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Habitual coffee consumption and 
risk of type 2 diabetes, ischemic 
heart disease, depression and 
Alzheimer’s disease: a Mendelian 
randomization study
Man Ki Kwok1, Gabriel M. Leung1 & C. Mary Schooling1,2

Observationally, coffee is inversely associated with type 2 diabetes mellitus (T2DM), depression and 
Alzheimer’s disease, but not ischemic heart disease (IHD). Coffee features as possibly protective in 
the 2015 Dietary Guidelines for Americans. Short-term trials suggest coffee has neutral effect on most 
glycemic traits, but raises lipids and adiponectin. To clarify we compared T2DM, depression, Alzheimer’s 
disease, and IHD and its risk factors by genetically predicted coffee consumption using two-sample 
Mendelian randomization applied to large extensively genotyped case-control and cross-sectional 
studies. Childhood cognition was used as a negative control outcome. Genetically predicted coffee 
consumption was not associated with T2DM (odds ratio (OR) 1.02, 95% confidence interval (CI) 0.76 to 
1.36), depression (0.89, 95% CI 0.66 to 1.21), Alzheimer’s disease (1.17, 95% CI 0.96 to 1.43), IHD (0.96, 
95% CI 0.80 to 1.14), lipids, glycemic traits, adiposity or adiponectin. Coffee was unrelated to childhood 
cognition. Consistent with observational studies, coffee was unrelated to IHD, and, as expected, 
childhood cognition. However, contrary to observational findings, coffee may not have beneficial 
effects on T2DM, depression or Alzheimer’s disease. These findings clarify the role of coffee with 
relevance to dietary guidelines and suggest interventions to prevent these complex chronic diseases 
should be sought elsewhere.

Coffee is habitually consumed in Western societies. Adults in the United States and many European countries 
typically drink 2 to 3 cups of coffee a day1,2. With economic development coffee consumption is becoming more 
common in Asia including South Korea, China and India. Coffee is believed by the general public to have no ben-
efits for type 2 diabetes mellitus (T2DM) or cognitive decline, but to increase the risk of cardiovascular disease 
(CVD)3. In contrast, coffee features in the latest 2015 Dietary Guidelines for Americans as something that might 
be healthy4. Observationally, coffee (both regular and decaffeinated) is monotonically associated with lower risk 
of type 2 diabetes mellitus (T2DM)5. Coffee is also associated with lower risk of depression6, as substantiated in a 
large prospective cohort study of older adults in the United States7, as well as of Alzheimer’s disease8. Coffee con-
sumption is not clearly associated with ischemic heart disease (IHD)9, although moderate coffee drinking may be 
associated with slightly lower risk10. However, observational studies are open to biases from residual confounding 
by incompletely measured factors that may have major influences on lifestyle and health, such as socio-economic 
position and health status. Meta-analyses of randomized controlled trials (RCTs) suggest short-term cof-
fee consumption raises triglycerides and low-density lipoprotein (LDL) cholesterol11. A small RCT found that 
short-term coffee consumption increased adiponectin12, which may relate to lower CVD risk13. Several RCTs 
showed short-term coffee consumption had no effect on fasting glucose, fasting insulin or insulin resistance12,14,15, 
although one RCT found it slightly increased glycosylated hemoglobin (HbA1c)16. The lack of evidence from 
long-term RCTs means that the effects of coffee on health are unclear, but are particularly important to establish 
in this window of opportunity before habitual coffee drinking extends to become the global norm.
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In this situation, comparing health by genetically predicted coffee consumption, i.e., using Mendelian ran-
domization (MR), may help clarify the causal effect of coffee on health by generating unbiased estimates from 
observational studies because MR is less prone to confounding and reverse causality17. To date, one MR study, 
using large cohort studies from Denmark, found no association of genetically predicted coffee consumption with 
T2DM or CVD risk factors including triglycerides, high-density lipoprotein (HDL) cholesterol, non-fasting glu-
cose, waist circumference and body mass index (BMI)18. However, the study was underpowered to assess the 
effect of coffee on CVD risk factors and did not assess the effect on IHD. To clarify the role of coffee in health, we 
assessed the role of coffee consumption in T2DM, IHD, CVD risk factors (lipids, glycemic traits, adiposity and 
adiponectin), depression and Alzheimer’s disease using genetic determinants of coffee from genome-wide asso-
ciation studies (GWAS) applied to very large extensively genotyped case-control and cross-sectional studies. We 
used childhood cognition as a negative control outcome because coffee unlikely affects cognition in childhood, 
given coffee drinking usually becomes a habit after adolescence19.

