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Molecular pathways and targets in prostate cancer

Emma Shtivelman1, Tomasz M. Beer2 and Christopher P. Evans3

1 Cancer Commons, Palo Alto, CA
2 Oregon Health & Science University, Knight Cancer Institute, Portland, OR
3 Department of Urology and Comprehensive Cancer Center, University of California Davis, Davis, CA

Correspondence to: Emma Shtivelman , email: emma@cancercommons.org
Keywords: prostate cancer, molecular targets, CRPC, localized prostate cancer
Received: August 04, 2014 Accepted: August 28, 2014 Published: August 29, 2014

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

ABSTRACT
Prostate cancer co-opts a unique set of cellular pathways in its initiation and 

progression. The heterogeneity of prostate cancers is evident at earlier stages, 
and has led to rigorous efforts to stratify the localized prostate cancers, so that 
progression to advanced stages could be predicted based upon salient features of 
the early disease. The deregulated androgen receptor signaling is undeniably most 
important in the progression of the majority of prostate tumors. It is perhaps because 
of the primacy of the androgen receptor governed transcriptional program in prostate 
epithelium cells that once this program is corrupted, the consequences of the ensuing 
changes in activity are pleotropic and could contribute to malignancy in multiple ways. 
Following localized surgical and radiation therapies, 20-40% of patients will relapse 
and progress, and will be treated with androgen deprivation therapies. The successful 
development of the new agents that inhibit androgen signaling has changed the 
progression free survival in hormone resistant disease, but this has not changed the 
almost ubiquitous development of truly resistant phenotypes in advanced prostate 
cancer. This review summarizes the current understanding of the molecular pathways 
involved in localized and metastatic prostate cancer, with an emphasis on the clinical 
implications of the new knowledge. 

INTRODUCTION 

Prostate cancer (PCa) is a complex multifaceted and 
biologically heterogeneous disease. The majority of men 
diagnosed with prostate cancer will benefit from not being 
treated, because they have low volume indolent tumors 
that do not require immediate treatment. Overtreatment 
of localized PCA has become a serious problem, not 
in the least because of serious health risks involved in 
prostatectomy and other commonly used approaches. 
Moreover, biochemical relapse occurs in about 30% of 
patients who were treated aggressively. 

To minimize overtreatment of patients with indolent 
PCa, active surveillance is a reasonable and widely 
accepted approach [1] for many patients. The recently 
created and funded National Proactive Surveillance 
Network (NPSN), provides for this approach, and also 
aims to collect data and genetic sequences from biopsies 
to identify the molecular signatures of PCa in low-risk 

patients. 
At the other end of the spectrum in localized PCa 

is the category of men presenting with either a high risk 
localized cancer or with metastatic disease. These are 
usually treated aggressively with any of the following: 
prostatectomy, radiation therapy and/or androgen 
deprivation therapies (ADT), which have been expanded 
in recent years to include novel substantially more 
efficient drugs. Nevertheless, even with newest ADT 
drugs, the outcome involves nearly inevitable progression 
to castrate resistant disease (CRPC), metastases and death. 
Moreover, a meta-analysis of primary ADT treatment 
provided conclusive evidence on the lack of survival 
benefit from PADT for most men with clinically localized 
prostate cancer [2].

The genetic landscape of prostate cancer was 
intensely explored in the last few years with NGS, whole 
genome expression analyses and analyses of epigenetic 
alterations. These findings, along with the results from 
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genetically engineered mouse models (GEMM) for PCa 
initiation and progression revealed a number of features 
not encountered in their entirety in other cancers. These 
are:

•A relatively low rate of mutations in PCa compared 
to other tumors. 

• Prevalence of non-random copy number variations 
(CNV) in most PCa tumors involving well-known prostate 
oncogenes or tumor suppressors. 

• Recurrent chromosomal rearrangements involving 
ETS transcription factors, most frequently ERG, in 60 to 
70% of PCa, which place these proteins under controls of 
an androgen-dependent promoter.

• Complex nature of the genomic rearrangements 
observed in PCa, with a pattern of balanced breaking and 
rejoining (“close chain” pattern). The highly rearranged 
PCa genomes are thought to evolve in a punctuated 
manner, with translocations and deletions occurring 
interdependently, via “chromoplexy” [3].

• Heavy involvement of developmental pathways 
that govern prostate embryonic development in the 
initiation and particularly progression to CRPC.

• The key role in prostate cancer of the epigenetic 
changes such as chromatin remodeling, DNA methylation 
and histone acetylation.

• The whole scale alterations in transcriptional 
programs, in particular those governed by androgen 
receptor (AR), and their prominent role in driving DNA 
rearrangements and co-opting developmental pathways. 

• Continuum of genetic somatic changes in PCa 
from PIN (prostate intraepithelial neoplasia) to CRPC 
(castrate resistant prostate cancer), i.e. increased frequency 
of changes already existing in primary PCa as disease 
progresses to CR stage, a well as development of new 
somatic aberrations in CRPC.

The most common known genomic alterations in 
PCa involve four pathways/genes: the androgen receptor 
pathway, PI3K pathway, rearrangements that place 
members of the ETS transcription factor family under 
control of androgen responsive promoter TMPRSS2, and 
loss of function of the prostate tumor suppressor NKX3.1. 
The other somatic alterations and pathways involved 
in PCa are listed in Table 1. This review first describes 
somatic genetic events associated with localized disease, 
attempting to stratify the subtypes based on presence of 
ETS fusions, and describing the mutations thought to be 
“drivers” in the ETS fusion negative PCa. PI3K pathway 
involvement is also described in the section on localized 
PCa, even though its frequency is increased in CRPC. 
AR pathway aberrations in localized PCa do not typically 
involve AR itself, and the latter are detailed in the CRPC 
section. 

Stratification of localized PCa based on molecular 
aberrations

Risk stratification of localized PCa is a high priority, 
with an overarching goal of identifying groups of patients 
who will benefit from aggressive treatment approaches 
versus those whose disease will remain indolent for years 
and who are good candidates for active surveillance or 
even no intervention at all. Ideally, it should perform 
better than the current histopathological/clinical grading 
(Gleason score in combination with tumor size, lymph 
node involvement, metastases, and PSA levels). However, 
the identification of molecular subtypes that drive 
differential prognoses in localized PCa was and remains 
a challenge. 

Localized PC could be (relatively but not entirely 
arbitrary) subdivided in two categories based on presence/
absence of TMPRSS2-ERG or other changes in ETS 
family genes (Figure 1). ETS family fusions are found in 
up to 60% of PCa, and the fusion-negative group could be 
divided into several subtypes based on results of the recent 
NGS studies that have identified new genetic aberrations 
in this group. 
TMPRSS2-ERG and other rearrangements involving 
ETS family 

TMPRSS2-ERG fusion [4] is a result of 
interchromosomal rearrangement that occurs in 40 to 
60% of prostate cancers. Other members of ETS family of 
transcription factors, of which ERG is a member, are also 
involved in rearrangements, albeit much less frequently 
(Figure 1). This is the most frequent chromosomal 
rearrangement found in solid tumors, and perhaps in 
human cancer in general, considering the high incidence of 
PCa. Fusions appear to be an early event, found already in 
PIN, and the presence of TMPRSS2-ERG fusion is thought 
to be sufficient for the initiation of prostate intraepithelial 
neoplasia (PIN) [5]. Increased expression of ERG or 
other ETS factors under control of androgen responsive 
promoter (TMPRSS2) is an inevitable consequence of the 
fusion events, and it activates transcriptional program that 
contributes to oncogenesis by upregulating expression of, 
among others, MYC, EZH2 and SOX9 and repressing 
NKX3.1 [6-8]. The net result of high levels of ETS 
expression is prevention of the differentiation of prostate 
epithelium that is normally governed by AR.

Patients with expression of ERG in high-grade 
prostatic intraepithelial neoplasia are more likely to 
develop prostate cancer. [9]. Expression of TMPRSS2-
ERG fusion shows a striking correlation with AR 
expression in tumor biopsies [10]. It is of significant 
interest that formation of fusions involving ERG genes 
has been shown to be facilitated by signaling from the 
AR, which induces proximity of the TMPRSS2 and ERG 
genomic loci. Both are located on chromosome 21q22, 
and fusion occurs via double-stranded DNA breaks [11]. 
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Table 1: Molecular pathways in prostate cancer

Genes and 
alterations Description Alterations

Frequency in primary 
versus metastatic 
(when known)

PATHWAY

AR Androgen receptor
Amplification
Mutations
Variant splicing

Only CRPC, in majority 
of tumors together with 
cofactors

Androgen 
receptor 
signaling

AR cofactors 
and regulators 
NCOA1,2,3; 
NCOR1, NCOR2, 
TNK2 and more

Regulation of the AR activity Amplification
Mutations

Infrequent in localized; 
60-80% CRPC

FOXA1 Transcription, AR co-factor, 
prostate development

Mutations, 
overexpression

5% mutations in 
localized, higher levels 
in CRPC

Androgen synthesis 
enzymes: CYP17 
etc

Steroidogenic/androgen 
synthesis

Activating mutations, 
copy gain 

Uncommon in localized; 
very common in mCRPC

TMPRSS2:ERG, 
other ETS

Gene fusion involving ERG; 
rarely other ETS family 
members

Translocation and 
overexpression

 50-60% of localized and 
CRPC

Transcription, 
controlled by 
AR

NKX3.1 Homeobox, prostate specific, 
androgen regulated Deletions

3-5% mutations, 10-20% 
deletions in localized, 
40-80% decreased 
expression in CRPC

Developmental 
lineage 
specific, 
transcription, 
AR pathway

PTEN Phosphatase suppressor of 
PI3K Deletions, rare mutations

40-50% of primary, 80% 
CRPC

PI3K signal 
transduction 
Co-operates 
with AR 
pathway in 
pathogenesis of 
PCa

MAGI2 PTEN interactor Rearrangement
PIK3CA1 catalytic 
subunit PIP2 kinase Overexpression, 

mutations

PHLPP1/2 Phosphatase, inhibits AKT Deletion, down-
regualtion

Akt1 Central kinase in PI3K 
pathway Point mutations (rare)

SPOP
Speckle-type POZ domain 
ubiquitin ligase Mutations 5-10% primary and 

metastatic

Degradation 
of AR cofactor 
NCOA3/SRC-
3, and Gli 
factors

SPINK1 Serine peptidase inhibitor Overexpression
5-10%, mutually 
exclusive with ERG 
rearrangements

 Unknown

MYC Master of transcription 
regulation; opposes NKX3.1

Overexpressed in 
primary, amplified in 
metastatic and NEPC

20-30% with gain in 
metastatic disease

Transcription/
translation/ 
metabolism

NMYC Transcriptional regulation Overexpression, 
amplification

40% of neuroendocrine 
PCa; 5% overall Transcription

MED12 Regulatory component of 
mediator complex Mutations 2-5% Transcription

EZH2 Polycomb group Elevated expression Localized (poor 
prognosis) and CRPC Chromatin 

modification
Transcriptional 
suppressionBMI Polycomb group, 

transcriptional suppression Elevated expression Localized and metastatic

TP53 Tumor suppressor Loss, LOF*, GOF* 
mutations

30-100%, mostly in 
metastatic

Cell cycle, 
apoptosis, 
metabolism

Aurora A kinase Mitotic kinase Overexpression, 
amplification

40% of neuroendocrine 
PCa; 5% overall Cell Cycle
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Figure 1: Molecular subtypes of localized prostate cancer. The diagram represents the evolving understanding of the associations 
between molecular alterations reported in localized prostate cancer. Recent results suggest that ERG positivity and SPINK1 expression are 
not always mutually exclusive, and the role of TAK1 deletions in primary localized cancer remains to be explored. 

