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In binary image segmentation, the choice of the order of the operation sequence may yield to suboptimal results. 
In this work, we propose to tackle the associated optimization problem via multi-objective approach. Given 
the original image, in combination with a list of morphological, logical and stacking operations, the goal is to 
obtain the ideal output at the lowest computational cost. We compared the performance of two Multi-objective 
Evolutionary Algorithms (MOEAs): the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Strength 
Pareto Evolutionary Algorithm 2 (SPEA2). NSGA-II has better results in most cases, but the difference does 
not reach statistical significance. The results show that the similarity measure and the computational cost are 
objective functions in conflict, while the number of operations available and type of input images impact on the 
quality of Pareto set.
1. Introduction

The task of designing sequences of operation for binary image pro-

cessing is not always trivial [1, 2]. Basically, it involves the selection of 
a set of logical and morphological operations with special shapes known 
as structuring elements [3]. To determine the number of structuring el-

ements is not trivial, due to the number of possible combinations of 
structuring elements with different morphological operations. Design-

ing an operation sequence with morphological operations is analogous 
to creating an instruction sequence for a computer program. A remark-

able difference would be that each instruction comes from a large set 
of possible instructions unlike computer programming instructions [3]. 
The binary operation sequence problem consists in calculating a se-

quence of morphological operations that produces an output image 𝐼𝑜𝑢𝑡
given an input image 𝐼𝑖𝑛. In the ideal case, the output image 𝐼𝑜𝑢𝑡 is 
equal to 𝐼 ′, where 𝐼 ′ is a target binary image containing ideal features 
derived from 𝐼𝑖𝑛. Different sequences of morphological operations can 
obtain results equal to 𝐼 ′. The ideal would be to obtain the sequence 
of operations with the lowest computational cost. In many applications, 
one can find sequences of morphological operations with reasonable 
time that applied to 𝐼𝑖𝑛 obtain images similar to 𝐼 ′. In this work, we 
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look for different sequences of morphological operations that applied 
to 𝐼𝑖𝑛 obtain images as similar as possible or equal to 𝐼 ′ with low com-

putational cost.

So far, the literature reports several works [4, 5, 6, 7] that ap-

ply heuristic techniques. However, none has proposed multi-objective 
heuristic approaches that are important indeed, since there are possi-

bly multiple criteria in conflict. For example, several researchers have 
proposed the automation of morphological operation sequence design 
based on Genetic Algorithms (GA) [4, 6, 7, 8, 9] and Genetic Program-

ming (GP) [5]. Quintana et al. have published several papers related 
to the generation of solutions using GP [3, 10, 11, 12]. In [3] pair 
images (original/target) are provided to guide the GP towards the de-

sired feature extraction; in this context, a quality function measures 
the parameterizations in terms of the sensitivity and the specificity. For 
constructing morphological filters, 512 structuring elements are used in 
a regular and irregular way (randomly chosen), along with the basic 
operations of erosion and dilation.

Pedrino et al. have also published some works using GP for gen-

erating sequences of morphological operation [13, 14, 15]. In [15], a 
hardware architecture is presented for a solution based on the field of 
programmable gate arrays, to get the hardware architecture by means 
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Fig. 1. Structuring Elements: a) cross, b) diamond, c) square, d) vertical line, e) horizontal line, f) main diagonal and g) secondary diagonal. Circles inside of blocks 
indicate the specific pixel over which operations are performed.
of reverse engineering, where the cost function is the average abso-

lute error [16]. The program construction is implemented by 12 types 
of morphological operation sequences (pair morphological filter/struc-

turing element), 6 types of logical operations, and reading and storing 
operations, respectively.

On the other hand, the literature reports several real life prob-

lems with several objective functions in conflict [16, 17]; i.e. the im-

provement of some objective function implies worsening others. In this 
context, to study the binary operation sequence design problem in a 
multi-objective context is crucial for real applications. Firstly, to under-

stand the impact of different objective functions with each other; and 
secondly, to propose appropriate solution approaches considering all 
contradictory objective functions with equal importance.

Note that, the works [3, 10, 11, 12, 13, 14, 15] consider just one 
performance measure. On this basis, the solutions quality will be re-

lated to the number of available operations. So, we can consider, as a 
first approach to the multi-objective approach, the following objective 
functions: (a) the similarity measure between ideal and calculated out-

put images by an operation sequence, and (b) the computational cost of 
calculating the output image.

Therefore, we can summarize the contributions of this paper as fol-

lows: (a) tackle the optimization problem by means of a multi-objective 
approach, (b) analyze the performance of two popular MOEAs strategies 
to calculate the set of non-dominated solutions, and (c) Study the advan-

tages of the multi-objective approach by comparing the multi-objective 
results with a GA.

This paper is organized as follows. Section 2 introduces basic con-

cepts of binary mathematical morphology and multi-objective optimiza-

tion. Then, in Section 3, the proposed methodology is presented, fol-

lowed by the experimental results in Section 4. Finally, the conclusions 
and future works are stated in Section 5.