Results
Genetically predicted coffee consumption. Table 1 shows ten single nucleotide polymorphisms (SNPs) 
were associated with habitual coffee consumption (number of cups of mainly regular-type coffee per day) at 
genome-wide significant (log10 Bayes Factor >  5.64 which approximates P <  5 ×  10−8) in a GWAS of 129,788 cof-
fee drinkers of mainly European descent (n =  121,824, 94%), mean age 54.0 years20. rs6968554 was excluded due 
to high linkage disequilibrium with rs4410790, giving 9 SNPs. rs17685 was not available for T2DM, lipids, so 
rs8565 was used instead because it was highly correlated with rs17685 (r2 =  0.845), in close proximity (distance 
within 25 kb of rs17685), had a similar allele frequency (HapMap CEU: rs8565 A (0.29) and rs17685 G (0.71)) and 
similar genetic association with IHD (Fig. 1). Four SNPs were related to body weight or lipids (rs6265, rs1260326, 
rs1481012 and rs7800944), so these were excluded for the analyses without known pleiotropy for T2DM, IHD 
and CVD risk factors. Three non-pleiotropic SNPs, which are known to be functionally relevant to coffee metab-
olism (rs4410790, rs2472297 and rs2470893)21,22, were included in the analyses of functionally relevant SNPs. 
rs2470893 and rs7800944 were not available for childhood cognition, so rs2472297 and rs14415, respectively, 

SNP Locus
Closest 

gene
Effect 
allele

Non-effect 
allele

Allelic frequency
Habitual coffee 
consumption

PleiotropybEuropean
African 

American beta SD P value

rs6265 11p13 BDNF C T 0.18 0.07 0.04 0.01 2.69 ×  10−6 Body mass index, 
body weight, smoking

rs17685* 7q11.23 POR A G 0.30 0.19 0.07 0.01 4.26 ×  10−11 Nil

rs1260326 2p24 GCKR C T 0.36 0.17 0.04 0.01 7.14 ×  10−8

Cholesterol, 
triglycerides, kidney 
diseases, C-reactive 

protein, glucose 
tolerance test, platelet 
count, blood proteins

rs1481012 4q22 ABCG2 A G 0.89 0.95 0.06 0.01 8.93 ×  10−8 Gout, response to 
statin therapy