BRAF, RAF Serine-threonine kinases 
activating MAPK cascade Rearrangements 1%, all MAPK 

CADM2 Cell adhesion molecule Rearrangements Primary and 
metastatic

Cell polarity, potential 
tumor suppressor

CHD1 Nucleosome positioning Mutations
8%, mostly with 
SPOP mutations, in 
ETS normal 

Chromatin remodelingMLL complex 
(MLL2, ASH2L 
and more)

Epigenetic transcriptional 
activation Mutations 9% CRPC

TAK1/MAP3K7 TGFβ-activated kinase Deletions Deleted in 30% of 
primary and CRPC

Activation of NFkB and 
other not yet understood 
functions

RB1 Cell cycle Loss, LOF 50% metastatic Cell cycle
ERCC2,4,5; ATM, 
XRCC4, PRKDC 
and more

Various genes involved in 
DNA repair Losses, mutations Mostly in metastatic DNA damage repair

CTNNB1, APC, 
BMP7, WNT 
factors

WNT developmental 
pathway Losses, mutations 5% or more in CRPC

Developmental pathways

Shh, Gli factors Hedgehog developmental 
pathway

Activation, elevated 
expression CRPC

SOX9 Prostate stem cells 
homeobox

Activation, elevated 
expression CRPC

TGFβ,  TGFβR TGFβ pathway Activation, elevated 
expression CRPC

SMAD4 TGFβ pathway Loss of expression CRPC

FGF10, FGFR Developmental pathway, 
paracrine Elevated expression CRPC

EGFR, IGF1R, 
FGFR, MET Growth factor receptors Activation NA

Growth factor induced 
signaling, activation 
of PI3K and MAPK 
pathways, and AR 
signaling

IL6-IL6R Cytokine receptor Activation NA JAK-STAT3 pathway; 
activates AR

SRC Tyrosine kinase Activation NA Many signaling pathways

HSP90, HSP27
Clusterin/TRPM2

Maintain stability of 
various signaling proteins 
including AR and many 
others

Activation NA Protein Chaperons

*LOF; loss of function; GOF, gain of function 
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In general, ERG-rearrangement positive cases contained 
DNA breakpoints located near AR binding sites, whereas 
ETS-negative prostate cancers harbored breakpoints 
significantly distant from AR binding sites [12]. Androgen 
signaling plays a direct role in generation of ERG fusions. 
Once the TMPRSS2 and ERG loci are rendered proximal, 
AR facilitates the fusion by inducing recruitment of two 
types of enzymatic activities - cytidine deaminase and the 
LINE-1 repeat-encoded ORF2 endonuclease [13]. These 
induce double stranded DNA breaks that are ligated by 
nonhomologous end joining [13]. It is also of great interest 
that prevalence of ETS fusions is very high in the early-
onset prostate cancer (EO-PCa), defined as PCa diagnosed 
in patients under 50 years of age [14]. The patients with 
EO-PCa have higher expression of AR, and 90% of the 
analyzed tumors from these patients had ERG fusions 
and deletions of AR co-repressor NCOR2. In the older 
patients with lower levels of AR, structural rearrangements 
involved loci such as TAK1, PTEN, CHD1 that are not 
known to be androgen-dependent [14]. These findings 
indicate that AR signaling raises the probability of certain 
DNA rearrangements, and those involving ERG or 
other ETS factors and androgen responsive elements in 
TMPRSS2 are favored in cells with increased androgen 
signaling. 

Because ETS transcription factors in fusion-positive 
tumors are expressed from an androgen-dependent 
promoter, their levels are significantly higher in these 
tumors. This is, no doubt, related to the biological role of 
ERG and other ETS in PCa. However, TMPRSS2-ERG 
expression was shown to persist in castration resistant 
prostate epithelial subpopulations which indicates 
that its expression might not be driven by androgen 
exclusively [15]. Presence of TMPRSS2-ERG fusion is 
a clear promoting event in PCa because activation of a 
number of oncogenic pathways is highly enriched in 
tumors with TMPRSS2-ERG2 rearrangement. Thus, 
TMPRSS2-ERG and PTEN loss cooperate in the relevant 
genetically engineered mouse models (GEMM) [16, 17]. 
TMPRSS2-ERG cooperates with activated AKT and 
overexpressed AR but not with loss of TP53 in transition 
to PCa from PIN in GEMM [18]. A conditional GEMM 
overexpressing ERG in prostate shows major upregulation 
of the AR cistrom when combined with PTEN loss [19]. 
Constitutively expressed ERG reprograms genome-wide 
localization of AR and prostate epithelium to respond to 
PTEN loss [19].

TMPRSS2-ERG expression induces repressive 
epigenetic programs by upregulating expression of the 
EZH2, a Polycomb group protein [20]. Overexpressed 
ERG in PCa shows an extraordinary degree of 
transcriptional co-opting of androgen receptor, with a 
consequence of inhibiting AR-mediated differentiation 
and promoting EZH2-mediated dedifferentiation [20]. 
Paradoxically, upregulation of EZH2 is also achieved, 
though by different means, in ETS fusion negative PCa 

(see below, under EZH2). High levels of ETS factors 
in fusion-positive PCa activate a transcription program 
characterized by enrichment of RAS-responsive elements, 
therefore functionally replacing activation of the RAS-
MAPK pathway [21]. 

Deregulation of WNT and TGFβ signaling pathways 
was also found to be associated with TMPRSS2-ERG 
fusion [22]. As an oncogenic transcription factor, ERG 
mediates striking non-random alterations in chromatin 
structure thus enabling and promoting genomic 
rearrangements through its effects on chromatin structure 
[23]. On its own, presence of ETS fusions does not show 
striking correlations with the disease course, even though 
some publications have reported association with a more 
aggressive disease. However, overexpressed ETS proteins 
probably act as an “enabler” for further carcinogenic 
genomic changes that drive the fully transformed 
phenotype. In terms of prognostic significance, ERG 
fusions are strongly associated with high AR signaling 
in the early onset PCa, a particularly aggressive group of 
PCa, that is thought to be driven by high levels of AR [14].

Other members of ETS family were also implicated 
in PCa via chromosomal rearrangements. ETV1 activation 
in a mouse models appears to have consequences for 
AR transcription that are different from those induced 
by translocated ERG: ETV1 largely cooperates with the 
AR transcriptional program, and promotes autonomous 
testosterone production [24]. ETV1-positive tumors 
have a very poor outcome [24]. ETV4 is involved in 
translocations with TMPRSS2 in PCa less often [25], 
and, as seen in a GEMM, while ETV4 expression appears 
not to affect tumor growth per se, it induces metastatic 
progression in cooperation with activated PI3K pathway 
[26]. In human PCa, ETV4 overexpression correlates with 
activation of PI3K and RAS signaling [26].

Treatment implications. Currently there are no 
drugs targeting ETS family transcription factors. In 
preclinical studies a compound WP1130, inhibitor of 
deubiquinating enzyme USP9X was shown to restrain 
growth of prostate cancer in vitro and in vivo by promoting 
degradation of ERG protein [27].

It was suggested that ETS fusion positive PCa 
patients could benefit from treatment with poly (ADP-
ribose) polymerase 1 (PARP1) inhibitors because 
TMPRSS2:ERG interacts in a DNA-independent manner 
with PARP-1 and the catalytic subunit of DNA protein 
kinase (DNA-PKcs). Moreover, these interactions are 
essential for the transcriptional program of ETS factors 
[28]. A randomized phase II trial NCT01576172 of PARP-
1 inhibitor ABT-888/veliparib or placebo with abiraterone 
in fusion-positive patients with mCRPC has started to 
recruit patients. Another PARP-1 inhibitor, olaparib, is 
tested in a phase II trial NCT01682772 in UK, and this 
trial includes evaluation of defects in DNA repair genes 
in patients. A novel PARP inhibitor BMH 673 is in early 
testing in various tumors with DNA repair deficiencies, 
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including PCA (NCT01286987). 
Activation of PI3K pathway 

Activation of phosphoinositide-3-kinase (PI3K) 
pathway, most often through PTEN copy losses occurs in 
50% of PCa, and appears to be an early change, found 
already in PIN. PTEN is a phosphatase that is a well 
known as a tumor suppressor downregulating the PI3K 
pathway activity. PTEN deletions and/or mutations are 
found in 30% of primary prostate cancers [29] and 63% 
of metastatic prostate tissue samples [30], placing PTEN 
mutation among the most common genetic alterations 
reported in human prostate cancers. Monoallelic losses are 
more common in PIN and localized PCa, while bi-allelic 
PTEN losses are higher in frank PCa and particularly in 
CRPC. Moreover, homozygous loss of PTEN is causative 
in progression to aggressive metastatic phenotype and 
castration resistance [31]. ETS fusion positive tumors 
are enriched for PTEN loss, while the fusion-negative 
tumors have less frequent PTEN losses. There is a strong 
oncogenic interaction between high levels of ERG and 
PTEN loss (described above, in the TMPRSS2-ERG 
section). 

Other components of the PI3K pathway are also 
infrequently altered in PCa, such as mutations in PIK3 
itself, in phosphatases other than PTEN - INPP4B and 
PHLPP [32], or in PTEN interacting proteins MAGI2/3 
[12]. MAGI proteins support the PTEN phosphatase 
activity and the following suppression of AKT activation. 
The functional relevance of these alterations remains to 
be verified. 

Studies in GEMM strongly confirmed the role of 
PTEN in prostate carcinogenesis. The monoallelic ablation 
of PTEN in prostates of adult mice is sufficient to induce 
PIN that do not, however, progress to cancer [33]. These 
mice develop invasive tumors when genetic background 
includes a monoallelic inactivation of NKX3.1[34, 35]. 
PTEN null engineered mouse tumors are indolent and 
non-invasive, and additional events - such as aberrant 
expression of ERG [17, 36], inactivation of TP53 [37, 
38] or activation of MYC [38, 39] - are needed to confer 
aggressive phenotype to these tumors. This could be 
related to the findings that loss of PTEN promotes a 
senescence response that prevents further development of 
malignant phenotype [40]. Additional alterations in PTEN 
deficient PCa, such as ablation of SMAD4 (key effector 
in TGF-β pathway) serve to overcome this senescence, 
leading to the development of aggressive tumors with 
100% penetrance [41]. 

Genetic changes leading to activation of PI3K 
pathway through various mechanisms (PTEN copy loss, 
MAGI2/3 mutations, PIK3CA mutations) are enriched in 
tumors positive for ETS fusions. Well-supported evidence 
exists, mostly from GEMM, of cooperation between ETS 
aberrations and PIK3CA pathway in development of PCa 
(see above). Not much information is available about the 

accompanying driver mutations in a relatively small subset 
of T/E positive tumors with normal PI3K/PTEN status. 

Aberrations of PI3K pathway contribute to 
development of the castration-resistance in PCa, at least 
in GEMM. Castration-resistant growth is an intrinsic 
property of Pten null prostate cancer cells, independent 
of cancer development stage [42]. Deletion of AR in 
PTEN null epithelium promoted proliferation of PTEN 
null cells and lead to the activation of Akt. Activated PI3K/
AKT pathway is sufficient to compensate for androgen/
AR-signaling blockade by inducing proliferation of basal/
progenitor cells and enhancing expression of a number 
of pro-proliferative factors including EGR1, c-JUN, 
and EZH2 [42]. A recently discovered consequence of 
PI3K activation is accumulation of esterified cholesterol 
in of high-grade prostate cancer, whose significance is 
underlined by the finding that depletion of this form of 
cholesterol diminishes proliferation of PCa cells ([43]. 

In humans, numerous studies demonstrated the 
association between PTEN loss and worse prognosis, 
including shortened PFS [44] in particular in ERG 
positive cancers [45], increased risk of relapse [46] and 
development of metastases [47, 48]. 

Castration or treatment with Enzalutamide  (AR 
antagonist) in a GEMM of high grade (HG) PIN that 
develops in absence of PTEN resulted in rapid progression 
of the otherwise stable HG-PIN to CRPC [49]. However, 
targeting PI3K rather than AR pathway in this model 
with BEZ235 (PI3K/mTOR dual inhibitor) resolved the 
HG-PIN phenotype. Moreover, concurrent inhibition of 
MAPK and PI3K in PTEN null CRPC that developed 
after castration was effective in inhibiting growth of 
these tumors. These findings have serious implications 
for the androgen deprivation therapies used currently for 
treatment of prostate cancer. 

Treatment implications. More and more evidence 
suggest that ADT benefits are reduced in PCa with PI3K 
activation [42, 49], and that combining ADT with PI3K 
pathway inhibition is significantly more efficient, at least 
in GEMM, most likely by inhibiting the crosstalk between 
the two pathways. PI3K inhibitors are clinically tested in 
CRPC, and some trials are exploring the combination of 
PI3K pathway inhibition with ADT (see below, under 
CRPC). In a phase II trial NCT01695473 BKM120 will 
be given to patients with high risk PCa as a neoadjuvant, 
for 14 days prior to radical prostatectomy. This trial will 
also test the effect of this drug on activity of AKT, 4eBP 
and s6 kinase in the tumor samples.

A recent report on failure of mTOR inhibitor 
temsirolimus in mCRPC patients suggests that a single 
targeted therapy is not sufficient to have an impact on the 
course of this disease [50]. The fact that patients accrued 
into this trial were not pre-screened for the activation of 
mTOR pathway could have contributed to its failure to 
reach its endpoints. 
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Driver mutations in ETS fusion negative PCa

Until recently, the driver mutations in ETS fusion-
negative PCa were unknown. In the last year or two, a 
number of genomic aberrations that occur selectively in 
ETS fusion-negative PCa were identified, mostly through 
use of NGS and analysis of epigenetic alteration. 