2. Background

This subsection describes the binary mathematical morphology 
where the basic operators are defined and the multi-objective optimiza-

tion problem where the solution vector of the problem addressed in this 
paper is presented.

2.1. Binary mathematical morphology

In the design process of operation sequence there are used several 
types of operations. In this work, logical and morphological operations 
are considered. Logical operations involve well known operations as: 
or, and, exclusive or, binary complement, binary addition, and subtraction; 
furthermore, stacking operations.

Typically, the geometrical structures of image are studied by the 
morphology. In this context, morphological operations aim to extract 
relevant structures from the image. In this work, a binary image 𝐼 is 
defined as a mapping of a subset 𝐷𝐼 from a domain definition 𝑍𝑛 of 𝐼
in the pair {0, 1}, that is:

𝐼 ∶𝐷𝐼 ⊂𝑍𝑛 → {0,1}, (1)

so that, the value of each pixel 𝑝 of the image 𝐼 is 0 or 1, i.e., 𝐼(𝑝) ∈
{0, 1} ∀𝑝 ∈𝐷𝐼 .
2

Table 1

Basic operations.

Symbol Description Structuring element Input image

𝑑𝑖𝑙_𝑠 dilation square

𝐼𝑖

𝑒𝑟𝑜_𝑠 erosion square

𝑑𝑖𝑙_𝑐 dilation cross

𝑒𝑟𝑜_𝑐 erosion cross

𝑑𝑖𝑙_ℎ dilation horizontal line

𝑒𝑟𝑜_ℎ erosion horizontal line

𝑑𝑖𝑙_𝑣 dilation vertical line

𝑒𝑟𝑜_𝑣 erosion vertical line

𝑑𝑖𝑙_𝑠𝑑 dilation secondary diagonal

𝑒𝑟𝑜_𝑠𝑑 erosion secondary diagonal

𝑑𝑖𝑙_𝑚𝑑 dilation main diagonal

𝑒𝑟𝑜_𝑚𝑑 erosion main diagonal

𝑥𝑜𝑟 exclusive OR

𝐼𝑖 and 𝐼𝑠

𝑎𝑛𝑑 logical AND

𝑜𝑟 logical OR

𝑥𝑛𝑜𝑟 not exclusive OR

𝑠𝑢𝑏 binary subtraction

𝑠𝑢𝑏2 binary subtraction 𝐼𝑠 and 𝐼𝑖

𝑠𝑡𝑜𝑟𝑒 temporary storage 𝐼𝑖

𝑙𝑑𝑖 original image reading 𝐼𝑖𝑛

𝑛𝑜𝑝 no operation 𝐼𝑖

Hadwiger defined the dual operation of Minkowski: addition and 
subtraction [18]. Matheron and Serra named the dual Minkowski opera-

tions with the current names of the two basic mathematical morphology 
operations: Dilation and Erosion [19, 20, 21].

A morphological operation requires a structuring element or kernel 
[12], in which a specific pixel is defined and the process performs on it. 
Fig. 1 shows the structuring elements used in this work.

The erosion of binary image 𝐼 by structuring element 𝐵 is denoted 
by 𝜖𝐵(𝐼) and is defined as the set of pixels 𝑝 such that 𝐵 is included in 
𝐼 when its origin is placed at 𝑝:

𝜖𝐵(𝐼) = {𝑝 ∶ 𝐵𝑝 ⊆ 𝐼}, (2)

where 𝐵𝑝 is the structuring element centered at 𝑝 ∈ 𝐼 .

Similarly, the dilation of binary image 𝐼 that is done by a structuring 
element 𝐵 is denoted by 𝛿𝐵(𝐼). Such operation is defined as a set of 
pixels 𝑝 such that 𝐵 reaches 𝐼 when its origin coincides with 𝑝:

𝛿𝐵(𝐼) = {𝑝 ∶𝐵𝑝 ∩ 𝐼 ≠ ∅}. (3)

The difficulty of understanding a priori the impact over the perfor-

mance of solution, by using different structuring elements, operation 
sequences and the application order of these operations, makes morpho-

logical operations design problems an ideal area to apply evolutionary 
algorithms [22, 23, 24].

2.2. Morphological operation set

In this paper the morphological operation set t is the set containing 
all the valid operations that can be used. In Table 1 the basic morpho-

logical operations considered in this paper are listed.

Extra operations. In addition to the basic operations listed in Table 1, 
erosion and dilation with another structuring elements and stacking 
operation are included for more advance tests. Table 2 shows these 
operations. The computational costs of applying the basic and extra 
morphological operations are presented in Table 3.
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Table 2

Extra operations.

