyceraldehyde-3-
phosphate 
dehydrogenase

GAPDg lethal

T. cruzi epimastigotes drug- bisphosphonates 
[40]

hexokinase HEXg, GLUKg lethal

T. cruzi epimastigotes monoclonal antibody 
[41]

triosephosphate 
isomerase

TPIg lethal

T. cruzi epimastigotes drug- peroxynitrite [42] succinate dehydrogenase 
and fumarate reductase*

SUCD1rm**, FRDm, 
FRDgr

lethal

bloodstream T. brucei RNAi [43] phosphofructokinase PFKg lethal

bloodstream T. brucei RNAi [43] phosphoglycerate mutase PGM lethal

bloodstream T. brucei RNAi [43] enolase ENO lethal

procyclic T. brucei RNAi [44] malic enzyme ME1x, ME1m lethal

procyclic T. brucei RNAi [45] e1 alpha subunit of 
pyruvate dehydrogenase, 
2-oxoglutarate 
dehydrogenase

PDHam1m, AKGDam1 lethal

bloodstream T. brucei RNAi [43] pyruvate kinase PYK lethal

procyclic T. brucei RNAi [45] succinyl-CoA synthetase 
(succinate CoA ligase)

SUCOASm lethal

L. donovanni 
promastigotes

nontargeted gene 
disruption [46]

adenosine kinase ADK1g nonlethal

bloodstream T. brucei RNAi [47] alanine aminotransferase ALATA_L, ALATA_Lm nonlethal

bloodstream T. brucei RNAi [47] cytochrome C oxidase 
subunit IV

CYOO6m nonlethal
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bloodstream T. brucei RNAi [47] glycerol-3-phosphate 
dehydrogenase (FAD)

G3PDcm nonlethal

procyclic T. brucei RNAi [45] e1 subunit of 2-
oxoglutarate 
dehydrogenase

AKGDe1 nonlethal

procyclic T. brucei RNAi [44] F1 complex of ATP 
synthase

ATPSm nonlethal

procyclic T. brucei RNAi [48] glycosomal NADH-
dependent fumarate 
reductase

FRDgr nonlethal

procyclic T. brucei RNAi [44] mitochondrial fumarate 
reductase

FRDm nonlethal

procyclic T. brucei RNAi [45] e1 alpha subunit of 
pyruvate dehydrogenase

PDHam1m nonlethal

procyclic T. brucei RNAi [45] e1 alpha subunit of 
pyruvate dehydrogenase, 
succinate dehydrogenase

PDHam1m, SUCD1rm nonlethal

procyclic T. brucei RNAi [44] phosphoenolpyruvate 
carboxykinase

PPCKg nonlethal

procyclic T. brucei RNAi [44] proline oxidase PRO1xm nonlethal

procyclic T. brucei RNAi [45] succinate dehydrogenase SUCD1rm nonlethal

bloodstream T. brucei targeted gene disruption 
[49]

aconitase ACONTm nonlethal

procyclic T. brucei targeted gene disruption 
[50]

acetyl:succinate CoA-
transferase

ASCTmr nonlethal

procyclic T. brucei targeted gene disruption 
[51]

pyruvate phosphate 
dikinase

PPDKg nonlethal

*Hypothesized to be the main targets of peroxynitrite in T. cruzi
**Succinate dehydrogenase is represented in the model by two reactions, SUCD1rm, and SUCD3-u6m; inhibition of succinate dehydrogenase 
***One variation of compound was lethal for T. cruzi, as well
See references [37-51] for details.

Table 4: Comparison of predicted and experimental reaction lethality. (Continued)
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is not a genome-scale model; these are discussed in more
detail below. Third, the experimental data used were col-
lected using complex, undefined culture media that we
could not reproduce in silico. The overall accuracy of our
predictions (79.3%) is comparable to that reported for
other organisms, e.g., 83% for Saccharomyces cerevesiae [4],
70% for Leishmania major [55], 91% for Escherischia coli
[56].

We found three instances of reactions incorrectly pre-
dicted as nonessential in the full model that were cor-
rected by the imposition of the epimastigote constraints
when compared with published literature (see Table 4): 1)
glycosomal triose phosphate isomerase, 2) coinhibition
of fumarate reductase and succinate dehydrogenase, and
3) coinhibition of pyruvate dehydrogenase and alpha-
keto glutarate dehydrogenase. This observation suggests
that the additional epimastigote constraints correctly
eliminate certain steady state metabolisms that would
otherwise be available to the parasite according to the full
model. It is noteworthy that cases 1) and 2) are the only
ones in which available experimental data were collected
specifically in T. cruzi epimastigotes, as opposed to other
morphological stages or related trypanosomatid species.