SPOP mutations (6-15% of PCa) appear to 
represent a genetic subclass of PCa of its own. Mutations 
in SPOP are mutually exclusive with the ETS family 
rearrangements and rarely have accompanying mutations 
in PTEN or PIK3CA or TP53 in localized cancers. SPOP 
mutations define a subgroup of PCa with poor prognosis 
[51]. They are strongly associated with copy loss of 
CHD1/5q21.1 and copy losses of 6q21 containing loci for 
FOXO3 and PRDM1 [51]. In general, SPOP mutations 
are associated with higher frequency of CNVs. Even 
though SPOP mutations in localized PCa show an inverse 
relationship with PTEN and PI3K pathway alterations, 
they do co-occur more frequently in metastatic tumors 
[51]. SPOP is a POZ domain adaptor protein that forms 
a complex with CULLIN3 E3 ubiquitin ligase, and it was 
initially shown to ubiquitinate and induce degradation of 
SRC-3/AIB1, a cofactor of AR necessary for its activity 
[52]. This is a strong indication that SPOP loss of function 
deregulates activity of AR already in localized PCa. PCa-
associated mutant versions of SPOP protein are unable 
to bind to SRC-3 and trigger its degradation [53] thereby 
validating the tumor suppressing role of SPOP. Recently it 
was shown that SPOP recognizes a degron within the hinge 
domain of AR and promotes degradation of AR but not of 
PCa associated splicing variants that lack hinge domain 
[54]. SPOP mutants do not activate degradation of AR 
[54]. SPOP also promotes degradation of Gli2 and Gli3, 
transcription factors in Hedgehog (Hh) developmental 
pathway, which contributes to castrate resistant phenotype 
(see below). This indicates that mutations in SPOP might 
lead to inappropriate activation of Hh pathway [55-57]. 
SPOP and Cullin3 E3 ubiquitin ligase also ubiquitinate 
the Polycomb group protein BMI1 [58]. Considering the 
role of BMI1 expression in CRPC (below), increased 
stability of this protein resulting from SPOP inactivation 
could be yet another contributor to aggressive character of 
SPOP mutant PCa. In addition, a single report suggested 
that SPOP expression might be lost in as many as 37% of 
PCa [59]. Therefore, SPOP is a tumor suppressor that is 
uniquely placed to deregulate, when mutated, the androgen 
signaling and three developmental pathways instrumental 
in prostate development and carcinogenesis.

CHD1. Loss of this chromatin remodeler occurs 
in 5-10 % of PCa, exclusively in ETS fusion negative 
tumors, and is frequently associated with mutations of 
SPOP [51, 60]. CHD1 might be involved in in prevention 
of chromosomal deletions. Loss of CHD1 in clinical 
specimens is significantly associated with an increased 
number of additional chromosomal deletions, both hemi- 
and homozygous, especially on 2q, 5q and 6q [61]. 

Inactivation of CHD1 in vitro prevents formation of ERG 
rearrangements due to impairment of androgen receptor 
(AR)-dependent transcription, a prerequisite for ERG 
translocation, which explains the mutual exclusivity of 
ERG rearrangements and CHD1 loss [62].

SPINK1 overexpression, found in 5-10% of PCa is 
mutually exclusive with ERG rearrangements [63] and 
strongly associated with copy loss of PTEN but normal 
copy number of AR in CRPC [64]. Recently, SPINK 
expression and ERG negative status was shown to be 
not mutually exclusive [65]. SPINK1 encodes a secreted 
serine peptidase inhibitor, Kazal type 1 that might involve 
EGFR in its tumorigenic effects, and defines an aggressive 
subtype of PCa [66]. SPINK+ETS- tumor xenografts 
were responsive not only to treatment with anti-SPINK1 
antibody, but also to anti-EGFR antibody cetuximab, 
indicating a potential treatment option.

Methylation of miR-26a. ETS fusion negative PCa 
frequently are hypermethylated at the miR-26a locus 
[67]. Systematic analysis of methylated regions in fusion-
positive versus fusion negative PCa revealed a much 
higher methylation of certain functional groups in the 
fusion-negative cancers, including homeobox proteins. 
High expression of histone methyltransferase EZH2 
(see below) was implicated in this selective methylation 
process. The high levels of EZH2 are, in turn, a 
consequence of methylation of miR-26a selectively in the 
fusion negative PCa [68]. In early PCa, Myc negatively 
regulates miR-26a and miR-26b via direct binding to their 
promoters, and also directly activates expression of EZH2 
[69]. 

MAP3K7/TAK1. Deletion mapping of locus 6q12-
22, one of the most commonly deleted loci in PCa has 
narrowed it to 6q15 and identified MAP3K7 as one of 
five genes present within it [70]. TAK1 was deleted in 
32% of 95 tumors analyzed, and deletions correlated 
significantly with high Gleason score. This TGF-activated 
kinase was proposed to be a putative prostate cancer 
tumor suppressor based on functional studies showing 
that attenuation of TAK1 expression lead to increased 
proliferation and metastases [71]. A very recent study 
involving a large number of interpretable tumors [72] 
showed a strong association of allelic loss of MAP3K7 
with ETS rearrangement negative status of tumors, though 
it was found in some ERG fusion positive tumors as well. 
In both situations, the deletion (found in about 20% of 
PCa) was associated with advanced tumor stage, lymph 
node involvement and shortened survival. It is of interest 
that TAK1 was shown previously to play an essential role 
in the LKB1/AMPK pathway of energy sensing and, thus, 
in cellular metabolism [73].

AR pathway alterations in localized PCa

The role of AR signaling in the initiation of PCa 
remains to be fully understood. It might depend on the 
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nature of the initiating oncogenic signal. As an example, 
ablation of AR in GEMM prevents development of PIN 
by FGF10 signaling (paracrine), but ablation of AR in 
GEMM does not prevent induction of PIN by activated 
Akt [74]. 

Even though AR itself is never altered in primary 
PCa, about half of localized tumors harbor alterations in 
several of AR transcriptional cofactors/regulators [75]. 
Among them, NCOR2, a negative regulator of AR, is 
mutated in 23% of primary PCa; no increase in frequency 
of mutations is observed in metastatic PCa. The frequency 
of mutations in NCOR1 rises from 4% in primary to 
16% in metastatic [75]. Activator NCOA2 is amplified in 
8% of primary and 37% of metastatic, and NCOA1 in 4 

and 11% respectively. Increased levels of NCO2 confer 
an increased AR transcriptional output even in presence 
of low levels of androgens. Several other cofactors and 
regulators of AR have been shown to be altered by copy 
number alterations [75]. 

Other recurrent molecular aberrations in 
localized PCa

NKX3.1 is frequently mutated or lost in localized 
PCa. The current understanding of the consequences of the 
loss of function of this tumor suppressor will be discussed 
in the section on metastatic CRPC, because frequency of 

Table 2: Drug Targets in Prostate Cancer

PATHWAYS Drug targets DRUGS
DRUG 
DEVLOPMENT 
STAGE

AR PATHWAY

AR Xtandi/MDV3100/enzalutamide
ODM-201, ARN509

Approved
Phase 3 

AR cofactors 

Androgen synthesis 
enzymes: CYP17

Zytiga/abiraterone
Orteronel/TAK700

Approved
Phase 1/2

ETS TMPRSS2:ERG PARP inhibitors: ABT-888, Veliparib, BMN-
673 Phase 1

Growth factor 
receptors

EGFR BIBW 2992/Afatinib, Lapatinib, PLX3397 Phase II

MET Cabozantinib /XL184, Tivantinib ARQ 197, 
Onartuzumab Phase II, III 

IGFR Cixutumumab/IMC-A12, PLX3397 Phase I
FGFR Dovitinib/TKI258 Phase II

VEGFR Dovitinib/TKI258, Axitinib (AG013736), 
PLX3397 Phase I

PI3K 

PIK3 BKM120, GDC0980, GSK2636771, 
BEZ235 Phase I

PTEN, MAGI2, 
PHLPP1/2, 
AKT1 MK2206, GDC0068 Phase I
mTOR Temsirolimus, Everolimus, DS-3078a Phase I

Other kinases SRC Dasatinib/Sprycel/ BMS-354825 Phase I

Cell Cycle CDKs Dinaciclib Phase I
Aurora A kinase MLN8237 (Alisertib) Phase I

Protein Chaperons 

HSP90 AT13387, STA-9090 Phase I, II
HSP27 OGX-427 Phase II
Clusterin/TRPM2 OGX-011/custirsen Phase 3 

Histone acetylation 
(transcriptional 
repression)

HDAC (EZH2, CHD5, 
MLL2)

Pracinostat SB939
Panobinostat
Vorinostat Phase I

DNA damage repair PARP PARP inhibitor Veliparib Phase I

Angiogenesis VEGFR Dovitinib/TKI258, Axitinib (AG013736 Phase I, II
Angiopoetin 1, 2 AMG 386/Trebananib Phase I

Developmental 
pathways: NOTCH. 
SHH, WNT

gamma secretase RO4929097

Phase IPTCH/SMOO Vismodegib/GDC-0449, LDE-225, 
itraconazole

Wnt-5a, Fzd8 OMP-54F28, Foxy-5
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NKX3.1 inactivation is much higher in advanced tumors, 
and because it is a gene essential in developmental 
processes that are discussed separately below. 

Classical tumor suppressors: inactivation of TP53, 
CDKN1B (p27/KIP), RB1 occurs infrequently in primary 
PCa, but is much more common in CRPC.

MED12 is mutated in 5% of prostate cancer 
[51]. It is a known tumor suppressor mutated in 70% 
of leyomyosarcomas [76], and is a component of the 
mediator complex. MED12 was recently found to 
inactivate TGFβR signaling and control response to 
several drugs in different cancer models [77]. Mutations of 
MED12 confer resistance to multiple anti-cancer therapies 
including conventional chemo and targeted therapies. 

MYC overexpression is observed in PIN [78] and 
in primary PCa [79]. It has been reported that MYC is 
activated by the TMPRSS22-ERG rearrangement in cell 
culture and animal models [8]. MYC stability is regulated 
indirectly by the ubiquitin specific protein USP2a that is 
upregulated in 44% of prostate cancers [80, 81]. USP2a 
mediates suppression of miRNA cluster miR-34a/b and 
consequently upregulates MYC [82]. MYC is subject 
to many levels of regulation, and more the one of these 
are reportedly disrupted in PCa. MYC is phosphorylated 
and negatively regulated by PKCζ, a kinase with tumor-
suppressing properties that is downregulated in some 
prostate tumors [83].

CADM2 is nectin-like member of the 
immunoglobulin-like cell adhesion molecules with 
expression reduced in PCa [84] and disrupted by 
rearrangements in 3 of 7 primary tumors sequenced and in 
6 from an additional set of 90 [12]. The role of CADM2 in 
PCa development is not understood. 

Genetic landscape of metastatic PCA and CRPC: 
pathways significantly activated or deregulated 
compared to localized disease

CRPC is characterized by massive accumulation of 
genomic and epigenetic alterations involving a number 
of developmental, signal transduction pathways as well 
as oncogenes and tumor suppressor controlled pathways 
(Table 2). These alterations are most likely driven by 
the disregulated AR program and by ADT that is almost 
universally used in patients with aggressive and metastatic 
disease. Clearly, the AR program plays a critical role in 
PCa progression. 
Androgen receptor pathway

AR pathway is a driving force in CRPC, as seen 
from its deregulation in vast majority of these cancers. 
As described above, a significant number of localized 
cancers have perturbations in AR associated regulators 
and co-factors, but not in AR [75]. However, AR itself 
is altered in 60% of CRPC [60, 75]. It is clear now that 
AR is activated in CRPC despite of castrate levels of 

circulating testosterone, an understanding that has driven 
development of the second generation of anti-androgens. 
In general, it is thought that the role of AR in castration 
resistant cancer cells is not to direct the androgen-
dependent gene expression program without androgen, but 
rather to execute a distinct program resulting in androgen-
independent growth [85].

Potential mechanisms by which AR reactivation 
occurs in CRPC include variable levels of AR gene 
amplification (30% of cases or higher), activating AR 
mutations, activating alternative mRNA splicing (10-25%), 
increased expression or activation of AR transcriptional 
coactivators, increased intratumoral androgen synthesis, 
activation of modulatory kinase pathways and noncoding 
RNAs (see below). All these alterations lead to sustained 
androgen receptor signaling in presence of castrate serum 
levels of androgen. The array of different mechanisms 
that contribute to activation of AR in CRPC is extremely 
diverse. 

Aberrations in AR itself. Amplification of AR 
[86] occurs in about 30% of CRPC. Focal amplification 
of AR might predate ADT in PCA since clonal foci are 
found in small percentage of treatment naïve patients 
and are predictive of poor prognosis [87] Activating 
mutations are observed in 10% to 30% CRPC and confer 
enhanced survival in absence/low levels of androgens 
[88]. Treatment with antiandrogens selects for gain-of-
function AR mutations with altered stability, promoter 
preference, or ligand specificity as shown in a number of 
studies [89, 90]. A striking example of the selection for 
AR mutations was shown in a study that sequenced AR in 
bone marrow metastases of CRPC developed after therapy 
with flutamide. Mutations were found in 5 of 16 patients, 
and they conferred upon AR the ability to be stimulated 
by flutamide [90]. 