Symbol Description Structuring element Input image

𝑒𝑟𝑜_𝑟𝑜 erosion
rhombus

𝐼𝑖

𝑑𝑖𝑙_𝑟𝑜 dilation

𝑒𝑟𝑜_𝑑 erosion
diamond

𝑑𝑖𝑙_𝑑 dilation

𝑒𝑟𝑜_𝑠𝑞 erosion
square (5×5)

𝑑𝑖𝑙_𝑠𝑞 dilation

𝑝𝑢𝑠ℎ
stacking -

𝑝𝑢𝑙𝑙

2.3. Multi-objective optimization problem

The Multi-objective Optimization Problem (MOP) can be expressed 
as follows [17]:

min𝑧 = 𝑓 (𝑥) =
[
𝑓1(𝑥), 𝑓2(𝑥), ..., 𝑓𝐹 (𝑥)

]
, (4)

subject to:

ℎ(𝑥) =
[
ℎ1(𝑥), ℎ2(𝑥), ..., ℎ𝑘(𝑥)

]
= 0, (5)

𝑔(𝑥) =
[
𝑔1(𝑥), 𝑔2(𝑥), ..., 𝑔𝑙(𝑥)

]
≥ 0, (6)

where 𝑥 ∈ 𝑆, 𝑥 is the decision vector, 𝑆 is the set of solutions and 𝑓𝑖(𝑥)
is the 𝑖-th objective function of the problem. The problem constraints 
are represented by ℎ(𝑥) and 𝑔(𝑥).

In our problem, a solution is represented as a numeric vector 𝑥 as 
depicted in Fig. 2, where each 𝑥𝑖 belongs to an operation of the set 𝑡 as 
defined in Tables 1 and 2.

The set of feasible solutions 𝑆𝑓𝑎𝑐 consists of decision vectors that 
satisfy the equality ℎ(𝑥) and inequality 𝑔(𝑥). Therefore:

𝑆𝑓𝑎𝑐 = {𝑥 ∈ 𝑆 ∶ 𝑔(𝑥) ≥ 0 ∧ ℎ(𝑥) = 0}. (7)

Any decision vector 𝑥 ∈ 𝑆𝑓𝑎𝑐 defines a feasible solution for the prob-

lem in question.

The subset of 𝑆𝑓𝑎𝑐 that minimizes the decision vector 𝑓 (𝑥) is the 
Pareto set 𝑆∗, where its projection on the objective space is the Pareto 
front 𝐹𝑃 = {𝑓 (𝑥) ∶ 𝑥 ∈ 𝑆∗ ⊆ 𝑆𝑓𝑎𝑐}. The goal of a pure multi-objective 
optimization process is to calculate the optimal Pareto set 𝑆∗ .

Multi-objective Optimization in the Pareto context implies that: 
given two solutions 𝑥𝑎, 𝑥𝑏 ∈ 𝑆𝑓𝑎𝑐 the following conditions have to be 
satisfied:

𝑥𝑎 ≻ 𝑥𝑏 𝚒𝚏𝚏 ∀𝑖 ∶ 𝑓𝑖(𝑥𝑎) ≤ 𝑓𝑖(𝑥𝑏) ∧ ∃𝑗 ∶ 𝑓𝑗 (𝑥𝑎) < 𝑓𝑗 (𝑥𝑏), (8)

where 𝑥𝑎 ≻ 𝑥𝑏 indicates that 𝑥𝑎 dominates 𝑥𝑏.
If 𝑆 is a finite set, then the problem is a combinatorial problem. 

MOP can be approached in two ways: classical or mono-objective op-

timization and pure or Pareto multi-objective optimization. In the first 
case, the algorithm obtains just one solution. There are several tech-

niques reported in [17]. These techniques need information about the 
structure of the problem, in advance, to define priority among objective 
functions; but, the structure is usually unknown.

In pure multi-objective optimization, algorithms calculate a set of 
non-dominate solutions (Pareto set) where all objective functions are 
considered with the same importance level. Moreover, the Optimal 
Pareto front describes the structure of the frontier in the criteria space, 
where all solutions are optimal in the Pareto context. By analyzing this 
structure, the decision maker can select the most appropriated solution 
according to the business needs. Of course, any optimal solution ob-

tained by a mono-objective algorithm is part of the Pareto set.

Several image processing problems can be solved in a multi-

objective context, for example the multi-objective image coding [25], 
the multi-objective change detection in multispectral images [26], 
multi-objective image segmentation [27, 28].
3

Fig. 2. Relationship between chromosome and table of operations.

3. Materials and methods

In this section we describe the Multi-objective Operation Sequence 
Design (MOSD) Problem, and the Genetic Algorithm and Evolutionary 
proposals.

3.1. Multi-objective formulation

The Multi-objective Operation Sequence Design (MOSD) problem 
consists of calculating a solution 𝑥 that allows to obtain an image 
𝐼𝑜𝑢𝑡 ≈ 𝐼 ′ by applying 𝑥 to 𝐼𝑖𝑛, so that, the similarity measure 𝑓1 be-

tween 𝐼𝑜𝑢𝑡 and 𝐼 ′ and the computational cost 𝑓2 are simultaneously 
minimized. That is,

min𝑧 = 𝑓 (𝑥) =
[
𝑓1(𝑥), 𝑓2(𝑥)

]
, (9)

subject to:

𝑥𝑖 ∈ {1,2,… ,𝑚} ∀𝑖, (10)

where:

• 𝑓1(𝑥) = 𝑑(𝐼𝑜𝑢𝑡, 𝐼 ′) is the Image similarity measure that will be ex-

plained below,

• 𝑓2(𝑥) = 𝐶(𝑥) is the computational cost to calculate 𝐼𝑜𝑢𝑡 by a solution 
coded in 𝑥,

• 𝑥 =
[
𝑥1, 𝑥2,… , 𝑥𝑛

]
is the vector solution of 𝑛 elements that repre-

sents a sequence of instructions 𝑡𝑥𝑖 of 𝑛 steps.