rs2470893** 15q24 CYP1A1 T C 0.32 0.06 0.12 0.01 2.72 ×  10−19 Nil

rs2472297 15q24 CYP1A2 T C 0.26 0.06 0.14 0.01 2.47 ×  10−24 Nil

rs4410790 7p21 AHR C T 0.35 0.52 0.10 0.01 3.08 ×  10−17 Nil

rs6968554*** 7p21 AHR G A 0.39 0.33 0.10 0.01 5.23 ×  10−17 Nil

rs7800944** 7q11.23 MLXIPL C T 0.72 0.67 0.05 0.01 2.29 ×  10−11 Triglycerides

rs9902453 17q11.2 EFCAB5 G A 0.53 0.80 0.03 0.01 2.44 ×  10−8 Nil

Table 1.  Single nucleotide polymorphisms (SNPs) associated with habitual coffee consumption (mainly 
regular-type coffee in cups per day) among European and African American coffee drinkers and considered 
for Mendelian randomization (MR) analyses given they reach genome-wide significance (log10Bayes 
factor > 5.64 which approximates to P < 5 × 10−8)a and linkage equilibrium (r2 < 0.8). Abbreviations: 
MR, Mendelian randomization; SNP, single nucleotide polymorphisms. *rs17685 was not available for type 
2 diabetes mellitus and lipids, so rs8565 was used instead because it was highly correlated with rs17685 
(r2 =  0.845), in close proximity (distance within 25 kb of rs17685), had similar allele frequency (HapMap CEU: 
rs8565 A (0.29) and rs17685 A (0.30)) and similar genetic association for ischemic heart disease. **rs2470893 
and rs7800944 were not available for cognition. For rs2470893, rs2472297 was used instead because it was 
highly correlated with rs2470893 (r2 =  0.694), in close proximity (distance within 10 kb of rs2470893) and had 
similar allele frequency (HapMap CEU: rs2472297 T (0.25) and rs2470893 T (0.26)). For rs7800944, rs14415 
was used instead because it was highly correlated with rs7800944 (r2 =  0.816), in close proximity (distance 
within 100 kb of rs7800944) and had similar allele frequency (HapMap CEU: rs2286276 T (0.30) and rs7800944 
T (0.29)). ***rs6968554 reaches genome-wide significance but was excluded from the analyses because of linkage 
disequilibrium with rs4410790 and larger P value. aReference: The Coffee and Caffeine Genetics Consortium, 
Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A et al. Genome-wide meta-analysis identifies six novel loci 
associated with habitual coffee consumption. Mol Psychiatry. 2015; 20:647–56. bPleiotropy was identified using 
Ensembl (Homo sapiens – phenotype) (http://grch37.ensembl.org/Homo_sapiens/Info/Index).

http://grch37.ensembl.org/Homo_sapiens/Info/Index
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were used instead because they are highly correlated with the original SNPs (rs2472297: r2 =  0.694; rs14415: 
r2 =  0.816), in close proximity (rs2472297: distance within 10 kb of rs2470893; rs14415: distance within 100 kb 
of rs7800944) and had a similar allele frequency (HapMap CEU: rs2472297 T (0.25) and rs2470893 T (0.26); 
rs2286276 T (0.30) and rs7800944 T (0.29)).

Table 2 shows genetically predicted coffee consumption was not clearly associated with T2DM, IHD, depres-
sion or Alzheimer’s disease both including and excluding SNPs with known pleiotropy. Most of the estimates were 
close to the null, particularly after excluding potentially pleiotropic SNPs, although the estimate for Alzheimer’s 
disease was in a positive direction. Coffee consumption was not clearly associated with most CVD risk factors 
(lipids, glycemic traits, BMI, WHR and adiponectin) particularly after excluding SNPs with known pleiotropy, 
although the estimates for LDL-cholesterol, BMI, WHR and adiponectin were in a positive direction. Coffee was 
unrelated to childhood cognition. An analysis using only the 3 functionally relevant SNPs gave a similar pattern 
of associations. Not using rs8565 as a replacement for rs17685 gave a very similar pattern of associations (data not 
shown). The associations remained similar after adjustment for multiple comparison (data not shown).

Discussion
Consistent with the previous smaller MR study using five SNPs for coffee18, we found little evidence of coffee 
being clearly related to T2DM or major CVD risk factors (HDL-cholesterol, LDL-cholesterol, triglycerides and 
BMI), although we cannot rule out the possibility of coffee raising LDL-cholesterol, BMI, WHR and adiponectin. 
Our study adds by replicating these findings in larger samples using more SNPs for coffee and showing coffee was 
also most likely unassociated with IHD and with glycemic traits, consistent with most12,14,15 but not all16 RCTs. 
This study also adds by showing coffee most likely unrelated to depression and Alzheimer’s disease, although we 
cannot exclude the possibility that coffee increases the risk of Alzheimer’s disease. Coffee was unrelated to child-
hood cognition as expected.