More recently, a mutagenesis screen identified a 
mutation F876L in AR that could convert the second 
generation AR antagonist enzalutamide into an agonist. 
This works also identified compounds that could 
antagonize AR F876L [91]. F876L mutation was identified 
independently in cell lines selected for resistance to 
enzalutamide or ARN-509 in two other studies [92, 93], 
and F876L mutation was identified in plasma DNA of 
progressing patients [92]. These findings suggest that 
the potential of the long-term benefit from the second-
generation antiandrogens may be reduced in the presence 
of resistance mutations.

Another common mode of AR activation involves 
alternative splicing in AR [94, 95], leading to ligand-
independent activation or reduced requirement for 
androgens due to the lack of ligand binding domain in 
these variant AR proteins [96]. Alternatively spliced 
constitutively active AR expression is increased in cells 
treated with enzalutamide or abiraterone [97, 98], while 
the full length AR is repressed [97].

Genomic rearrangements within the AR locus were 
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discovered that prevent expression of full-length receptor 
but produce truncated versions lacking the androgen 
binding domain. These truncated proteins maintain the 
AR transcriptional program constitutively and in a truly 
androgen independent manner [99].

• Posttranslational modifications of AR. Multiple 
modifications of AR by phosphorylation, sumoylation, 
methylation and acetylation have been reported in the 
literature (reviewed in [100]), many of which have 
consequences on AR stability and activity. Tyrosine 
phosphorylation of AR has been reported [101]; it appears 
to be accomplished by a number of different kinases [102-
104] and is important for tumor growth under androgen 
depleted conditions. 

• Somatic genetic changes in components of AR 
transcriptional co-regulators leading to an increased and/
or changed output of AR activity. Mutational inactivation 
of inhibitory factors NCOR1, NCOR1 and NRIP1, and 
activating changes in NCOA1, NCOA2 and TNK2 are 
observed in primary cancers but are much more frequent 
in metastatic [75]. AR accessory transcription factor 
FOXA1 is mutated in about 5% of CRPC [60], and is 
described under “Developmental Pathways”.

• Intratumoral androgen synthesis is increased 
through elevated endogenous expression of enzymes in 
the androgen synthesis pathways in tumors (CYP11B1 
and A1, HSD17B2, AKR1C3 and others) or conversion 
of circulating low affinity adrenal androgens to 
DHT [105-107]. Androgen deprivation promotes 
intratumoral synthesis of dihydrotestosterone from 
androgen metabolites [108]. There are suggestions 
that reactive inflamed prostate cancer stroma may 
contribute to increased intratumoral androgens [109]. 
Recently, the enzyme 3β-hydroxysteroid dehydrogenase 
type 1(3β HSD1), which catalyzes the rate-limiting 
step in conversion of the adrenal-derived steroid 
dehydroepiandrosterone to DHT, was found to be 
sometimes mutated in prostate cancer. The mutation 
N367T does not affect enzymatic activity but produces 
a protein resisting degradation and thus accumulating at 
high levels [110].

• Upregulation of AR signaling through activation 
of modulatory kinase pathways and AR phosphorylation. 
The cooperation of activated PI3K pathway in AR 
signaling was mentioned above in the section describing 
PTEN deletions. Signaling by activated Akt (as a results 
of PTEN loss) and ERK promote hormone-independent 
but AR dependent growth of PCa cells and tumors [111]. 
In addition, numerous publications reported that other 
kinases, such as Src, Pim and Aurora A are involved 
in progression to CRPC. Src family kinases have a 
tumorigenic potential in PCa in models [112, 113]. Kinase 
activities of EGFR, ephrin type-A receptor 2 (EPHA-2), 
JAK2, ABL1 and SRC are increased in PCa as seen from 
the analysis of the phosphotyrosine peptide enrichment 
[114]. The IL6-IL6R signaling leading to activation of the 

JAK1 - STAT3 pathway is also involved, whereby STAT3 
interacts with AR and enables recruitment of p300 to AR 
transcriptional complex [115, 116]. Extracellular growth 
factors - EGF, IGF, FGF10 and others – could also lead 
to transactivation of AR through receptor tyrosine kinase 
(RTK) engagement leading to activation of PI3K and 
MAPK pathways. EGFR, in particular, is overexpressed 
in many PCa [117], and FGF receptors are involved in 
paracrine signaling involving modulation of AR activity 
(see below). MAPK pathway is frequently deregulated in 
metastatic PCa and CRPC and activates AR-dependent 
transcription [118]. 

• Regulation of AR degradation. Numerous 
publications describe multiple mechanisms of maintaining 
the stability of AR in CRPC. E3 ubiquitin ligases Mdm2 
[119] and CHIP [120] have been implicated in the 
control of AR. Phosphorylation of AR by kinases could 
alternatively recruit ubiquitin ligases for degradation 
or prevent their binding for increased stability. Certain 
mutations in AR in CRPC serve to promote the stability 
of protein by modifying amino acid residues necessary 
for receptor ubiquitination or sumoylation and following 
degradation. Ubiquitin ligase Siah2 is involved in 
targeting for degradation a select pool of NCOR1-bound, 
transcriptionally-inactive AR, which promotes expression 
of select AR target genes implicated in lipid metabolism, 
cell motility, and proliferation [121].

Treatment approaches to deregulated AR 
program in CRPC

Targeting AR, androgen synthesis and AR co-
factors. AR is the primary treatment target in PCa. The 
development of novel therapies to achieve androgen 
deprivation in prostate cancer patients has improved the 
outlook for patients with advanced-stage and castration-
resistant prostate cancer. However, in majority of patients 
the beneficial effects are self-limited, though some patients 
derive a long term or even life long benefit. 

In the recent decade or so, it was realized that 
some CRPCs remain hormone-dependent in spite of the 
very low levels of circulating androgens, due to some 
of the mechanisms described above. That led to the 
development and FDA approval of the new generation of 
drugs such as Abiraterone (inhibitor of enzyme CYP17 
in the androgen synthesis pathway) and enzalutamide 
(selective AR inhibitor), with more in development (Table 
2). Abiraterone has a much improved efficacy compared 
to the “old” second line drugs, and brings significant 
benefits to patients with CRPC [122]. A clinical study 
has shown that pro-survival benefits of abiraterone are 
strongly associated with higher serum androgens levels at 
the baseline (prior to treatment) [123], however clinical 
benefit accrued to all patient subgroups. Therefore serum 
androgen measurements are not useful in prospectively 
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selecting patients for abiraterone therapy. 
TOK-001, another CYP17 inhibitor in development, 

not only inhibits CYP17, but also target the AR receptor 
itself to prevent binding of androgens or even induce AR 
degradation [124]. Orteronel (TAK-700) is an inhibitor 
of steroid 17alpha-monooxygenase in testes and adrenal 
gland, and has shown a promising activity in non-
metastatic CRPC inducing marked and durable declines 
in PSA [125]. 

Enzalutamide has shown efficacy in CRPC patients 
whose disease progressed after chemotherapy [126] and 
in chemotherapy naïve patients whose disease progressed 
after ADT [127]. Similar to enzalutamide, a novel AR 
antagonist ARN-509 inhibits AR nuclear translocation and 
AR binding to androgen response elements, and has shown 
a promising clinical activity in CRPC [128]. ODM-201 is 
also an AR antagonist that facilitates formation of inactive 
AR complexes unable to translocate to the nucleus. ODM-
201 has shown a good safety profile and activity in CRPC 
in a completed a phase I/II trial ([129].

Nevertheless, it is becoming apparent that ADT can 
activate bypass pathways that can replace AR activity 
in presence of AR blockade and promote anti-androgen 
resistance. The recent demonstration that glucocorticoid 
receptor (GR) is upregulated and activated in PCa models 
involving continuous treatment with enzalutamide and 
ARN-509 is a striking illustration of the adaptability of 
PCa to ADT [130]. Moreover, activation of GR in this 
setting confers resistance to enzalutamide most likely 
by taking over the role of AR in transcriptional output 
by activating a partially overlapping set of genes. This 
finding, if confirmed in human cancers, may lead to re-
consideration of the clinical use of corticosteroids in some 
treatments regimens. 

There is an opinion shared by a number of 
researchers that many prostate cancers, in particular those 
with deregulated signaling pathways such as PI3K, should 
be treated with investigational therapies that target not 
only AR but these signaling pathways as well [131] or 
with differentiation inducing therapies [132]. The PI3K 
inhibitors are in clinical development, and so are mTOR 
inhibitors, but the latter did not show much efficacy in 
PCa trials.

Therapeutic approaches to block activation of 
signaling pathway in CRPC. Clinical trials are ongoing 
that target growth factor receptors, some in combination 
with ADT. Phase I/II NCT00953576 explores combination 
of lapatinib, small molecule inhibitor of EGFR and HER2 
with dutasteride, inhibitor of 5-a-reductase. Multi-RTK 
inhibitor sunitinib and SRC family inhibitor dasatinib are 
being evaluated in a randomized trial NCT01254864 with 
abiraterone. Dasatinib versus placebo with abiraterone 
is in an additional phase II trial NCT01685125. MTD 
of dasatinib will be given to patients undergoing ADT 
(abiraterone) and radiation therapy in phase I trial 
NCT01826838 with the hope that inhibition of SRC 

pathway might overcome radioresistance. 
IGF1R is targeted with a humanized monoclonal 

antibody cixutumumab/IMC-A12. ADT (different drugs) 
with or without cixutumumab is tested in randomized 
phase II NCT01120236 for patients with newly diagnosed 
mCRPC. Cixutumumab is combined with mTOR inhibitor 
temsirolimus in phase I/II trial NCT01026623 for mCRPC. 

Cabozantinib/XL184 is a multi-RTK inhibitor 
with activity toward MET, VEGFR2 and other RTKs. 
The rationale of using it in prostate and other cancers is 
that it could potentially inhibit the angiogenic signaling 
in endothelial cells and the oncogenic MET signaling in 
tumor cells. Recent evidence shows that cabozantinib also 
restrains the activity of osteoblasts therefore inhibiting 
growth of bone metastases in mouse models [133]. 
Cabozantinib indeed has shown clinical activity by 
improving PFS, and reducing both soft tissue and bone 
lesions in CRPC [134]. Currently, cabozantinib is in a 
dozen clinical trials for CRPC, including two phase III 
trials, and early phase combination trials of cabozantinib 
with abiraterone or other ADT drugs. Another MET 
inhibitor, tivantinib, is in early testing for CRPC. 

Other RTK inhibitors in clinical studies for CRPC 
include PLX3397 (inhibitor of KIT, CSF1R and FLT3), 
antiangiogenic axitinib and pazopanib (VEGFR and 
PDGFR) and dovitinib (FGFRs and other RTKs). 

Preclinical approaches to overcome resistance to 
the newer ADT drugs. Introduction of abiraterone and 
enzalutamide into clinical practice gave new options to 
CRPC patients who had none before, but development of 
resistance ultimately limits the impact of these agents. A 
recent review described some of the clinical approaches to 
forestall or overcome resistance to new ADT agents [135], 
and intense preclinical efforts are made to discover new 
options.

One approach relies on blocking interactions 
of AR with its co-activators, which are essential for 
the activation of the AR transcriptional program. A 
peptidomimetic compound was designed that selectively 
targets protein motif LXXLL critical for interaction 
of AR with co-factors such as PELP-1, and showed a 
promising preclinical activity [132]. A compound named 
EPI-001 binds to the N-terminal domain of AR that is 
also involved in interactions with coactivators CBP and 
RAP74, and inhibits AR activity causing apoptosis [136, 
137]. Another compound, pyrvinium pamoate, an FDA 
approved anthelmintic drug, binds non-competitively to a 
domain of AR that is distinct from ligand binding domain, 
induces prostate atrophy in vivo [138] and maybe active 
in the setting of ligand independent AR signaling [139]. 
A recent meeting report indicated that it has activity in 
animal models of PCa (https://www.endocrine.org/). 

Niclosamide, another anthelmintic drug approved 
by FDA, was identified as a potent inhibitor of variant 
alternatively spliced AR (AR-V7) that drives resistance to 
enzalutamide in prostate cancer cells [140]. 
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The recent demonstration of preclinical efficacy 
of inhibiting bromodomain and extraterminal (BET) 
proteins in different malignancies may be applicable in 
CRPC. BET domain protein BRD4 was shown to interact 
with the N-terminal domain of AR, and the BET domain 
inhibitor JQ1 disrupts AR transcription program in vitro 
and inhibited growth of CRPC in mouse models in vivo, 
presenting a new epigenetic approach [141].