In this context, each 𝑥𝑖 element indexes an operation of the set 𝑡. With-

out loss of generality, 𝐼𝑜𝑢𝑡 is obtained by the operation sequence as 
follows: 𝐼1 = 𝑡𝑥1

(𝐼𝑖𝑛), 𝐼2 = 𝑡𝑥2
(𝐼1), …, 𝐼𝑜𝑢𝑡 = 𝑡𝑥𝑛

(𝐼𝑛−1), where 𝐼𝑖 = 𝑡𝑥𝑖
(𝐼𝑖−1)

is the 𝑖-th intermediate image calculated by applying the operation 𝑡𝑥𝑖
on the previous image 𝐼𝑖−1. Note that 𝐼0 = 𝐼𝑖𝑛 and 𝐼𝑛 = 𝐼𝑜𝑢𝑡, and 𝑡𝑥𝑖 is 
the 𝑥𝑖-th operation of list 𝑡 that works on input image 𝐼𝑖−1 to calculate 
image 𝐼𝑖 at the 𝑖-th step.

Image similarity. The similarity measure 𝑑(𝐼𝑜𝑢𝑡, 𝐼 ′) is quantified using 
the following formula [29]:

𝑑(𝐼𝑜𝑢𝑡, 𝐼 ′) = 1 − 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
, (11)

where 𝑇𝑃 is the number of true positives, 𝐹𝑁 is the number of false 
negatives, and 𝐹𝑃 is the number of false positives.

Let 𝐷 be the domain of images 𝐼𝑜𝑢𝑡 and 𝐼 ′, and 𝑝 any point in 𝐷, 
then 𝑇𝑃 , 𝐹𝑁 and 𝐹𝑃 can be calculated as:

𝑇𝑃 =
∑

𝑝∈𝐷
(𝐼 ′(𝑝) ⋅ 𝐼𝑜𝑢𝑡(𝑝)), (12)

𝐹𝑁 =
∑

𝑝∈𝐷
(𝐼 ′(𝑝) − [𝐼 ′(𝑝) ⋅ 𝐼𝑜𝑢𝑡(𝑝)]), (13)

𝐹𝑃 =
∑

𝑝∈𝐷
(𝐼𝑜𝑢𝑡(𝑝) − [𝐼𝑜𝑢𝑡(𝑝) ⋅ 𝐼 ′(𝑝)]), (14)

The similarity measure (11) was selected to yield good results as a mea-

sure of similarity between sets according to [30]. In this case, the lower 
the similarity measure value is, the more similar the images are.



C. Lezcano et al. Heliyon 6 (2020) e03670
Table 3

The costs of applying operations.

Operation Structuring element Cost

Erosion, dilation

cross 5

rhombus 13

diamond 21

square 5x5 25

square 3x3 9

vertical 3

horizontal 3

main diagonal 3

secondary diagonal 3

Logical operations – 1

Storage and Read operations – 1

No operation – 0

Procedure Genetic Algorithm

begin

1: GeneratePopulation (𝑃𝑘);

2: valuatePopulation (𝑃𝑘);

3: repeat

4: SelectParents (𝑃𝑘, 𝑃
′
𝑘
);

5: ApplyOperators (𝑃 ′
𝑘
, 𝑃 ′′

𝑘
);

6: EvaluatePopulation (𝑃 ′′
𝑘

);

7: UpdatePopulation (𝑃 ′′
𝑘

, 𝑃𝑘);

8: until (StoppingCriterion)

end

Fig. 3. Genetic Algorithm pseudocode. 𝑃𝑘 is the current population at gener-

ation 𝑘, 𝑃 ′
𝑘

is the set of solutions for combination and 𝑃 ′′
𝑘

the new solutions 
generated.

Computational Cost. The goal of this criterion 𝐶(𝑥) is to measure the 
number of operations to calculate 𝐼𝑜𝑢𝑡 by the solution 𝑥 considering as 
initial image 𝐼𝑖𝑛. This cost is obtained by the following equation:

𝐶(𝑥) =
𝑛∑

𝑖=1
𝑐𝑜𝑠𝑡(𝑡𝑥𝑖 ), (15)

where 𝑐𝑜𝑠𝑡(𝑡𝑥𝑖 ) is the cost of applying the operation 𝑡𝑥𝑖 , according to 
Table 3.

3.2. Algorithms

In this subsection we present the algorithms implemented and com-

pared in this work.