Three activities were wrongly predicted to be essential in
the case of the epimastigote model when compared to
published data (see Table 4): 1) glycosomal fumarate
reductase, 2) pyruvate dehydrogenase, and 3) pyruvate
dehydrogenase and succinate dehydrogenase combined
inhibition. Of course, if pyruvate dehydrogenase is pre-
dicted to be essential, it is to be expected that inhibition
of additional reactions (e.g., succinate dehydrogenase)
along with pyruvate dehydrogenase would also be pre-
dicted as essential. We left these as independent predic-
tions since we did not know a priori whether neither, one,
or both would be predicted as essential. Thus 3) is incor-
rect because 2) is incorrect. The reason that 2) is incorrect
is that without pyruvate dehyrogenase, there is no way to
produce acetyl-CoA in the core metabolic model (and no
other route for consuming CoA produced in the mito-
chondrion). Adding an additional source of acetyl-CoA
and sink for mitochondrial CoA results in a positive-
growth solution by FBA. Threonine dehydrogenase, which
might otherwise produce acetyl-CoA is inactivated in the
epimastigote model. Glycosomal fumarate reductase is
also incorrectly predicted to be essential in the epimastig-
ote case. The reason for this incorrect prediction is that
without glycosomal fumarate reductase, there is no exist-
ing route to stoichiometrically convert NADH back to
NAD inside the glycosome. Adding such a process back to
the model results in a positive-growth solution by FBA.
Glycerol-3-phosphate dehydrogenase and glycerol kinase
could fill this role, but they are inactivated in the epimas-
tigote model. Thus, these incorrect predictions may be

either due to the incomplete nature of the model (e.g.,
another route for acetyl-CoA production that is not repre-
sented in iSR215) or perhaps because of possible changes
in protein expression that are not explicitly represented in
the model (e.g., glycerol-3-phosphate dehydrogenase and
glycerol kinase expression may be conditionally induced
in epimastigotes).

Finally, there were three examples in which our predic-
tions were incorrect in both the full and epimastigote
models: 1) malic enzyme, 2) pyruvate kinase, and 3) suc-
cinate – CoA ligase. Here again, these discrepancies are
likely due to the fact that the core model remains incom-
plete. Specifically, we have not attempted to fully account
for proton gradients in T. cruzi. Therefore, synthesis via
oxidative phosphorylation is coupled not only to the
pumping of hydrogen ions by the respiratory chain but
also to the production of hydrogen ions by cytoplasmic
processes. Thus, the contribution of oxidative phosphor-
ylation to total ATP synthesis suggested by iSR215 is likely
to be an overestimate of the true contribution. In fact, the
majority of ATP synthesis in these parasites is thought to
be via substrate level phosphorylation [30]. This explana-
tion seems to account for the incorrect prediction in the
case of succinate – CoA ligase; when mitochondrial ATP
synthase is constrained to zero flux, the succinate – CoA
ligase reaction is essential. The reasons for the incorrect
prediction for malic enzyme and pyruvate kinase are less
clear. Again, it may be a reflection of the incomplete
nature of the core model, i.e., there are processes not
included in iSR215, which are dependent on the produc-
tion or consumption of metabolites that these reactions
entail. Overall, the accuracy of the model at this stage is
encouraging.

Conclusion
We have presented the first constraint-based metabolic
model and analysis of T. cruzi, the protozoan parasite
responsible for Chagas disease. This model accounts for
central metabolic processes such as ATP generation and
production of key intermediate metabolites. Moreover,
the model includes three major intracellular compart-
ments: the glycosome (a characteristic feature of T. cruzi
and other trypanosomes), the mitochondrion, and the
cytosol. Thus, many key features of trypanosomatid
metabolism are represented. Most reactions in the model
are supported by both direct biochemical evidence from
the primary literature and by the genome annotation of T.
cruzi. Many aspects of the cellular physiology and data
concerning gene/reaction essentiality are accurately cap-
tured by iSR215. Future work on iSR215 will initially be
focused on expanding the scope of the model to include
all known T. cruzi metabolic reactions using procedures
similar to those described here. Previous experience sug-
gests that as the model is expanded and refined through
Page 9 of 15
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successive iterations, the accuracy of the essentiality pre-
dictions will improve [3,57-59]. We have used a wide vari-
ety of evidence in constructing this model, namely
genomic, proteomic, and information drawn from pri-
mary literature. This gives us a fairly high level of confi-
dence in what is currently included in the model.