Targeting epigenetics turned out to be key to the 
activity of a compound identified initially as a active in 
a screen for drugs inhibiting translocations in prostate 
cancer. SD70 inhibits the androgen-dependent AR 
program, and prostate cancer cell growth, acting, at least 
in part, by functionally inhibiting the Jumonji domain-
containing demethylase, KDM4C [142].

Based on the observation that enzalutamide 
resistant PCa cells exhibit increased autophagy, a study of 
autophagy inhibitors found that CRPC cells are sensitive 
to their cytotoxic action in vitro and in vivo [143]. 
PI3K/mTOR pathway and AR program in CRPC

The role of the PI3K pathway in the development 
of PCa and CRPC, and the reciprocal feedback regulation 
of PI3K and AR activities in particular gained even more 
importance in light of recent findings. Loss of PTEN 
in PCa is apparently strongly co-operative with other 
somatogenic changes in the development of the CRPC 
phenotype. A co-clinical study of GEMM with PTEN 
loss in prostate revealed that resistance to ADT on this 
background develops only in presence of additional 
alterations – in this scenario, loss of ZBTB7A or p53 
[144]. This study conducted integrative acquisition of 
data from the mouse model and human PCa samples 
and identified changes that are associated with poor 
response to ADT: downregulation of XAF1, inhibitor 
of anti-apoptotic protein XIAP1, and upregulation of 
SRD5A1 (involved in the conversion of testosterone to 
DHT (stable form, dihydrotestosterone). Inhibition of 
XIAP1 with embelin administered concurrently with 
ADT (bicalutamide) inhibited proliferation of PCa in 
mice with deletion of PTEN and Zbtb7A or Pten and 
p53 [144]. Because corresponding changes were seen in 
this co-clinical study of human PCa biopsies, it is likely 
that combination of ADT with drugs targeting XIAP1 or 
SDR5A1 (dutasteride) might be of therapeutic benefit in 
this subset of PCa.

The second study has found that KLK4 (kallikrein 
regulated peptidase) and PLZF (promyelocytic leukemia 
zinc finger), two genes upregulated by AR, contribute 
to integration of AR and mTOR signaling. KLK4, long 
suspected as a player in PCa, apparently destabilizes 
PLZF through direct interaction and therefore abrogates 
the negative effects of PLZF on AR transcriptional activity 
[145]. Moreover, this abrogates the upregulation by 
PLZF of REDD1, a known inhibitor of mTORC1 [146], 
therefore suggesting that KLK4, as a molecular switch 

integrating AR and mTOR, is a viable target in PCa [145]. 
Therapeutic approaches to deregulated PI3K/

mTOR in CRPC. Active clinical research is being 
undertaken to examine how inhibition of signaling 
pathways initiated by activated receptor kinase and 
mediated through the PI3K pathway might affect the 
course of CRPC. 

Of more than 20 experimental drugs with activity 
against PIK3 kinase, three, BKM120, BEZ235 and GDC-
0980, are currently tested in several phase II clinical 
trials selectively for PCa. Phase II trial NCT01385293 is 
recruiting patients with mCRPC for a single arm study of 
BKM120 at a pre-determined maximum tolerated dose. 
Phase Ib NCT01634061 will examine combination of 
either BKM120 or BEZ235 (a dual inhibitor of PI3K and 
mTOR) with abiraterone in patients with CRPC. Similarly, 
combination of BKM120 and abiraterone will be tested 
in NCT01634061. BEZ235 is in another multicenter 
trial with abiraterone, NCT01717898. Dual PI3K/mTOR 
inhibitor GDC-0980 is tested in a randomized phase II 
NCT01485861 with abiraterone. Several other PI3K 
inhibitors are in early clinical testing (dose escalation 
studies) for various cancers, including prostate. 

AKT inhibitor GDC-0068 is tested in a randomized 
phase II trial NCT01485861 with abiraterone. The phase II 
randomized trial NCT01251861 testing bicalutamide alone 
or bicalutamide with AKT inhibitor MK2206 in patients 
for previously treated PCa. AKT inhibitor AZD5363 is in 
phase I testing, NCT01692262.

mTOR inhibitors everolimus and temsirolimus, 
approved for other conditions, are in early clinical testing 
in PCa. Combinations of temsirolimus with docetaxel 
(NCT01206036) and with vorinostat (NCT01174199) are 
in phase I testing. Everolimus with radiation treatment is 
explored for biochemical recurrence after prostatectomy 
NCT01548807, and as an add-on for patients undergoing 
radiation treatment with ADT NCT01642732. 
DNA damage repair in CRPC and its association with 
AR activity

Defects in DNA damage repair (DDR) in CRPC. 
Mutations in the well-known DDR genes have been 
reported in CRPC and in localized aggressive cancers. 
Mutations of BRCA2 were identified in about 2% of 
sporadic PCa, but germline mutations in BRCA2 increase 
risk of PCa at younger age (<55 years) manifold [147]. 
Absolute risk of prostate cancer in BRCA2 carriers is 15% 
by age of 65 years, or 8.6 fold increase [148]. A different 
study has identified mutations and loss of BRCA2 in 12% 
of PCa [149]. BRCA1 has also been associated with an 
increased risk of sporadic PCa (3.5-fold), even though 
germline mutations in this gene have only been observed 
in 0.44% of PCa cases [150]. Germline BRCA mutations 
confer a particularly aggressive phenotype to PCa with 
a higher probability of nodal involvement and distant 
metastases [151]. ATM mutations and deletions were 
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found to occur in 8% of PCa [149].
As mentioned above, the DNA damage repair 

(DDR) protein PARP-1 is essential for the activity of 
TMPRSS2-EGR in PCa [28], but also plays a major role 
in AR transcriptional program [152]. PARP-1 is recruited 
to the sites of AR targets and promotes further binding 
of AR; pharmacological inhibition of PARP inhibits PCa 
growth in vitro and in vivo. 

Prostate tumors with mutated or deleted BRCA 
genes and ATM are candidates for treatment with PARP 
inhibitors in clinical trials. Several trials are ongoing, and 
at least two are testing PARP inhibitors in selected cancers 
(including PCa) with mutations in BRCA genes (phase I 
NCT00892736 with veliparib) and phase II NCT01078662 
with olaparib. 

AR and DNA damage repair crosstalk. 
Importantly, results from large clinical trials showed 
strong augmentation of efficacy of radiotherapy (RT) 
for aggressive PCa when combined with anti-androgen 
therapy, suggesting a potential role for AR inhibition 
in dampening DDR. Two recent independent studies 
elucidated the role of AR signaling in enhancing DDR. 
AR promotes expression and activity of key DDR factors 
such as DNAPK, XRCC2, and XRCC3, whereas DNAPK 
in turn supports the AR transcriptional program [153]. 
Androgen deprivation induces a decrease in transcription 
of key DNA damage repair genes and leads to higher levels 
and slow repair of DNA damage after radiation therapy, 
in particular non-homologous end-joining [154]. This 
could have an implication for the ADT effects in creating 
genomic instability prior to onset of castrate-resistant 
disease, or even contributing to development of CRPC 

via repression of DDR. Even in absence of DD inducing 
treatment, the androgen-deprived cells have a higher levels 
of double-strand breaks [154]. This strongly suggests that 
increased AR signaling promotes radioresistance. 

MYB protein was found to supplant the role of 
AR in regulating DDR by regulating an overlapping set 
of genes. Knockdown of MYB or some of its targets 
(TOPB1, ATR, CHK1) in CRPC increased the cytotoxicity 
of PARP inhibitor indicating that co-targeting MYB 
pathway and PARP activity could be a potential treatment 
strategy [155]. 
Developmental pathways and genes in CRPC

Development of prostate is entirely dependent on 
endocrine and paracrine AR signaling, whereby expression 
of AR in UGS (urogenital sinus) mesenchyme orchestrates 
outgrowth and branching of prostatic epithelium, and the 
subsequent expression of AR in the epithelium is required 
for the production of prostatic secretion. It is now clear 
that developmental pathways activated by mesenchymal 
AR signaling and involved in the epithelial–mesenchymal 
interactions during prostate development could be 
inappropriately reactivated during tumorigenesis. These 
pathways are numerous (reviewed in [156], and it appears 
that all have been implicated in PCa, either as drivers of 
oncogenic transformation or, more consistently, drivers 
of transition to castration resistance as well as EMT 
(epithelial-mesenchymal transition). Indeed, deregulation 
of developmental pathways is usually associated with the 
CRPC and less so with localized tumors. The intriguing 
aspect of the developmental pathways deregulated in PCa 
is that many of them are normally active during prostate 

Figure 2: Developmental pathways deregulated in metastatic prostate cancer. The schematic attempts to illustrate the complex 
interactions of androgen receptor with a variety of proteins with key roles in various developmental pathways.
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morphogenesis and branching in basal cells that are 
currently thought to be stem cells for all three lineages 
found in prostate gland. 

Prostate development from UGS involves 
cooperation of multiple developmental pathways and gene 
products including but not limited to AR, SHH, FGF10, 
WNT, TGFβ, NKX3.1, SOX9, FOXA1 and others. Most 
of these appear to be involved in the development and/or 
progression of prostate cancer, and most interact with AR 
signaling (Figure 2). 

NKX3.1, an androgen-regulated homeobox protein 
[157] is a marker of prostate stem cells; it exhibits 
frequent copy losses in PCa, much more frequent in CRPC 
versus localized disease [158]. Reduced expression of 
NKX3.1 might be a result of epigenetic silencing as well. 
NKX3.1 expression is rapidly suppressed during androgen 
withdrawal, a fact most likely related to the progression of 
the castrate resistant state. 

Loss of NKX3.1 is thought to be an initiating 
event in prostate carcinogenesis [159]. It is mutated in 
one form of hereditary prostate cancer [160]. NKX3.1 
and AR directly regulate each other in a regulatory loop, 
and, together with FOXA1 are important players in PCa 
progression [161]. NKXS.1 loss cooperates with PTEN 
loss, and Nkx3.1; Pten mutant mice develop aggressive 
androgen independent PCa in GEMM [35]. Interestingly, 
loss of PTEN causes reduced expression of NKX3.1in 
PCa, and functional data show that restored normal 
expression of NKX3.1 counteracts pro-survival and pro-
proliferation effects of PTEN loos [162]. The other effects 
of NKX3.1 expression include increased p53 acetylation 
(through HDAC1) and half-life [162]. NKX3-1 copy 
loss is associated with an increase in genomic instability 
[163] and activation of MYC transcriptional program 
[164]. Copy loss of NKX3.1 is a strong biomarker of 
poor prognosis after prostatectomy or radiotherapy. When 
combined with MYC gain, the prognostic significance of 
both for biochemical relapse is even higher [163]. 

SOX9, similar to NKX3.1 is the early marker 
and an essential gene in ductal morphogenesis in 
prostate development [165]. In adult normal prostate 
its expression is found only in basal cells that are AR 
negative or low [166], but in PCa cells SOX9 and AR 
are frequently co-expressed, and SOX9 might contribute 
to AR regulation [166]. The oncogenic ERG expressed 
from the TMPRSS2:ERG fusion in PCA was shown to 
upregulate transcription of SOX9 in PCa by redirecting 
AR to a cryptic androgen-responsive enhancer in SOX9 
regulatory region [6]. SOX9 cooperates in development 
of HG-PIN with PTEN heterozygous loss in a GEMM 
[167]. Deletion of Sox9 in two GEMMs of prostate 
tumorigenesis prevents cancer development indicating 
an essential role for Sox9 in PCa. [168]. Its expression is 
associated with higher Gleason scores and with aggressive 
PCa and CRPC where SOX9 activity is probably co-opted 
to increase growth and proliferation [167]. SOX9 might 

be also involved in the development of highly aggressive 
neuroendocrine phenotype [169]. 

A transcription factor ZBTB7A or LRF was 
implicated in regulating SOX9. ZBTB7A was 
unexpectedly shown to act as a tumor suppressor in 
prostate cancer, even though it was thought to be a proto-
oncogene in other cancers [170]. ZBTB7A binds to SOX9 
and antagonizes its function, and its expression is absent or 
low in a subset of aggressive PCa [170]. Moreover, loss of 
ZBTB7A cooperates with the loss of PTEN to contribute 
to development of CRPC phenotype in GEMM [144].