3.2.1. Genetic algorithm

The Genetic Algorithm (GA) was first presented by Holland [31]. 
It is an evolutionary population-based strategy that uses evolution-

ary biology-based techniques such as inheritance, mutation, selection, 
and crossover. This strategy is widely used in many optimization prob-

lems [32, 33], including the operation sequence problem.

In GA, each solution is encoded by chromosome and represents an 
individual in the GA context. Chromosome is composed of genes, which 
are digits in the solution. The alleles are the possible values a gene can 
take. Binary encoding, which is one of the most used methods, consists 
of individuals represented as binary arrays.

Fig. 3 shows the pseudocode of the GA. It starts by generating 
randomly a population of solutions. The most promising individuals, 
according to a selection procedure, are selected to generate new ones 
after applying genetic operators such as crossover and mutation. The 
purpose of crossover is to combine parents to generate new offsprings. 
Mutation produces some changes on a single individual and introduces 
diversity in the population. The process continues across several gener-

ations until a stopping criterion is reached.

The efficiency of a GA is greatly dependent on its tuning parameters. 
We set the crossover probability to 0.9 and the mutation probability to 
4

Table 4

Evolutionary parameters.

Parameters Values

Population size 50

Type of crossover operation One-point crossover

Crossover probability 0.9

Type of mutation operation Flip Bit Mutation

Mutation probability 0.1

Type of selection operation Binary tournament

Number of operations 𝑚 21 (sections 4.2 and 4.1),

28 (section 4.3)

Number of generations 40,000 (sections 4.2 and 4.1),

400,000 (section 4.3)

Fig. 4. (a) Input image 𝐼𝑖𝑛 is conformed by (b) squares, (c) stars, (d) circles, and 
(e) rings.

0.1 following the recommendations of [13]. In order to set the popu-

lation size and the number of iterations, we have to take into account 
that in problems with a very large solution space the population size 
must be large enough to obtain a representative sample of the solution 
space. Furthermore, a very small population may result in premature 
convergence, whereas a very large population may result in a slow con-

vergence rate. Since both values are dependent on the problem, we 
conducted several experiments with different values for the popula-

tion size and the number of iterations. After analyzing convergence and 
computational time, we fixed the population at 50 individuals and the 
number of iterations was set to 40, 000.

3.2.2. NSGA-II

NSGA-II [34] is a population based Multi-Objective Evolutionary 
Algorithm [17] (MOEA) that has become very popular in real and the-

oretical problems and, therefore, has been established as a benchmark 
in the literature.

This strategy starts generating and initial random population 𝑃0 of 
𝑁 solutions. Then, solutions are sorted according to non-dominance 
and a rank value is associated with them so that first, with rank 1, we 
can find non-dominated solutions. Next, with rank 2 we find those so-

lutions that belong to the next non-dominated front and so on. At each 
iteration 𝑘 the strategy generates an offspring population 𝑄𝑘 of 𝑁 solu-

tions mating solutions by applying the binary tournament selection and 
using the crossover and mutation operators. Then, both populations, 
parents 𝑃𝑘 and offspring population 𝑄𝑘, are combined to generate the 
new population 𝑃𝑛𝑒𝑥𝑡 = 𝑃𝑘 ∪𝑄𝑘. The next parent population 𝑃𝑘+1 is gen-

erated by deleting, from 𝑃𝑛𝑒𝑥𝑡, the worst 𝑁 solutions, i.e. parents and 
offspring compete to survive. The strategy stops after a fixed number of 
iterations.

The Binary Tournament Selection Method is used for the selection 
process. Four individuals are randomly chosen from the population and 
the top two are finally selected for crossing [35].
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Table 5

NSGA-II and SPEA2 comparison considering hypevolumne difference with Known Optimal Pareto Front.

𝑛
NSGA-II SPEA2 𝑝-value

𝜇 𝜎2 𝜇 𝜎2

30

Rings 0.846148922 0.002202403 0.859407178 0.001923174 0.262963097

Circles 0.721685031 0.004815378 0.737396755 0.003214772 0.341089765

Squares 0.825396743 0.005633618 0.848927581 0.004510275 0.20584782

Stars 0.875703847 0.003536328 0.901736699 0.002775871 0.078004393

40

Rings 0.918079604 0.001306054 0.933393839 0.002167348 0.160418485

Circles 0.777907299 0.004249807 0.768206417 0.003807213 0.556225212

Squares 0.887484025 0.002473421 0.911671216 0.00302404 0.079295151

Stars 0.9510287 0.00085453 0.96048867 0.001856782 0.324392428

50

Rings 0.993579178 0.000121602 0.994237983 0.000160885 0.830786378

Circles 0.939265028 0.002620776 0.948524838 0.001655266 0.441303367

Squares 0.984098363 0.000746718 0.837577391 0.006172815 2.14897E-11

Stars 0.998035439 1.68425E-05 0.998612133 3.75962E-05 0.670412064
Fig. 5. Pareto front and solution calculated by MOEA(NSGA-II) and GA using 
operations of Table 1, considering Squares and Stars.