Our incorporation of several replicate high-throughput
proteomic data sets illustrates the integrative capabilities
of constraint-based models. This data was used to further
constrain the space of possible solutions and enabled us
to examine stage-specific aspects of metabolism. In the
available instances where experimental confirmation was
available for T. cruzi epimastigotes specifically, applying
the proteomic constraints produced the correct predic-
tion; without these additional constraints, the model pre-
diction was incorrect. Constraints reflecting data on gene
expression have previously been shown to improve the
accuracy of constraint-based model predictions [60,61].
Our experience also indicates that constraint-based mod-
els may aid in the interpretation of such high-throughput
datasets, potentially helping to identify false negative
results. Proteomics data are imperfect, and false negative
results tend to be more of a concern than false positives.
We attempted to minimize false negatives experimentally
by using sub-cellular proteomics techniques (see Meth-
ods). This approach proved quite useful, as the number of
identified proteins increased by more than 50% over tra-
ditional shotgun-based methods (data not shown). Even
so, there were three examples of probable false-negative
findings that were revealed by considering the proteomics
data in light of iSR215 (see discussion of fumarate
hydratase, ribulose-5-phosphate 3-epimerase, and glu-
cose-6-phosphate 1-dehydrogenase, above). Thus, con-
straint-based models can provide a systematic framework
for the interpretation and evaluation of findings from pro-
teomics experiments.

Our comprehensive gene and reaction deletion testing
illustrates the way in which constraint based models can
become tools for drug discovery. Each of these predictions
represents a testable hypothesis. Assuming that at least
some of the reactions predicted to be essential are experi-
mentally verified, these suggest points of vulnerability in
the parasite's metabolism, which could potentially be
exploited to develop new, urgently needed chemothera-
peutics. Additionally, model-based predictions of the
effect of combined environmental manipulations and
specific reaction inhibitors can be generated using this
model.

Methods
Metabolic Reconstruction
The theoretical basis and procedures underlying construc-
tion and analysis of constraint-based models have been

extensively reviewed [6,8]. The process of network recon-
struction involves data collection, metabolic reaction list
generation, and determination of gene-protein-reaction
relations. The sources of information used for our net-
work reconstruction were: publicly available annotations
of the T. cruzi genome (UniProt [62], KEGG [63], GeneDB
[64]), our in-house annotation of the T. cruzi genome (JM
Alves, unpublished), information from biochemistry text-
books and standard databases (e.g., KEGG), and primary
biochemical literature on T. cruzi or closely related species
(e.g., Trypanosoma brucei, Leishmania major). To identify
relevant primary biochemical literature, we searched
PUBMED for review articles on Trypanosomatid metabo-
lism, with special focus on the pathways of central metab-
olism (e.g., search term "Trypanosoma cruzi glycolysis").
For individual reactions under consideration, we searched
using a common variant of the reaction name, plus T.
cruzi or the name of a related species (e.g., search term
"Trypanosoma cruzi hexokinase"). We examined hundreds
of articles in detail and screened the abstracts of many
more. While we cannot claim to have exhausted the liter-
ature on T. cruzi metabolism, we searched to the point of
reaching a high degree of confidence for most reactions in
the model (i.e., that these reactions do, in fact, occur in T.
cruzi). In some cases, references sought in connection with
one reaction were found to report activity measurements
corresponding to other model reactions. The recently pub-
lished genome-scale constraint based model of L. major
was also used as a guide in model construction and anal-
ysis [55]. These information sources were used to compile
the metabolic reaction list, including reaction stoichiom-
etry, reversibility, sub-cellular localization, and gene
locus/loci for each reaction comprising core metabolism.
The relations between genes, gene products and metabolic
reactions were encapsulated in Boolean gene-product-
reaction (GPR) statements (e.g., gene A codes for protein
X or protein Y, protein X and protein P together catalyze
reaction R, etc.).

We defined core metabolism as those metabolic reactions
directly or closely related to energy generation (ATP) or
involved in production of critical metabolites (see Bio-
mass Equation, below). Transports between intracellular
compartments were often represented as simple, bidirec-
tional diffusion reactions, or occasionally as co-transports
with hydrogen ions, as there currently are no data to sug-
gest more specific mechanisms. This approach has proven
useful as a first approximation for representing eukaryotic
intracellular transport processes [4].

The glycosome is thought to be relatively impermeable to
metabolites, especially to adenine nucleotides and
NAD(H) [30]. Therefore in our reconstruction, we
required that the glycosome be both energy balanced
(ATP production balances ATP consumption) and reduc-
Page 10 of 15
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tion-oxidation balanced (NADH production balances
NADH consumption). We imposed these constraints sim-
ply by excluding transports between the cytosol and glyco-
some for these and related (e.g., ADP, NAD+)
metabolites.