Figure 1. Selection of single nucleotide polymorphisms for Mendelian randomization analysis of the 
association of coffee consumption with type 2 diabetes mellitus, ischemic heart disease, cardiovascular 
disease risk factors, depression and Alzheimer’s disease. Abbreviations: HbA1c, glycosylated hemoglobin; 
HDL-cholesterol, high-density lipoprotein cholesterol; IHD, ischemic heart disease; LDL-cholesterol, low-
density lipoprotein cholesterol; MR, Mendelian randomization; SD, standard deviation; SNP, single nucleotide 
polymorphisms; T2DM, type 2 diabetes mellitus; WHR, waist-hip ratio.
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This large MR study taking advantage of publicly available ‘big data’ provides more precise estimates with 
greater statistical power because of the large sample sizes and less susceptibility to weak instrument bias from 
using 9 SNPs which reduces the possibility of false positives. Nonetheless, limitations exist. First, MR estimates 
could be confounded by population stratification23. We used genetic determinants of coffee from people of 
predominantly European ancestry (94%) and genetic associations with diseases or its risk factors from people 
almost exclusively of European ancestry with estimates adjusted for genomic control. In addition, genetic vari-
ants predicting coffee are not known to vary geographically within these populations20, unlike another beverage, 
milk, whose genetic determinant, lactase persistence, has a north-south gradient24. As such, our MR estimates 
are unlikely confounded by population stratification. Second, effects of genetic determinants of coffee via path-
ways other than through coffee intake may generate a bias (by violating the exclusion-restriction assumption)25. 
However, MR estimates with and without pleiotropic SNPs were fairly similar and we placed greater emphasis 
on the estimates without pleiotropic SNPs. We might have missed some pleiotropic effects because we could 
only identify known effects and current understanding of the underlying causal pathways. Nonetheless, 3 

Outcomes Consortium

All 9 SNPs 3 functionally relevant SNPsa

All genome-wide significant SNPsa
5 SNPs without known pleiotropy 
related to body weight or lipidsa

Odds ratio 95% CIsOdds ratio 95% CIs Odds ratio 95% CIs

Diseases

Type 2 diabetes mellitus* DIAGRAM 1.20 1.00, 1.42 1.03 0.81, 1.31 1.05 0.70, 1.55

Ischemic heart disease

CARDIoGRAMplusC4D 
1000 Genomes-based GWAS 1.06 0.94, 1.20 1.07 0.91, 1.26 1.12 0.84, 1.49

CARDIoGRAMplusC4D 
Metabochip/CARDIoGRAM 0.96 0.84, 1.10 0.96 0.80, 1.14 0.97 0.73, 1.30

Pooled 1.02 0.93, 1.12 1.02 0.92, 1.13 1.05 0.94, 1.17

Depression PGC 0.89 0.66, 1.21 NA 0.95 0.47, 1.91

Alzheimer’s disease IGAP 1.17 0.96, 1.43 NA 1.29 0.82, 2.03

Cardiovascular disease 
risk factors Consortium Mean difference 95% CIs Mean difference 95% CIs Mean difference 95% CIs

HDL-cholesterol (SD)* GLGC 0.04 − 0.01, 0.09 − 0.02 − 0.09, 0.05 − 0.02 − 0.13, 0.10

LDL-cholesterol (SD)* GLGC 0.01 − 0.04, 0.06 0.06 − 0.01, 0.14 0.05 − 0.07, 0.17

Triglycerides (SD)* GLGC −0.26 −0.31, −0.21 0.02 − 0.05, 0.08 − 0.004 − 0.11, 0.10

Body mass index (SD) GIANT 0.12 0.08, 0.17 0.05 − 0.005, 0.11 0.05 − 0.04, 0.15

Waist-hip ratio (SD) GIANT 0.05 0.004, 0.10 0.06 − 0.01, 0.12 0.06 − 0.05, 0.16

HbA1c (%) MAGIC 0.03 − 0.02, 0.08 0.01 − 0.05, 0.08 0.02 − 0.09, 0.13

Fasting glucose (mmol/L) MAGIC 0.04 0.01, 0.08 − 0.01 − 0.06, 0.03 − 0.02 − 0.09, 0.05

Fasting insulin  
(log-transformed) MAGIC 0.02 − 0.02, 0.06 − 0.03 − 0.09, 0.02 − 0.03 − 0.11, 0.05