The crossover operation is based on the One-point crossover [35]. 
Through this method a single-point crossover is selected randomly in 
the chromosome to carry out the crossing. The new individual is made 
up by the two elements of the first one selected up to the One-point 
crossover, then it is completed with the elements of the second individ-

ual chromosome. The resulting chromosome is a new solution.

The mutation operation is a variation of the Flip-Bit Mutation 
Method, where an gen of the individual submitted for mutation is ran-

domly chosen and such gen is altered by another value randomly chosen 
between 0 and 𝑚 [35].

3.2.3. SPEA2

SPEA2 is an improved version of SPEA [36], and was proposed by 
Zitler et al. [37]. This strategy is also widely used in multi-objective 
optimization problems.
5

Fig. 6. Pareto front and solution calculated by MOEA(NSGA-II) and GA using 
operations of Table 1, considering Circles and Rings.

This strategy follows an evolutionary scheme similar to NSGA-II. 
This algorithm follows the original idea in which solutions are ranked 
based on a fitness function for each individual. Such fitness value is 
computed according to the number of solutions that are dominated 
and the number of solutions it dominates in a population. In addi-

tion, equivalent solutions are ranked based on diversity. In contrast 
to SPEA, SPEA2 incorporates a more fine-grained fitness assignment 
strategy, a density estimation technique, and an enhanced archive trun-

cation method.

4. Results

For this study the image segmentation problem is selected as a partic-

ular case of MOSD problem. This experimentation is carried out in four 
different tests.

In the first experiment, we want to determine:
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Fig. 7. (a) Binary Image of cells 𝐼𝑖𝑛, (b) type 1 cell, (c) type 2 cell, (d) type 3 cell, and (e) type 4 cell.
Fig. 8. Target Images (a) type 1 cell, (b) type 2 cell, (c) type 3 cell, and (d) type 
4 cell.

• which MOEA is more suitable for this problem, and

• the appropriated chromosome length value, 𝑛. For that, we con-

sider two of the most important MOEA proposed in the literature 
[17]: SPEA2 and NSGA-II and 𝑛 values of 30, 40 and 50. Both 
MOEAs and 𝑛 value performance are compared by Hipervolumen 
metric [17].

In the second experiment, given that the GA-based algorithm is the 
main solution reported in the state-of-the-art for image segmentation 
problem [13], we study strengths and weaknesses of GA solutions versus 
the MOEA Pareto front.

The third experiment studies the Pareto Front quality versus opera-

tion list.
Finally, in the fourth test we study the MOSD problem considering 

two different real images with the method this paper proposes, the re-

sults show the advantages of the methodology and possible applications 
to real life problems.

All algorithms were coded in Java, programming language using the 
jMetal framework [38], and performed on a Dual Intel Xeon CPU L5420 
@ 2.50 GHz processor with 4 cores each, having 24 GB of RAM avail-

able, with all its resources available for the execution of test cases. All 
tests were performed considering input image 𝐼𝑖𝑛 and target image 𝐼 ′
and the evolutionary/genetic parameters are similar to those suggested 
by [23, 39, 40], see Table 4.
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Fig. 9. Pareto front and solution calculated by MOEA (NSGA-II) using operation 
given in Tables 1 and 2, considering Cell type 1 and 2.

4.1. Determination of the Chromosome length and comparison between 
SPEA2 and NSGA-II performance

Test Image. In this test, four training images were considered. A syn-

thetic image has been generated for this purpose as shown in Fig. 4, for 
this figure the input image 𝐼𝑖𝑛 is composed of four distinct elements: 
squares, circles, stars, and rings. All of these images are randomly dis-

tributed. The target image 𝐼 ′ and input image 𝐼𝑖𝑛 are similar to each 
other, though 𝐼 ′ only contains one of the four elements.

Operations. The set 𝑡 contains the next operations: morphological, 
logical, reading, and storing. This set is listed in Table 1, and is based 
on [5].

Independently of the image size and morphological operations, the 
computational cost is defined simply by the number of active com-
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Fig. 10. Pareto front and solution calculated by MOEA (NSGA-II) using opera-

tion given in Tables 1 and 2, considering Cell type 3 and 4.

ponents that conforms a structuring element (SE) for morphological 
operations. For logical operations, the cost is just one unit and nor-

malized. Table 3 shows the cost of structuring elements given in Fig. 1

and logical operations.

Results. The hypervolume measures the area of a Pareto front con-

sidering a reference point [41]. This reference point usually is the worst 
point of criteria space. When the hypervolume is higher the Pareto front 
is better quality. The higher hypervolume possible corresponds to the 
Optimal Pareto Front.