Once the network was reconstructed, the list of metabolic
reactions was transformed into a stoichiometric matrix
(S), i.e., the mathematical representation of the recon-
structed network. The dimensions of the S matrix are m ×
n, where m is the number of metabolites and n is the
number of reactions. Each element Sij represents the stoi-
chiometric coefficient of metabolite i in reaction j. If the
metabolite in a particular reaction is a reactant, the coeffi-
cient is negative (the metabolite is consumed by the reac-
tion); if it is a product, the coefficient is positive (the
metabolite is produced by the reaction). The S matrix was
then used as the basis of further analysis, i.e., Flux Balance
Analysis (FBA, see below). Model construction and analy-
sis were carried out using SimPheny (Genomatica, Inc.).

Naming Convention
We follow the previously established convention of nam-
ing constraint-based models [3]. Model names begin with
'i' to denote in silico, followed by the first author's first and
last initials ('SR'), followed by the number of genes that
are part of the model ('215').

Flux Balance Analysis
Once constructed, the constraint-based model was ana-
lyzed using FBA. In essence, FBA uses linear programming
(LP) based optimization to identify a particular flux distri-
bution (a single point in the multidimensional space of
possible metabolic behaviors) that optimizes a given met-
abolic objective (see Biomass Equation, below). The LP
optimization problem is formulated as:

Z is the objective function; for this study, Z was defined as
the biomass equation (see below). The second two state-
ments are the flux constraints. S is the stoichiometric
matrix defined above. Each reaction flux is subject to
lower and upper bounds, as indicated (in cases where
these are not known, ai and bi are set to some arbitrary
numbers that exceed any feasible internal flux). The solu-
tion to this problem is an optimal flux distribution, v, a
vector that contains flux values for each reaction in the
network. The solution is optimal in the sense that it max-
imizes the flux through the objective Z.

Mathematically, S is a transformation of the reaction flux
vector, v, to a vector of time derivatives for each metabo-
lite concentration:

Since the time constants for metabolic transients are fast
(< tens of seconds), but the time constants for cell growth
are long (hours to days), the metabolites can be consid-
ered as existing in a quasi-steady state [6]. This leads to the
second equation of the LP optimization problem above.
Because of the emphasis on steady states, assumptions
regarding reaction kinetics are not needed. Note also that
in silico growth conditions can be defined via ai and bi. For
example, if an analysis is to be conducted with glucose,
but not glycerol, as an available metabolite, the flux for a
process corresponding to glucose input would be assigned
some nonzero positive maximal value, while the flux for
a process corresponding to glycerol input would be con-
strained to be zero (ai = bi = 0). In all of our FBA simula-
tions, we allowed the following extracellular metabolites
to enter the system: glucose, glutamate, proline, aspartate,
threonine, phosphate, CO2, water, and NH4; oxygen was
allowed to enter in aerobic, but not anaerobic, simula-
tions. The following extracellular metabolites were
allowed to leave the system: succinate, alanine, glycine,
acetate, glycerol, oxygen, water, CO2, NH4, and hydrogen.

We also incorporated information from the literature on
maximal rate of uptake of glucose and amino acids where
possible. For example, Vmax for glucose uptake in T. cruzi
has been reported as ~46 nmol/min per mg of protein
[65]. Given that ~47% of T. cruzi dry weight is protein
[66], this corresponds to ~1.31 mmol/hr per gm dry
weight. Since transport of both the alpha and beta ano-
mers of glucose is explicitly represented in the model, we
simply set the maximum flux (bi) on each reaction to
~0.65 mmol/hr per gm dry weight. In a similar fashion the
maximum flux on glutamate uptake was set to ~0.027
[67], on proton symport-based proline transport to
~0.0036 [68], on ATP-dependant proline transport to
~0.020 [68], for aspartate uptake to ~0.0020 [69], and on
threonine uptake to ~0.01 (approximation based on
experimental values for the other transporters).

Biomass Equation
In FBA, optimization is used to find a particular flux dis-
tribution that maximizes a given metabolic objective. Typ-
ical metabolic objectives chosen for optimization include
maximization of ATP production, byproduct secretion, or
biomass production. In our work, we chose to optimize
for biomass production [70]. Biomass production is rep-
resented in our model by an additional metabolic reac-
tion. Its reactants include such critical metabolites as ATP,
acetyl-CoA, and NADPH; its products include ADP, inor-

Maximize Z,

Subject to 

a v b  for all reactions i i i

S v 0· ,

.