WNT pathway. β-catenin (CTNNB1) is mutated in 
5% of prostate cancers [171], and mutations presumably 
stabilize the protein. It is essential for the identity 
specification in normal prostate development, but is 
dispensable in adult prostate maintenance [172, 173]. 
However, activation of β-Catenin in the adult prostate 
resulted in high grade PIN (HGPIN) and continuous 
prostatic growth after castration [174]. β-catenin is 
dispensable for tumor progression in the PTEN null 
model, but if overexpressed in this model it drives 
invasive growth [172]. β-catenin can directly stimulate 
activity of AR [175] through binding to it [176] and 
controls the number of progenitors in the epithelial buds 
and regulates a network that includes c-Myc and Nkx3.1. 
A small-molecule inhibitor of nuclear β-catenin activity 
can inhibit both the AR and β-catenin–signaling pathways 
in prostate cancer, and induce decreased binding of AR to 
its target genes sequences, as well as inhibit PCa growth 
in vivo [177]. Several other members of WNT pathway 
are mutated or have CNVs in CRPC. In particular, copy 
number losses or hypermethylation of APC, and loss of 
BMP7 were described [60]. The latter, a bone stroma 
secreted protein, suppresses bone metastases [178] and 
induces senescence in PCa CSCs via activation of BMP7-
BMPR2-p38-NDRG1 [179]. Two agents with modulatory 
or inhibitory activity in WNT pathway are in early clinical 
testing (NCT02020291, NCT01608867; see Table 2). 

Hedgehog pathway is an essential pathway in 
normal prostate embryogenesis [180]. Sonic hedgehog 
(shh) deficiency induces defects in prostate development 
that are due to impaired production of androgens [181]. 
GLI transcription factors are the main effectors of the 
canonical HH pathway and play an oncogenic role in a 
variety of cancers. The role of Hh pathway in PCa is still 
somewhat controversial, in part because of the widespread 
use of non-specific pathway inhibitors, but current results 
support the role of paracrine interactions versus autocrine 
Hh signaling in PCa [182]. Several studies have detected 
elevated expression of Shh and Gli2 in malignant prostate 
epithelium that correlated with the grade of malignancies 
[183, 184]. Analysis of the intermediate risk group or PCa 
indicated that genetic alterations in Hh pathway were 
associated with worse prognosis [185], and implicated 
serine protease inhibitor nexin 1 (PN1) as a negative 
regulator of Hh signaling in prostate.
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The role of Hh signaling in PCa is most likely 
associated with its ability to modulate activity of AR [183, 
186]. Hh signaling was shown to be induced in murine and 
human PCa following castration and to contribute to CR 
phenotype after ADT [187]. Hh/Gli axis supports androgen 
signaling in androgen deprived and androgen independent 
prostate cancer cells likely through a direct interaction of 
Gli2 with AR [188, 189]. It was suggested that Shh-Gli1 
axis might govern transition form androgen-dependent to 
androgen independent state and even supersede the AR 
pathway [190]. This evidence strongly supports the role of 
Hh signaling in the development of castration resistance. 

Hh and Notch pathways are involved in the 
development of resistance to docetaxel which is associated 
with elevated signaling and increased expression of Gli1 
and Gli2 [191]. Cells with a shift to a more basal phenotype 
and markers of elevated Hh and Notch signaling are found 
in PCa biopsies and are particularly enriched in biopsies 
from patients who developed resistance to docetaxel 
based therapy. The tumors formed in a xenograft model 
by cells selected in vitro for resistance to docetaxel are 
sensitive to the dual inhibition of Hh and Notch pathway 
by cyclopamine (inhibitor of Smo) and DBZ (inhibitor of 
γ-secretase). 

As described above, stabilization of GLI factors is 
one of the probable effects of SPOP mutations in PCa since 
SPOP participates in a pathway leading to the degradation 
of Gli [57]. Activated TGF-β/SMAD and WNT signal 
transduction pathway in CRPC also contribute to increased 
expression of Gli2, whereby SMAD3 in cooperation with 
β-catenin transcriptionally activates Gli2 [192]. 

Therapeutic implications. The SMO-targeting 
agents GDC-0449 and LDE225 are in Phase I/II 
NCT01163084 trial and entering phase I NCT02111187, 
respectively, for locally advanced PCA; the non-specific 
Hedgehog pathway inhibitor itraconazole is in phase 
II trial NCT01787331 for patients with biochemical 
relapse and in combination with orteronel in phase I/II 
NCT02054793 for CRPC.

TGF-β pathway and SMAD4. The role of TGF-β 
pathway in PCa, similar to other cancers, is complex. 
TGF-β is known to play a dual role in tumorigenesis, 
acting as a growth inhibitory tumor suppressor early in 
the process, and as a tumor promoter in late-stage disease. 
In a GEMM model of prostate tumorigenesis PTEN 
inactivation drives formation of indolent tumors and 
elicits the activation of TGF-β/BMP-SMAD4 signaling. 
The latter induces cellular senescence to curb tumor 
progression, and genetic deletion of SMAD4 (key effector 
in TGF-β pathway) leads to the development of highly 
invasive and metastatic tumors with 100% penetrance 
[41]. This study also verified the predictive significance 
of the expression signature including PTEN and SMAD4 
as well as CCND1 and SPP1 (osteopontin) in a large 
number of PCa biopsies. Loss of expression of SMAD4 is 
observed earlier in PCa with high Gleason grade SMAD4, 

therefore, serves to inhibit PCa progression at least in 
early stages of tumorigenesis.

The TGF-β/SMAD4 dependent barrier to tumor 
progression is destructed in metastatic PCa through 
involvement of transcription factor COUP-TFII/NR2F2. 
COUP-TFII exerts its effects on TGF-β pathway by 
directly interacting with and inhibiting SMAD4, therefore 
cooperating with PTEN loss in GEMM [193]. COUP-TFII 
blocks the tumor-inhibiting effects of TGF-β in tumor 
progression to aggressive stage. Importantly, COUP-TFII 
is overexpressed in about 60% of prostate cancer and 
predicts a worsened survival [193]. 

In contrast to its barrier role during cancer initiation, 
TGFβ promotes metastatic phenotype in late stages by 
driving epithelial mesenchymal transition. TGFβ and 
TGFβR are expressed at higher levels in metastatic PCa, 
and are instrumental in EMT that is mediated, in part, by 
upregulation of the molecular chaperone clusterin via 
EMT transcription factor TWIST1 [194]. While SMAD3 
contributes to activation of AR transcriptional activity, 
SMAD4, together with SMAD3 can also interact with AR 
and repress AR mediated transcription [195]. 

Radiation therapy frequently employed for treatment 
of PCa can increase levels of serum TGFβ and promote 
distant metastasis. Clinical trial NCT01427322 aims to 
examine if the EGFR/HER2 inhibitor lapatinib given prior 
to palliative irradiation for bone metastases could lower 
the levels of TGFβ. 

Notch pathway. Notch signaling was shown to 
be critical for normal prostate development [196] using 
a conditional Notch1 gene deletion mutant. Deletion of 
Notch lead to enhanced epithelial proliferation in prostate, 
and expression of Notch1 and its effector Hey-1 gene in 
human prostate adenocarcinomas is significantly down-
regulated compared to normal control tissue [196]. At the 
same time, increased Notch and Hh signaling are involved 
in development of resistance to Docetaxel [191]. Notch 
signaling also may play a pro-metastatic role by inhibiting 
anoikis in luminal cells [197]. 

Polycomb group protein EZH2. Enhancer of zeste 
homolog 2 is a methyltransferase and a component of 
repressive PRC2 complex that triggers transcriptional 
repression by catalyzing the addition of methyl groups 
onto lysine 27 of histone H3 (H3K27me2/3). EZH2 is 
not expressed in normal adult prostate, but is highly 
expressed in UGS during development and then again at 
puberty in prostatic epithelium [198]. EZH2 expression 
is high in almost all metastatic CRPC, and its expression 
in localized PCa is associated with poor prognosis 
[199]. Expression of EZH2 is negatively regulated by 
microRNAs miR26-a [200] and miR101 [201], of which 
the former is hypermethylated in ETS fusion negative PCa 
[67], while the latter is deleted in both localized (37%) 
and metastatic (67%) PCa [201]. High levels of MYC in 
PCa also drive expression of EZH2 by downregulating 
miR26-a [69]. One of the targets of EZH2 is the prostate 



Oncotarget7232www.impactjournals.com/oncotarget

tumor suppressor NKX3.1 [7] as well as other Homeobox 
genes promoters [67]. 

EZH2 could impede epithelial differentiation and 
contribute to prostate cancer progression because it was 
shown to directly modulate the transcriptional output of 
AR [202]. Moreover, EZH2, independent of its function 
as PRC2 component, was very recently found to act as 
a transcriptional activator in the deregulated AR program 
in PCa. Overexpression of EZH2 conferred androgen 
independent growth. In this setting, EZH2, together with 
AR, stimulated transcription from a number of genes 
essential for growth in androgen depleted conditions. 
The switch of function from repressor to co-activator 
was mediated through phosphorylation of EZH2 by AKT 
[203].

Therapeutic implications. Inhibitors of EZH2 
GSK126 and EPZ-6438 are in clinical trials for DLCBL 
and FL where EZH2 is frequently mutated on Y641 and 
A677. Another inhibitor, 3-deazaneplanocin A, has been 
reported to have activity in vitro against PCa cells [204]. 

Polycomb group protein BMI1 is a member of 
repressive and most likely oncogenic PRC1 complex 
acting in epigenetic silencing of gene expression. PRC1L 
monoubiquitinates nucleosomal histone H2A at lysine 
119 [205]. It stimulates the ubiquitin ligase activity 
towards H2A-K119, and is thought to exert its main role 
of a regulator of stem cell renewal and an oncogene in 
part through repression of transcription form CDKN2A 
locus and genes that induce senescence and cell death 
[206, 207]. Silencing of CDKN2A locus by BMI1 and 
the PRC1 complex depends on continuous presence of 
EZH2 [208]. Several microRNAs that are repressed by 
EZH2 have been shown to regulate the expression of 
PRC1 proteins including BMI1, indicating a coordinate 
regulation of PRC1 and PRC2 activities by miRNAs 
[209]. Bmi-1 expression is required for maintenance and 
self-renewal activity of prostate and PCa p63(+) stem cells 
and is necessary for β-catenin induced self renewal. Bmi-
1 inhibition protects prostate cells from FGF10-driven 
hyperplasia and slows the growth of aggressive cancers 
with PTEN deletion [210]. Its elevated expression in PCa 
correlates with poor prognosis [211, 212]. Conditional 
overexpression of Bmi1 in mice induces PIN and 
promotes progression to invasive adenocarcinoma on 
the background of PTEN haploinsufficiency. Moreover, 
Akt phosphorylates and activates Bmi1 and promotes its 
oncogenic potential [213]. 

BMI1 is induced by IKKa via transcription factor 
E2F1 in regenerating prostate and in PCA after ADT. This 
is a cell-autonomous process triggered by infiltrating B 
cells, and links CRPC development to inflammation [214]. 
The regenerative response is ultimately controlled by 
BMI1 expression within normal or cancer progenitor cells. 

HOXB13 is a homeobox transcription factor that 
plays a critical role in prostate development. A variant 
HOXB133 G84E was found to be closely associated with 

the risk of prostate cancer [215]. Hoxb-13 interacts with 
AR, and is required for full-activation of some androgen-
regulated target genes [216]. Binding of HOXB13 to 
AR inhibits activation of genes containing androgen 
responsive promoter elements and activates transcription 
of genes containing HOXB13 response sequences [216].

FGFR pathway is intimately involved in the 
prostate development from urogenital sinus [217] 
through activation of ERK1/2, which is essential for the 
androgen induced morphogenesis. FGFR2 was shown to 
be an essential receptor in prostate morphogenesis, whose 
interaction with FGF10 and FGF7 control branching in 
developing prostate gland [218]. FGF10 functions as a 
mesenchymal paracrine regulator of epithelial growth in 
the prostate and seminal vesicle [219]. Stromal derived 
FGF10 stimulates growth of prostatic epithelium, and 
its own expression is stimulated by androgens [220]. 
Enhanced mesenchymal expression of FGF10 promoted 
formation of PIN or PCa, while inhibition of FGFR1 in 
epithelial compartment inhibited tumor formation [221]. 
Inducible expression of FGFR1 in prostate epithelium led 
to formation of tumors that showed characteristics of EMT 
and had increased expression of SOX9 and Wnt pathway 
receptor frizzled 4 (Fzd4), both of which are expressed at 
high levels in human metastatic prostate cancer [221]. In 
the TRAMP mouse model of PCa, mice null for FGFR1 
expression in prostate cells developed smaller tumors and, 
more importantly, had very few metastases, while those 
metastases that developed had re-acquired high levels of 
FGFR1 and had a neuroendocrine phenotype [222]. 

Therapeutic implications. Inhibitors of FGFR 
signaling are in clinical trials. In particular, as FGFR was 
implicated in EMT and osteoblastic progression of PCa, a 
small molecule multikinase inhibitor dovitinib (TKI258) 
is explored in phase II trial for bone metastatic CRPC 
NCT00831792. Another inhibitor, nintedanib (BIBF1120) 
completed phase II trial NCT00706628, but results have 
not been reported.