Considering the importance of the Chromosome length, 𝑛, in the 
algorithm performance a tuning procedure to find the best value for 
this parameter was carried out. The procedure was implemented in 
the following way. For every image in Fig. 4 each MOEA was run 30 
times to get 30 Pareto Fronts, using all other evolutionary parameters 
as shown in Table 4. The set of non-dominated solutions found in all ex-

ecutions of both MOEAs is denominated as the Known Optimal Pareto 
Set. For each Pareto Front, generated by a single algorithm execution, 
was calculated the difference between its hypervolumen and the hyper-

volumen of the Known Optimal Pareto Front, therefore, the lower the 
difference, the closer the Pareto front is to the optimal one. Next, for 
each image and MOEA was calculated the average and variance con-

sidering the 30 hypervolumens differences. The same procedure was 
performed considering three different Chromosome length 𝑛 values, 30, 
40 and 50. The results presented in Table 5 show that the MOEAs pre-

sented a better performance with a 𝑛 value of 30. The best result of 
each MOEA, when different 𝑛 values are considered is underlined, for 
example, the best performance of the NSGA-II considering the Rings im-

age was obtained with 𝑛 equal to 30 with an average of 0.846148922. 
In all four cases, considering Rings, Circles, Squares and Stars, the 
best performance of the MOEAs was achieved with a 𝑛 value of 30 
with a high statistic significance (𝑝-value < 0.05 in all cases), there-

fore, all following tests were done considering a chromosome length 
of 30. Once the evolutionary parameters for the tests are defined the 
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question about which MOEA shows a better performance for this prob-

lem can be evaluated. The results presented in Table 5 also show the 
performance comparison between MOEAs. Note in the Table 5 rows in-

dicating 𝑛 values and figures while columns contain average (𝜇) and 
variance (𝜎2) of MOEA algorithms hypervolumen difference with the 
optimal, and the 𝑝-value of the 𝑡-test statistic related to the comparison 
of MOEAs with same figure and Chromosome length. There the best re-

sult of each line is highlighted in bold. The 𝑝-value shows that there is 
not a statistically significant difference between MOEAs performance, 
therefore, any of them could be considered for the MOSD problem. In 
consequence, we will just consider the NSGA-II approach for next ex-

periments.

4.2. Analysis of GA and NSGA-II performance

A GA algorithm developed in [4] was implemented to compare the 
performance of the NSGA-II. This GA algorithm just optimizes the simi-

larity measure.

For each pair of images, the NSGA-II algorithm was performed 10 
times to obtain 10 Pareto sets 𝑆𝑘. Then, a good Pareto set 𝑆∗ was built 
firstly by the union of these sets in 𝑆′ = ∪10

𝑘=1𝑆𝑘, and then dominated 
solutions are eliminated, i.e. 𝑆∗ = 𝑆′ − {𝑥 ∈ 𝑆′ ∶ 𝑆′ ≻ 𝑥}. The same pro-

cedure is done for GA were the best from 10 calculated solutions is 
taken.

Test Image. In this test, the images given in the Fig. 4 are considered. 
Similar to the previous experiment, each input image 𝐼𝑖𝑛 is composed 
of four different elements: squares, circles, stars, and rings. All of these 
images are randomly distributed. The target image 𝐼 ′ and input image 
𝐼𝑖𝑛 are similar to each other, though 𝐼 ′ only contains one of the four 
elements.

Operations. The set 𝑡 contains the next operations: morphological, 
logical, reading, and storing and listed in Table 1.

Results. In this experiment the algorithms generated solutions with 
zero similarity measure values as well as low run-time operation se-

quences as shown in Figs. 5 and 6; the Pareto front 𝑓 (𝑆∗) of NSGA-II 
and a single solution of GA are exposed respectively. Note that, NSGA-II 
calculates several solutions while GA just one solution, i.e. NSGA-II is a 
pure multi-objective optimization approach and GA is a mono-objective 
solution.

In the first test, target image 𝐼 ′ contains only square elements. We 
find the GA solution is inside the Pareto front with a very low similarity 
measure value, but a high computational cost, as seen in Fig. 5a. Similar 
results are obtained in all tests, as see in Figs. 5b, 6a and 6b with target 
image 𝐼 ′ containing only stars and circle elements respectively. In all 
cases, NSGA-II calculates solutions with lower, intermediate, and high 
values of computational cost and similarity measure.

4.3. Impact of operations on Pareto front quality

Test Images. Similar to the first experiment (section 4.1), for this 
test a synthetic image has been generated as shown in Fig. 7. In this 
case the pair of binary images 𝐼𝑖𝑛 were artificially created by means of 
four distinct types of cells, all of these randomly distributed, as shown 
in Fig. 7. The target image 𝐼 ′ contains only one of the element types 
which are in the same position than in the original image 𝐼𝑖𝑛.

Operations. In addition to the operations used in the previous test, 
erosion and dilation with another structuring element and stacking op-

eration are included. Table 2 shows new operations.

Results. The target of this experiment is to isolate each of four types 
of cells as given in the Fig. 8.

The experiment of this group was performed in four consecutive 
steps.

• In this first step, the same evolutionary parameters and the set of 
operations 𝑡 of previous experiment are used (Table 1). Fig. 9 shows 
the different Pareto fronts for the four cells of the Fig. 7. Note that, 
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Fig. 11. (a) Input image of the Text example and (b) target image 𝐼 ′ containing only the predetermined characters.
Fig. 12. Pareto front calculated by the NSGA-II considering the Text instance.

all solutions of MOEA case 1 have high similarity measure values. 
In order to improve these results, the next step is implemented.