=
≤ ≤ i

S•v x= d dt/ .
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ganic phosphate, and other metabolites that represent
byproducts of anabolic metabolism. This particular equa-
tion and its stoichiometric coefficients were derived from
the biomass requirements for Bacillus subtilis [71]. These
requirements were established for B. subtilis using detailed
modeling and isotopic tracer data. In constructing our
equation, we made several minor changes to the biomass
requirements previously reported, simply to account for
the fact that iSR215 does not include certain metabolites
and to enable cycling of cofactors. Although the exact
requirements of B. subtilis for critical metabolites are no
doubt different from those of T. cruzi, previous work has
demonstrated that FBA results are relatively insensitive to
changes in biomass component stoichiometric coeffi-
cients [72].

Reaction Deletions
To simulate the effect of deleting reactions, we con-
strained each of the reactions in turn to have zero flux (ai
= bi = 0) and reran FBA in each case. If no solution was
found (biomass reaction flux = 0), the reaction was
deemed essential; if a solution was found, the reaction
was deemed nonessential.

Validation
To validate our model, we attempted to replicate findings
from the biochemical literature. We used findings from
experiments involving targeted disruption of genes or
gene products (gene knockouts, RNAi, or drugs to block
specific enzymes) in T. cruzi or related organisms. Similar
manipulations were made using iSR215, and the in silico
and experimental results were compared.

Epimastigote Specific Metabolism
The life cycle of T. cruzi is complex [15]. In the mamma-
lian host, T. cruzi replicates intracellularly, as a nearly
spherical amastigote, in many cell types. Rupture of the
cell releases non-dividing trypomastigotes, which circu-
late and infect cells in remote organs and tissues. When
ingested by blood sucking insect vectors, trypomastigotes
transform and replicate as epimastigotes in the insect
digestive tract. Epimastigotes are rapidly lysed by comple-
ment and are not infective for mammalian hosts. Condi-
tions in the colon and rectum of the reduviid bug induce
metacyclogenesis, or differentiation of non-infectious epi-
mastigotes into infectious metacyclic trypomastigotes.
The cycle is completed when the bug deposits contami-
nated excreta near the bite wound and the metacyclic try-
pomastigotes are mechanically introduced into the host.
The metacyclic trypomastigotes are complement resistant
and circulate in the host briefly prior to infecting a host
cell.

Most biochemical literature relating to T. cruzi involves
experimental results derived from the insect gut epimas-

tigote stage. We performed both 2D gel analysis and 2D
nano LC MS/MS to produce proteomic data for T. cruzi
epimastigotes. We used these data to further constrain
iSR215 to be epimastigote-specific. Epimastigotes were
grown exponentially in LIT medium, supplemented with
10% fetal calf serum, and different subcellular fractions
were collected using subcellular proteome kit (ProteoEx-
tract, Subcellular Proteome Extraction Kit, Calbiochem).
Each fraction was submitted to 2D nano LC MS/MS, as
previously described [73]. Proteins were identified by
searching the MS/MS spectra against our T. cruzi database
using Bioworks v3.2. Peptide and protein hits were scored
and ranked using the new probability-based scoring algo-
rithm incorporated in Bioworks v3.2. Peptides identified
as possessing fully tryptic termini with acceptable cross-
correlation scores (greater than 1.9 for singly charged pep-
tides, 2.3 for doubly charged peptides, and 3.75 for triply
charged peptides), with delta Cn greater than 0.25, and
with a probability score of less than 0.0001 were initially
accepted. For increased stringency we used reverse data-
base search to adjust the above scores to obtain less than
1% false discovery rate. Proteins that passed this final cri-
terion were accepted for use in the model.

The model resulting from the procedures described in
"Metabolic Reconstruction" above was designated as the
"full model," since all reactions included could operate at
non-zero flux values. We used the proteomics results to
apply further constraints to the full model, resulting in a
stage-specific "epimastigote model." Specifically, if there
was no evidence at the protein level supporting the exist-
ence of a specific metabolic reaction in epimastigotes,
then that metabolic reaction was constrained to a flux
value of zero (ai = bi = 0, see above). For example, the pro-
tein responsible for glucokinase activity (reaction ID
"GLUKg") was detected in the epimastigote by our pro-
teomics experiments; therefore, no special constraint was
applied to this reaction. On the other hand, the proteins
responsible for aldose 1-epimerase activity (A1Eg) were
not detected by the proteomics experiments; therefore,
this reaction was constrained to have zero flux, since the
data suggested no enzymes to catalyze the reaction were
expressed. For reactions requiring multiple proteins, we
allowed the reaction to occur if there was evidence for the
expression of any of the corresponding proteins in the
proteomics data.
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