β -cell function  
(log-transformed) MAGIC 0.03 − 0.02, 0.07 0.03 − 0.04, 0.09 0.04 − 0.06, 0.15

Insulin resistance  
(log-transformed) MAGIC 0.06 0.0005, 0.12 0.03 − 0.05, 0.10 0.04 − 0.09, 0.17

Adiponectin  
(log-transformed) ADIPOGen 0.04 − 0.02, 0.10 0.04 − 0.04, 0.12 0.03 − 0.11, 0.17

Control outcome Consortium Mean difference 95% CIs Mean difference 95% CIs Mean difference 95% CIs

Childhood cognition** SSGAC 0.07 − 0.09, 0.23 NA 0.10 − 0.26, 0.45

Table 2.  Association of genetically predicted habitual coffee consumption with type 2 diabetes mellitus, 
ischemic heart disease, cardiovascular disease risk factors, depression and Alzheimer’s disease obtained 
from Mendelian randomization analyses using weighted generalized linear regression. Bold indicates 
statistical significance (P <  0.05). Abbreviations: CI, confidence interval; HbA1c, glycosylated hemoglobin; 
HDL-cholesterol, high-density lipoprotein cholesterol; LDL-cholesterol, low-density lipoprotein cholesterol; 
NA, not applicable; SD, standard deviation; SNP, single nucleotide polymorphisms. *rs17685 was not available 
for type 2 diabetes mellitus and lipids, so rs8565 was used instead because it was highly correlated with rs17685 
(r2 =  0.845), in close proximity (distance within 25 kb of rs17685), had similar allele frequency (HapMap CEU: 
rs8565 A (0.29) and rs17685 A (0.30)) and similar genetic association for ischemic heart disease. **rs2470893 
and rs7800944 were not available for cognition. For rs2470893, rs2472297 was used instead because it was 
highly correlated with rs2470893 (r2 =  0.694), in close proximity (distance within 10 kb of rs2470893) and had 
similar allele frequency (HapMap CEU: rs2472297 T (0.25) and rs2470893 T (0.26)). For rs7800944, rs14415 
was used instead because it was highly correlated with rs7800944 (r2 =  0.816), in close proximity (distance 
within 100 kb of rs7800944) and had similar allele frequency (HapMap CEU: rs2286276 T (0.30) and rs7800944 
T (0.29)). aAll SNPs included for analyses were rs6265, rs17685, rs1260326, rs1481012, rs2470893, rs2472297, 
rs4410790, rs7800944 and rs9902453; SNPs without known pleiotropy included for analyses were rs17685, 
rs2470893, rs2472297, rs4410790 and rs9902453; and functionally relevant SNPs included for analyses.
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non-pleiotropic SNPs (rs4410790, rs2472297 and rs2470893) are known to be functionally relevant to coffee 
metabolism21,22. An analysis using only these SNPs gave broadly similar results. Third, the genetic variants for 
coffee were associated with number of cups of coffee per day among coffee drinkers, and the estimates would not 
relate to the effects of coffee if coffee drinking was uncommon in the samples with the outcomes26. However, the 
populations with the outcomes are from the United States or European countries27–31 where coffee drinking is 
typical1,2. Fourth, we cannot rule out the possibility of a non-linear effect of coffee, although that would require a 
more complex biological explanation. Fifth, the effect of coffee may vary by sex, given a cohort study found coffee 
consumption was associated with lower risk of cognitive decline in women but not in men32. Whether habit-
ual coffee consumption affects health differently by age, sex or baseline coffee consumption could not be tested 
because genetic associations with coffee and with the outcomes were obtained from separate samples; however the 
effects of causal factors are generally consistent, although sex-specific mechanistic pathways are possible. Sixth, 
we used genetic variants for habitual coffee consumption among coffee drinkers. Whether the findings generalize 
to ever/never coffee drinkers remains elusive, although extrapolating associations from very infrequent coffee 
drinkers to never coffee drinkers may be reasonable. Seventh, given coffee drinking usually starts in adulthood, 
developmental canalization buffering the genetic effects as a compensatory mechanism is unlikely to affect inter-
pretation of the MR estimates. Eighth, participants in the studies used may have taken medication for chronic 
diseases, although genetic associations with lipids33 and glycemic traits were based on participants not taking rele-
vant medication34,35. However, medication use is unlikely to confound the association of genetic variants with the 
outcomes, because genetic variants are allocated at conception and precede medication use. Medication use might 
make the association of genetic variants with coffee consumption less precise. As such, medication use could bias 
the MR estimate away from the null, hence MR estimates are best interpreted as indicating direction rather than 
exact effects, particularly for estimates that differ from the null value36. Finally, since coffee consumption was not 
measured in the samples with the outcomes, two-sample MR generates approximate estimates by assuming the 
genetic associations for coffee are similar in the samples of genetic determinants of coffee and the outcomes26. 
Nonetheless, separate sample MR is more robust to chance findings than single-sample MR because it reduces the 
possibility of confounding by some cryptic data structure in the single sample37.