• In the second step, the number of evaluations was increased from 
40,000 to 400,000 generations through which a set of better solu-

tions was obtained, but such solutions are still not satisfactory. In 
Fig. 9 these solutions are given by MOEA case 2. Similar to the re-

sults of the previous step, the solutions still have a high similarity 
measure.

• In the third step, all operations of Table 2 without 𝑝𝑢𝑠ℎ and 𝑝𝑢𝑙𝑙
were added to the set of operations 𝑡. As a result, solutions slightly 
improve specially for cell type 3 and 4, but for cell type 1 and 2 the 
similarity measure is still high. In Fig. 9 these solutions are given 
by MOEA case 3.

• In the last step, the 𝑝𝑢𝑠ℎ and 𝑝𝑢𝑙𝑙 operations were added, see the 
last operation of Table 2. With this complete set of operations 
(Tables 1 and 2), satisfactory solutions are obtained where one so-

lution reaches zero similarity measure or is close to zero for all 
types of cells. In Fig. 9 and 10, these solutions are given by MOEA 
case 4. Note that, Pareto fronts of MOEA case 2 to 4 are very simi-

lar, as seen in Fig. 10b.

In all cases, the single-solution of GA is dominated by solutions of 
the Pareto front of MOEA case 4. Note that, all Pareto fronts of MOEA 
from cases 1, 2 and 3 are dominated by the Pareto front of MOEA 
case 4.

4.4. Real images problems

In order to validate the methodology proposed in real life applica-

tions, two instances of real images are considered. The first instance is 
proposed in this document as a simple application. The input image is 
a text [42] and the output image contains only predetermined charac-

ters of the original image (see Fig. 11). Fig. 12 presents the diversity 
of solutions achieved by the proposed methodology calculated, ranking 
from low to high cost.
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The second instance uses a binary image of a music score as pro-

posed by Yoda [9]. The goal of this second instance is to obtain a target 
image 𝐼 ′ from the music score with only the Heads (Fig. 13(b)), Hooks 
(Fig. 13(c)) and Staff lines (Fig. 13(d)) of the original image (Fig. 13(a)). 
The Pareto fronts generated by the NSGA-II can be seen in Fig. 14. There 
can be seen that the problem considering the heads as target image 𝐼 ′
generates images with lower similarity measure than the other two, but 
with higher costs.

Three examples of the images generated by the proposed methodol-

ogy can be seen in Fig. 15.

5. Conclusions and future work

The Multi-objective Operation Sequence Design (MOSD) problem 
can be considered in several digital image problems. In this article, we 
present a multi-objective solution mechanism that searches for a se-

quence of steps that, given an input binary image, obtains an output 
binary image at the lowest computational cost. It is clear that the prob-

lem is a multimodal optimization problem, where we can get several 
trade-off solutions. We compare the performance of two Multi-objective 
Evolutionary Algorithms (MOEA): the Non-dominated Sorting Genetic 
Algorithm (NSGA-II) and the Strength Pareto Evolutionary Algorithm 2 
(SPEA2). The NSGA-II shows better results in most cases but the dif-

ference is not statistically significant. The results show that: (a) the 
similarity measure and the computational cost are objective functions 
in conflict, therefore, the Pareto set contains several trade-off solutions; 
while (b) the number of operations available and type of input im-

ages impact on the quality of Pareto set. A Genetic Algorithm (GA) was 
compared to the performance of the NSGA-II. This GA algorithm just op-

timizes the similarity measure. There are several aspects to highlight. 
First, the number of different operations is more critical than the num-

ber of evolutionary generations for obtaining a good performance. This 
is because the number of possible solutions increases with the number 
of operations and consequently better solutions can be reached. Sec-

ond, the MOEA solution with lowest similarity measure has lower cost 
than the GA solution in all cases. This indicates that the MOSD problem 
has several solutions with the same similarity measure, but different 
computational cost. In other words, the MOSD is a multi-modal opti-

mization problem. In order to validate these results, two real problems 
were solved. The results show the capacity of the methodology to be 
used not only in images designed in the laboratory but also in real cases. 
The selection of a solution depends on the application scenario, for ex-

ample, if the application needs a fast answer, then the selected solution 
will give non good similarity measure. In counterpart, if the applica-

tion needs good similarity measure then the selected solution will have 
a higher computational cost. This proposal is the first part of this re-

search line and we plan to extend it to more complex images and to 
gray-scale and color images. Approaches by other meta-heuristic algo-

rithms should be explored, as well as adding other operations such as 
rotation, translation, change of scale, and others.
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Fig. 13. (a) Original music sheet image, target image 𝐼 ′ containing (b) the Hooks, (c) the Heads and (d) the Staff lines.

Fig. 14. Pareto fronts of the second instance, considering the target images 𝐼 ′ as (a) the Hooks, (b) the Heads and (c) the Staff lines.
9
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Fig. 15. Examples of the images generated by the methodology, considering the target images 𝐼 ′ as (a) the Hooks, (b) the Heads and (c) the Staff lines 15c.
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