FOXA1 is a transcription factor with a well-known 
essential role in prostate morphogenesis [223]. It appears 
to play a unique role in regulation of many nuclear steroid 
receptors [224], and serves as a co-factor for AR as well. 
Expression of FOXA1 is high in metastatic PCa [225] 
and is altered by copy number gain in 5% of CRPC [60]. 
Its role in signaling by AR is complex, as modulation of 
FOXA1 levels in vitro results in massive redistribution 
of AR binding sites, with some being highly enriched 
for AR binding, while other depleted of AR [226]. The 
FOXA1 deregulation leads to increased proliferation in the 
castrate resistant prostate cancer [227]. The precise role 
of FOXA1 in transcriptional transactivation by AR might 
have to be reconsidered in view of recent results showing 
that the binding sites for AR and FOXA1 identified in 
cell lines in vitro are quite different from those identified 
in vivo, with AR-FOXA1 binding diminished and AR-
STAT5 binding increased [228]. FOXA1 function in 
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promoting cell growth is AR dependent, but FOXA1 has 
actually an inhibitory effect on cell invasion, which is AR-
independent [229]. Mutations in FOXA1 described in PCa 
attenuate the inhibitory effect of FOXA1 on cell motility 
[229].
Epigenetic pathways in PCa

Epigenetics encompasses several processes, such 
as DNA methylation, histone modifications and RNA 
interference. All of these are altered in PCa initiation 
and more so during progression, and play a functional 
role in prostate carcinogenesis. The role of epigenetic 
deregulation is PCa and particularly CRPC is strongly 
supported by a number of somatogenic alterations in 
multiple genes whose products are involved in DNA 
or histone modifications. These alterations result in 
whole-scale changes in DNA methylation and histone 
acetylation. Historically, hypermethylation of DNA 
has been long known to occur in PCa, with GSTP1 
discovered as one of the prominent targets [230]. Regions 
that are frequently hypermethylated across individual 
tumors tend to be markedly enriched for cancer- and 
development/differentiation-related genes including 
tumor suppressors [231]. Aberrant methylation has been 
shown to be associated already with benign prostate 
hyperplasia and specific changes are found during PCa 
progression (reviewed in [232]. Methylation of CG 
islands was shown to increase with disease progression 
from benign hyperplasia to CRPC [233]. Importantly, 
detection of methylation could be used in diagnostic 
and prognostic procedures. Recent evidence suggests 
that hypermethylation of some genes including GSTP1 
may be not causative in gene repression but rather be a 
consequence of differentiation and hyperproliferation of 
cancer cells ([234].

Intercommunication of paracrine signaling and 
epigenetic alterations was demonstrated in a number of 
studies, where targeted inactivation of TGFβ receptor 
[235] or overexpression of FGF [221] in mesenchymal 
compartment lead to development of PIN. Overexpression 
of chromatin remodeling protein Hmg2a in stromal 
cells was sufficient to induce dramatic hyperplasia 
and multifocal prostatic intraepithelial neoplasia in the 
adjacent naïve epithelial cells [236]. This striking effect 
was mediated by paracrine Wnt-dependent signaling, and 
was further promoted towards frank prostate cancer by 
enhanced expression of AR in stroma.

Activation of AR transcriptional program in CRPC 
apparently involves numerous chromatin remodeling 
events. For example, genomic studies have recently 
revealed that AR might act as a global transcriptional 
repressor. In embryonic stem cells, androgen-responsive 
elements (ARE) in AR-repressed genes are occupied by 
repressive Polycomb group protein EZH2 that maintains 
the undifferentiated state. These genes are also silenced 
in castration-resistant prostate cancer conferring to them 

a stem cell de-differentiated phenotype and promoting 
tumor progression [237]. Transcriptional program of 
AR in PCa cells involves acetyltransferase p300 that is 
required at an early stage of chromatin remodeling and 
transcription complex assembly after binding of androgen 
receptor [238].

EZH2 and BMI1, already described above, are prime 
examples of how components of chromatin remodeling 
complexes are involved both in development of prostate 
and in PCa. CHD1, frequently inactivated in PCa [33, 61], 
is also global chromatin remodeling factor. In addition 
to CHD1, other components of the MLL (mixed-lineage 
leukemia) complex are affected by mutations or CNV in 
CRPC. In particular, MLL2 and ASH2L directly interact 
with AR, and mutations are found in MLL2 (9% of 
CRPC), ASH2L, UTX, and ASXL1 [60].

The chromatin-remodeling complex SWI/SNF plays 
a tumor suppressor role in PCa which is antagonized by 
a long noncoding RNA SChLAP1 [239]. In particular, 
SChLAP1 reduces chromatin binding of SNF5, a key 
subunit of the complex, and deregulates transcription of 
SNF5 target genes. SChLAP1 is overexpressed in about 
25% of PCa and is a strong predictor of recurrence and 
mortality [239].
Cell cycle regulation/tumor suppressors/oncogenes and 
other

Inactivation of tumor suppressors TP53 and 
RB1 is much more common in CRPC than in localized 
cancers [240-242]. Loss of RB1 function through various 
mechanisms was observed in PCa, and is associated with 
late stages and particularly CRPC [243, 244]. RB1 might 
control androgen signaling and progression to castrate-
resistant phenotype [245, 246]. CDKN1B (p27KIP) is also 
deleted or mutated in PCa [51].

A recent study suggests that metastasis suppressor 
p63 inhibits EMT and metastases at least in part via 
regulation of miR-205. Either or both p63 and miR-205 
are absent in lymph nodes or distant metastases of PCa 
patients [247]. 

MYC amplification is very common in CRPC, found 
in at least a third of these tumors. As mentioned earlier, 
MYC is overexpressed already in PIN but amplifications 
are mostly limited to CRPC [78]. C-Myc and Pim1 
activation in GEMM induces neuroendocrine type of PC 
[248]. KRAS, ROS1, and MET mutations, though rare, are 
found at higher rate in mCRPC than in primary cancers; 
CDK4 is more frequently amplified in mCRPC. 

RAF. Rearrangements of RAF oncogenes (SLC45A-
3-BRAF, ESRP1-RAF1) are found in 1-2% of PCa, mostly 
CRPC [249]. These rare tumors are of clinical interest 
because they could be potentially targeted with inhibitors 
of RAF, BRAF and MEK. 

UBE2C is overexpressed in many tumors, including 
CRPC [250]. UBE2C is an anaphase-promoting complex/
cyclosome (APC/C)-specific E2 ubiquitin-conjugating 
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enzyme, and upregulation of UBE2C inactivates the 
M phase cell cycle checkpoint [251]. Activation of 
UBE2C expression involves binding of the PI3K/AKT 
phosphorylated co-activator MED1 to the long range 
UBE2C enhancers, and chromatin looping through 
recruitment of FoxA1 [252]. Expression of UBE2C is 
driven by androgen receptor [85]. Epigenetic marks at 
the UBE2C enhancer, notably histone H3K4 methylation 
and FoxA1 binding are present in androgen-independent 
cells, and they direct AR-enhancer binding and UBE2C 
activation [85]. Increased expression of two constitutively 
active AR splice variants driven by treatment with 
abiraterone or enzalutamide was accompanied by 
increased expression of UBE2C, and expression of these 
variant but not full length AR positively correlated with 
UBE2C in clinical CRPC specimens [97]. Therefore, 
expression of UBE2C could contribute to drug resistance 
to CRPC therapy.

Estrogen receptor β. Estrogens were originally 
used to treat PCa to reduce the hypothalamic pituitary 
stimulation of LH/FSH production and further reduce 
the synthesis of androgens in 1942, reprinted in [253]. 
However, stimulation of ERβ has a number of serious 
clinical consequences and the use of estrogens was 
eventually replaced by other methods of achieving 
chemical castration, even though recently there has been a 
renewed interest in their use for PCa. Expression of ERβ 
in prostate was described in 1996 [254], and in PCa it 
correlates inversely with the Gleason grade [255]. ERβ, 
as opposed to ERα, is thought to have anti-proliferative, 
pro-apoptotic and anti-metastatic properties in cancer in 
general and PCa in particular, and could be an actionable 
therapeutic target in PCa (reviewed in [256, 257]). 
Several selective ERβ agonists have been discovered 
or synthesized (reviewed in [258]), including some of 
botanical origin, or phytoestrogens [259].

ERβ agonist induces apoptosis in prostatic stromal, 
luminal and castrate-resistant basal epithelial cells in BPH 
of estrogen-deficient aromatase knock-out mice, as well as 
in xenografts of prostate cancer. ERβ is downregulated in 
high grade PCa via TGFβ and hypoxia, and loss of ERβ is 
sufficient to promote EMT in PCa. ERβ expression induces 
destabilization of HIF-1α and transcriptional repression of 
VEGF-A [260]. The mechanism of the destabilization of 
HIF-1α involves direct transcriptional activation of prolyl 
hydroxylase 2 (PHD2) by ER. PHD2 is a 2-oxoglutarate-
dependent dioxygenase that hydroxylates HIF-1α and 
targets it for recognition by the von Hippel-Lindau tumor 
suppressor and consequent degradation. PHD2 is activated 
by ERβ in a ligand-dependent manner and contributes to 
maintenance of the epithelial differentiation [261].

ERβ agonist treatment attenuates clonogenicity 
and self-renewal of murine prostatic progenitor cells and 
depletes both murine and human prostatic basal cells. 
Subsequent to castration ERβ induces further apoptosis in 
basal, luminal and intermediate cells [262].

ERβ ligands are not currently in clinical 
development for PCa, either as monotherapy or in 
combination with ADT. 

Prostate cancer stem cells 

Much controversy existed and some still exists in 
the field concerning the nature of prostate and PCa stem 
cells. The prostate gland contains epithelial luminal cells 
with high levels of expression of AR, basal cells with low 
or absent AR and rare neuroendocrine cells. There is an 
agreement regarding the origin of prostate stem cells, 
which have been amply demonstrated to reside in the 
basal multipotent population [263-266]. A subpopulation 
of basal cells expressing high levels of TROP2 was 
shown to be able to form spheres in vitro and give rise 
in vivo to basal, luminal and neuroendocrine cells thus 
exhibiting multipotency [267]. However, androgen-
induced regeneration after castration is mediated by both 
basal and luminal progenitors rather than by multipotent 
stem cells [268, 269]. Thus, basal cells were traced to give 
rise only to basal cells during prostate regeneration in vivo, 
and luminal cells produce only luminal cells under these 
circumstances, with both lineages self-sustained in the 
normal adult prostate [268]. 

Lineage-tracing approaches have identified rare 
luminal cells, named castration-resistant Nkx3-1-
expressing cells, or CARNs, as also possessing multipotent 
stem cell activity [269]. However, the stemness of rare 
luminal cells in normal prostate was not confirmed in other 
studies [268, 270]. 

In terms of PCa initiation, evidence exists that 
supports involvement of both lineages. Prostate luminal 
cells, transit-amplifying cells (that have characteristics of 
both basal and luminal cells), and basal cells have all been 
implicated as the cells of origin for prostate cancer. Basal 
cells with introduced relevant mutations demonstrated 
ability to form PCa thus supporting their initiating role 
in PCa. The tumor-initiating ability was found to reside 
in basal cells CD49fhiTrop2hi expressing p63 [263, 271]. 

At the same time, the rare luminal cells, CARN, 
could also give rise to PCa on a PTEN null background 
[269]. In lineage tracing during PCa initiation on PTEN 
null background, it was found that in basal cells PTEN 
induces differentiation into luminal cells, and this has 
been shown to be an essential step for disease initiation 
in this model [268]. Disrupting the tumor suppressor Pten 
in luminal cells also led to prostate cancer initiation, with 
a faster dynamic compared to basal cells populations. A 
recent publication described a bipotential basal progenitor 
that can give rise to luminal cells with transit-amplifying 
characteristics [272]. The oncogenic transformation 
of basal cells promoted luminal differentiation of their 
progeny. This study also proposed that prostate tumors 
arising from luminal cells based on gene expression 
signature are more aggressive and have a worse prognosis 
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[272]. Yet another study delineated different contributions 
of basal versus luminal cells to initiation versus 
maintenance and progression of PCA. It concluded that 
while basal cells are the initiating cells in PCA, “advanced 
prostate adenocarcinoma initiated in basal cells can be 
maintained by luminal-like tumor-propagating cells” 
[273].

The cancer stem cells (CSC) of basal or liminal 
origin are very likely a source of treatment-resistant cells. 
The studies mentioned above described castration-resistant 
cells in both CSC populations. The prostate CSC do not 
express androgen receptor, or have very low levels of it, 
and therefore survive the androgen deprivation serving as a 
reservoir of treatment-resistant cells [274]. These putative 
androgen receptor negative cancer stem cells are likely to 
be resistant to most androgen-based therapies, contributing 
to the evolution of castration-resistant disease. 

To support this notion, a cell population 
characterized by low levels of PSA (PSA(-/lo)) was 
identified as being quiescent, refractory to androgen 
deprivation, having high clonogenic potential and long-
term tumor-propagating capacity. These express stem 
cell genes and can undergo asymmetric cell division to 
generate PSA(+) cells. PSA(-/lo) PCa cells resist androgen 
ablation in castrated hosts, and they harbor highly 
tumorigenic castration-resistant PCa cells. PSA(-/lo) cells 
may represent a critical source of castration-resistant PCa 
cells [275].