Unlike previous observational studies5, our study, as well as the previous smaller MR study18, did not find cof-
fee consumption associated with lower risk of T2DM. Also, unlike some prospective cohort studies9,10, we found 
no association of coffee consumption with IHD. Such discrepancies might be partly explained by over-adjustment 
for potentially harmful mediators, such as BMI or lipids10, and the inevitable confounding in observational stud-
ies. For CVD risk factors, as in the other MR study18, we found little evidence of an association of coffee with 
HDL-cholesterol or triglycerides. The associations of coffee with LDL-cholesterol and adiponectin are directionally 
consistent with those found in RCTs11,12, but do not exclude no association. We also found no association of coffee 
with HbA1c, fasting glucose, fasting insulin, beta-cell function or insulin resistance, consistent with most12,14,15  
but not all16 RCTs. In addition, trends in coffee consumption do not coincide with the changing patterns of IHD 
or T2DM, for example IHD declined38 but DM rose39 in the United States where coffee consumption was stable in 
the past decade40. Taken together, the overall lack of association of coffee with T2DM, IHD and many CVD risk 
factors are coherent within this study, and suggest that coffee has likely minor effects, if any, on these conditions.

Our MR study has some consistency with RCTs, although an MR study tests a causal pathway rather than an 
intervention41. Findings from MR give the lifetime effect of coffee and may be more relevant to the health impli-
cations of coffee than findings from RCTs evaluating the short-term effect of a coffee intervention42. Nonetheless, 
replication in a larger sample would be valuable. Our findings, using genetic variants for ‘regular’ coffee, i.e., coffee 
without decaffeination and/or filtration, do not exclude the possibility of coffee raising LDL cholesterol. Coffee 
has been thought to have cholesterol-raising effects due to the presence of diterpenes (cafestol and kahweol), and 
such effect is usually removed only when coffee is filtered43. Several SNPs functionally relevant to coffee regulate 
the cytochrome P-450 (CYP) enzyme, which may have implications for CVD risk44, but includes a large fam-
ily of enzymes with different functions. The aryl hydrocarbon receptor (AHR) (rs4410790) regulates CYP1A2 
(rs2472297). CYP1A2 is primarily responsible for metabolizing caffeine21 and CYP1A1 (rs2470893) metabolizes 
polycyclic aromatic hydrocarbons, another key ingredient of coffee22. CYP1A1/1A2/1B1 knockout mice have 
lower cholesterol45. Whether AHR is related to circulating cholesterol remains elusive; AHR knockout mice have 
higher hepatic triglycerides in response to high-fat diet46. However, SNPs from CYP1A1/2 have not featured in 
GWAS of CVD or diabetes27–29,47, consistent with the lack of association with these two conditions.

This study adds by showing no protective association of habitual coffee consumption with depression or 
Alzheimer’s disease, contrary to meta-analyses of observational studies where coffee is associated with lower 
risk6,8. These findings are consistent with null association of coffee with childhood cognition (control outcome). 
Observed associations of coffee with (particularly subjective measures of) mental health are prone to confound-
ing by socioeconomic position and related attributes (diet and lifestyle), underlying physical health status, and 
reverse causality. However, the potentially positive association of coffee with Alzheimer’s disease does warrant 
further investigation. Coffee drinking habits may have changed over time; observationally increasing coffee con-
sumption is associated with higher risk of mild cognitive impairment48, while constant moderate coffee consump-
tion is associated with lower risk48. Hence, we cannot rule out the possibility that our finding was generated by 
increased coffee consumption as self-medication for cognitive lapses, although use of genetically predicted coffee 
consumption should reduce such ‘reverse causality’. Previous observational studies suggest coffee as a modifia-
ble lifestyle factor that may be associated with lower risk of cognitive impairment/decline, although not across 
all studied cognitive domains49,50. In addition, cohort studies with more complete follow-up tended to observe 
weaker negative or positive associations of coffee with dementia51. Our MR findings raise a question as to the role 
of coffee in Alzheimer’s disease, which requires replication, so as to clarify the role of coffee as a potential inter-
vention. Coffee consumption has been associated with smaller volume of the hippocampus and poor memory 
function52. EFCAB5 (rs9902453) is a newly identified SNP for coffee, downstream of SLC6A4, which encodes the 
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serotonin transporter and could reduce circulating serotonin53, which might be related to Alzheimer’s disease54. 
Better understanding of whether and how serotonin regulation counteracts neurotoxicity reduction by caffeine 
induced blockage of adenosine A2 receptor55 or other non-caffeine components including chlorogenic acids that 
have been associated with lower risks of dementia56 would help clarify the etiology.

In summary, habitual coffee consumption may not have the beneficial effects on IHD, T2DM, most CVD 
risk factors, depression and Alzheimer’s disease suggested by observational studies, instead our study raises the 
possibility that coffee could increase the risk of Alzheimer’s disease and possibly have some unfavourable effects 
on lipids. This study demonstrates the pitfalls of formulating dietary recommendations based on observational 
evidence23 and emphasizes the importance of genetic validation of potential targets of intervention before making 
policy or testing interventions36.

Methods
Genetically predicted coffee consumption. Genetically predicted coffee consumption was based on sin-
gle nucleotide polymorphisms (SNPs) of genome-wide significant (P <  5 ×  10−8). Highly correlated SNPs (high 
linkage disequilibrium) (r2 >  0.8) were discarded based on larger P value with the correlations taken from SNP 
Annotation and Proxy Search (SNAP) (www.broadinstitute.org/mpg/snap/ldsearchpw.php) using the relevant 
catalog. SNPs potentially affecting an outcome directly rather than via coffee consumption (pleiotropic effects) 
were identified from Ensembl (Homo sapiens – phenotype) (http://grch37.ensembl.org/Homo_sapiens/Info/
Index). Any SNP for coffee not available for an outcome was replaced with a highly correlated SNP (r2 >  0.8).

Genetically predicted T2DM, IHD, CVD risk factors, depression and Alzheimer’s disease.  
Genetic associations for T2DM were obtained from the DIAbetes Genetics Replication And Meta-analysis 
(DIAGRAM), a case (n =  34,840)-control (n =  114,981) study of T2DM mainly in people of European descent 
(n =  146,171, 98%), mean age 56.9 years, with genomic control and adjustment for study-specific covariates29. 
Data on coronary artery disease/myocardial infarction (MI) have been contributed by CARDIoGRAMplusC4D 
investigators and have been downloaded from www.CARDIOGRAMPLUSC4D.ORG. CARDIoGRAMplusC4D 
1000 Genomes-based GWAS is a case (n =  60,801)-control (n =  123,504) study of IHD and MI in people of 
European (n =  143,485, 77%), South Asian (n =  25,557, 13%), East Asian (n =  11,323, 6%) and Hispanic or African 
American descent (~4%), adjusted for age and sex and corrected for genomic control47. CARDIoGRAMplusC4D 
Metabochip is a case (n =  63,746)-control (n =  130,681) study of IHD mainly in people of European descent 
(n =  176,892, 91%), mean age 57.4 years, adjusted for age and sex and corrected for genomic control27. When a 
SNP was not available in CARDIoGRAMplusC4D, genetic associations were obtained from CARDIoGRAM, a 
more extensively genotyped subset case (n =  22,233)-control (n =  64,762) study of IHD in people of European 
descent, mean age 58.1 years, with genetic associations similarly adjusted28. Genetic associations for lipids 
were obtained from the Global Lipids Genetics Consortium (GLGC) which has inverse normal transformed 
HDL-cholesterol, LDL-cholesterol and triglycerides for 188,577 people of European descent33. MAGIC concerns 
people mainly of European descent without diabetes and has glycosylated hemoglobin (HbA1c) (%) for 46,368 
adults35, fasting glucose (mmol/L) for 133,010 and log-transformed fasting insulin for 108,55734 (or if not avail-
able, fasting glucose for 46,186 and fasting insulin for 38,238 based on the 2010 version57), homeostatic model 
assessment (HOMA) β -cell function for 36,466 and HOMA insulin resistance for 37,03757. Genetic associations 
for adiposity were obtained from the Genetic Investigation of Anthropometric Traits (GIANT) which has inverse 
normal transformed BMI (n =  322,154)58 and WHR (n =  210,088) for people of European descent59. Genetic 
associations for adiponectin were obtained from the ADIPOGen Consortium which includes 35,355 people 
mainly of European descent (n =  29,347, 83%)60. Genetic associations for depression were obtained from the 
Psychiatric GWAS Consortium (PGC), a case (n =  9,240)-control (n =  9,519) study of major depressive disorder 
in people of European descent, mean age 45.9 years30. Genetic associations for Alzheimer’s disease were obtained 
from the International Genomics of Alzheimer’s Project (IGAP), a case (n =  17,008)-control (n =  37,154) study 
of Alzheimer’s disease in people of European descent, mean age 71.4 years31.

Genetically predicted childhood cognition (control outcome). Genetic associations for childhood 
cognition were obtained from the Social Science Genetic Association Consortium (SSGAC), which has cognition 
measured by general cognitive ability or intelligence quotient for 17,989 people of European descent61.

Statistical Analysis. Genetic associations with T2DM, IHD, CVD risk factors (lipids, glycemic traits, BMI, 
WHR, and adiponectin), depression, Alzheimer’s disease and childhood cognition (control outcome) were 
extracted based on the SNPs predicting habitual coffee consumption. Associations of coffee consumption with 
these outcomes were obtained using weighted generalized linear regression for correlated SNPs62, with a corre-
lation matrix to account for correlation between genetic variants obtained from SNAP using the same catalog 
as used in the GWAS of the outcome62. Given the two IHD case-control studies overlap (57.5% of the cases 
and 40.1% of controls)47, we also combined their results for IHD accounting for this overlap using the Lin and 
Sullivan approach63. Estimates are shown with all genome-wide significant SNPs with potentially pleiotropic 
effects included and excluded. Estimates are also shown only for non-pleiotropic SNPs known to be functionally 
relevant to coffee metabolism21,22. As a sensitivity analysis, given the number of outcomes considered, adjust-
ment was also made for multiple comparisons, using a Bonferroni corrected significance level of 0.002 (0.05/18) 
to account for testing 18 associations (coffee with four disease outcomes, 13 CVD risk factors and one control 
outcome).

The statistical analyses were conducted using Stata version 13.1 (StataCorp LP, College Station, TX) and R 
version 3.2.1 (R Foundation for Statistical Computing, Vienna, Austria).

http://www.broadinstitute.org/mpg/snap/ldsearchpw.php
http://grch37.ensembl.org/Homo_sapiens/Info/Index
http://grch37.ensembl.org/Homo_sapiens/Info/Index
http://www.CARDIOGRAMPLUSC4D.ORG
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Ethics approval. The methods were carried out in accordance with the approved guidelines. People of pre-
dominantly European descent were included in the study. Each study has been specifically approved by the Ethical 
Committees of the original studies and all the participants provided a written informed consent. This analysis of 
publicly available summary data does not require ethical approval.
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