Apparently, some phenotypic markers of PCa stem 
cells might have a functional significance in development 
of PCa. Trop2hi has been shown to play a significant 
role in stem cell renewal and epithelial hyperplasia via 
β-catenin pathway. Trop2 undergoes intramembrane 
proteolysis to release two polypeptides, of which the 
intracellular one translocates to the nucleus. High 
expression of the Trop2 intracellular domain promotes 
self-renewal through signaling via β-catenin and is 
sufficient to initiate precursor lesions to prostate cancer 
in vivo [273].

The role of the Polycomb group protein BMI in 
regeneration of normal prostate progenitor cells and 
in PCSC was described above. A recent publication 
elucidated a signaling axis involved in both normal 
prostate regeneration and in emergence of CRPC after 
ADT that consists of IKKa-E2F1-BMI1. Nuclear IKKa 
controls CRPC development through expansion of BMI1+ 
progenitors. The most intriguing aspect of these findings 
is that expression of BMI1 is triggered by inflammation 
that depends on the infiltration of B cells into regenerating 
prostate rudiments, either normal or cancerous, after ADT. 
The BMI1 controlled tumor growth is therefore at least 
partially cell-autonomous [214]. 

Integrin β4 was shown recently to promote self 
renewal of putative cancer stem cells that are basal in 
origin. β4 promotes adhesion of the cells to the basal 
membrane, which apparently is necessary for the 

maintenance of stemness. More importantly, mutation of 
β4 prevents tumor formation on PTEN null background. 
Finally, the high level of expression of integrin β4 in 
prostate cancers was associated with androgen independent 
metastases to bone. Finally, integrin β4 is associated with 
activation of Erbb2 and Met receptor tyrosine kinases, 
and pharmacological inhibition of these results in efficient 
inhibition of tumor growth in mice [276]. This indicates 
that combination of lapatinib and cabozantinib could have 
promise in treatment of PCa. 

Recently, a report was published that described 
establishment of a xenograft model capable of supporting 
growth of stroma-supported xenografts from multiple 
patients with early stage disease [277]. More importantly, 
the model allows to follow the fate of tumor cells that 
survive after castration, therefore it might be used for 
the identification of castrate resistant PCa cells that are 
responsible for the emergence of CRPC [277].

Epithelial-Mesenchymal transition (EMT)

EMT endows cells with migratory and invasive 
properties, induces stem cell properties, and prevents 
apoptosis and senescence, thus orchestrating the initiation 
of metastasis. EMT is characterized by the loss of 
expression of E-cadherin and induction of N-cadherin, 
loss of cell polarity and dependence on adhesion, all 
contributing to metastatic phenotype. Numerous pathways 
have been implicated in EMT in PCa, including some 
developmental pathways, inflammation driven signaling, 
ERG fusions and others, some of which are listed below.

Androgen deprivation induces expression of 
N-cadherin and EMT [278] in vitro and in patients. This 
transition was observed in normal prostate upon ADT 
and in PCa patients treated with ADT, and involves 
transcription factor ZEB1 [279]. In addition, upregulation 
of ZEB proteins is induced by several growth factors such 
as IGF-1 [280] and PDGF-β [281] that promote EMT in 
vitro.

EZH2 can induce EMT and increase the metastatic 
potential of prostate cancer cells by downregulation of 
DAB2IP, a tumor-suppressive Ras GTPase-activating 
protein (RasGAP) [282, 283]. EZH2 is, in turn, regulated 
by SOX4 [284], a homeobox transcription factor that 
was shown to act as an oncogene in PCa based on its 
overexpression and essential role in survival of PCA in 
vitro [285]. SOX4 appears to be a master regulator of 
EMT primarily through upregulating EZH2 expression in 
breast cancer [284].

TMPRSS2/ERG was also shown to promote EMT 
via direct transcriptional activation of expression of 
ZEB1, and indirect activation of ZEB2 through IL1R2 
and SPINT1 [286]. In addition, ERG induces loss of cell 
adhesion by activating the WNT pathways through FZD4 
to induce EMT and loss of cell adhesion [287].

TGF-β represents a potent EMT inducer in normal 
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development and tumor progression via Smad-dependent 
and independent transcriptional pathways [288]. Smad-
mediated induction of Snail, Slug, and Twist via high 
motility group A2 (HMGA2) and Smad-independent 
phosphorylation of Par6 contribute to dissolution of cell 
junction complexes. TGF-β also induces expression of 
clusterin, a pleotropic chaperone protein [289] through 
activation of TWIST1 [194], a known inducer of EMT. 
Interestingly, another chaperone protein HSP90, in its 
secreted form, was shown to be involved in EMT of PCa 
cells in vitro and in patients [290]. TWIST1 is upregulated 
by enzalutamide treatment along with activation of PKC, 
and both could be reversed by addition of PKC inhibitor 
Ro31-8220, at least in vitro [291], suggesting a potential 
approach to overcoming EMT associated with androgen 
deprivation. 

Monoamine oxidase A (MAOA), a mitochondria-
bound enzyme, was recently implicated in EMT in 
PCa. MAOA catalyzes the degradation of monoamine 
neurotransmitters and dietary amines producing peroxide 
as a by-product and increasing levels of cellular ROS. 
Expression of MAOA is associated with high grade 
PCa [292], and causes activation of VEGF and its co-
receptor neuropilin-1 which in turn, promotes AKT/
FOXO1/TWIST1 signaling and EMT. Monoamine 
oxidase inhibitors were the first antidepressant drugs 
in use, and one of them, chlorgylin, a selective MAOA 
inhibitor, blocked PCa growth in vitro and metastasis in 
vivo by disrupting the signaling leading to oxidative stress, 
hypoxia and EMT [293].

Expression of inducible FGFR1 in a mouse model 
induces PCa with EMT characteristics and involves 
activation of SOX9 transcriptional activity and activation 
of WNT pathway protein Fzd4; this was validated in 
human PCa [294].

β2-microglobulin is a pleiotropic signaling 
molecule that is highly expressed in bone metastases 

in PCa. β2-M interacts, among many other proteins, 
with hemochromatosis protein HFE, modulating iron 
homeostasis and leading to activation of HIF-1 (hypoxia-
inducible factor-1) signaling pathways [295]. HIF1 
activates the expression of number of genes including 
VEGF that have been linked to EMT transition in vitro 
[296]. Estrogen receptor β inhibits EMT in PCa cells 
by destabilizing HIF-1α and inhibiting VEGF-mediated 
nuclear localization of SNAIL [260].

Paracrine interactions are also contributing to EMT 
in PCa. One mechanism involves tumor secreted IL-6 
that elicits secretion of metalloproteases by stroma [297]. 
Cancer associated fibroblasts develop an inflammatory 
signature characterized by activation of COX-2/NF-κB 
/HIF-1, which induces generation of reactive oxygen 
species and the EMT program in prostate cancer cells 
[298].

Another example of the role that paracrine 
interactions play in EMT and metastasis of PCa involves 
tumor secreted cytokine CXCL16 and its receptor CXCR6 
expressed on bone marrow derived mesenchymal stem 
cells (MSC). CXCR6 induced signaling on MSC promotes 
their recruitment into PCa tumors, conversion into cancer 
– associate fibroblasts (CAF) and secretion of CXCL12/
stroma derived factor 1. In turn, CXCL12 stimulates PCa 
cells expressing the CXCL12 receptor, CXCR4, which 
facilitates EMT, migration and metastasis [299].

EMT might play a critical role in the metastatic 
behavior of PCa, in particular bone metastases that present 
a very serious clinical challenge. Some investigational 
agents that might show efficacy in the spread of bone 
metastases are listed in Table 3, and they include 
cabozantinib, an inhibitor of MET, an RTK with a well 
know role in EMT. Cabozantinib shows anti-metastatic 
activity in mouse models of bone metastases [133] and 
significant clinical activity in patients with bone metastatic 
cancer [134]. Inhibitors of FGFR signaling (dovitinib) are 

Table 3: Targeting bone metastases
DRUGS Description Stage of development Other Notes

Cabozantinib/XL184 Inhibitor of MET and other RTKs
Promising results from Phase 2
In phase II trial with abiraterone 
and enzalutamide

Observed reduction 
of soft tissue lesions, 
improvement in PFS, 
resolution of bone 
scans

Denosumab /XGEVA
Receptor activator of nuclear 
factor-kappa B (RANK) ligand, 
RANKL

Approved by FDA in 2013
Superior to the 
previously tested 
zoledronic acid

PLX3397
Multitargeted inhibitor of receptor 
tyrosine kinase of KIT, CSF1R and 
FLT3 (mixture of inhibitors)

Phase 2

Alpharadin® 
(Radium-223 
dichloride)

Short-lived alpha-particle-emitting 
radium-223 localizes to bone 
metastases and kills tumor cells

Approved by FDA 2013
In phase II-III trials 
in combination with 
ADT

 Enzalutamide 
(MDV3100) in 
Combination With 
Abiraterone Acetate

To achieve a more complete 
inhibition of AR signaling via 
inhibition of both CYP17 and AR

Phase 2
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also in clinical trials, as described above. In 2013 FDA 
approved a monoclonal antibody agent for the treatment of 
bone metastasis Denosumab (Xgeva), inhibitor of receptor 
activator of nuclear factor kappa beta ligand (RANKL) 
that was shown to delayed skeletal events. Denosumab 
was also shown recently to modestly prolong time to bone 
metastases in patients with non-metastatic disease [300], 
however the FDA did not approve it for this indication 
as there was no an associated survival advantage. Also 
in 2013 FDA approved radium-223 chloride (Xofigo) 
for the treatment of mCRPC patients whose metastases 
are primarily limited to the bones. Radium-223 is an 
alpha-emitting alkaline earth metal ion, which, similar 
to calcium-ions, accumulates in the bone. Radium-223 
therapy modestly extends OS and delays the occurrence 
of skeletal complications of prostate cancer.

Neuroendocrine PCa (NEPC)

NEPC is a subtype in a poorly defined group 
of prostate cancers that are variously described as 
“anaplastic”, “small cells PCa”, or simply “aggressive” 
and may represent different histopathological entities. 
These are associated with at least one of the following 
characteristics: exclusive visceral metastases, or 
predominantly lytic bone metastases, bulky tumors, low 
prostate-specific antigen, lack of or short response to 
androgen deprivation therapy and good but short-lived 
responses to platinum-based chemotherapy [301]. Classic 
NEPC subtype do not express AR and thus do not respond 
to ADT These “aggressive” prostate cancers rarely 
arise “de novo”, and most often appear after ADT, at a 
frequency of 10 to 20% [301]. An even higher proportion 
of CRPC demonstrate a mixed histology with features of 
neuroendocrine differentiation [302]. 

It has been suggested that introduction of the new 
ADT agents abiraterone and enzalutamide has significantly 
increased the emergence of castrate-resistant cancers with 
neuroendocrine features and visceral metastases [303-
305]. The frequency of NEPC, a resistant form of PCa, 
is indeed on the rise, but the reasons for this increase are 
under intense discussion and are not yet resolved [306]. 
It is accepted that development of the aggressive NEPC 
phenotype is generally treatment-related, i.e. it is strongly 
associated with the development of castrate resistance 
[307]. NEPC tumors do not express AR or PSA, and 
comprises only about 0.5 to 2% of untreated PCa. NEPC 
express neuroendocrine markers, respond poorly to 
treatment and metastasize to visceral organs such as liver.

A first-in-class xenograft model established 
with xenografts from the fine-needle biopsies showed 
that neuroendocrine PCa can evolve directly from 
adenocarcinoma via an adaptive response after prolonged 
exposure to androgen withdrawal [308]. Possible 
molecular changes contributing to NEPC were analyzed 
in mouse models and by next generation RNA sequencing. 

Data from GEMM implicated the ubiquitin ligase Siah2 
which regulates HIF1α degradation in the development 
of neuroendocrine phenotype [169]. In particular, HIF1α 
and FoxA2-regulated genes Hes6, Sox9 and Jmjd1a are 
involved in NE progression and are highly expressed in 
metastatic tumors [169]. Hypoxia was also implicated in 
development of NE by downregulation of Notch signaling 
[309]. 

Molecular changes strongly associated with NEPC 
were identified by NGS of RNA, and most frequent are 
overexpression of EZH2 and amplification of Aurora 
kinase A and NMYC [310]. Concurrent amplification of 
NMYC and AURKA is strongly associated with NEPC 
[311], and is also a frequent feature of the neuroendocrine 
childhood tumor neuroblastoma. AURKA is necessary for 
the growth of MYCN amplified neuroblastoma providing 
an essential function in stabilization of NMYC protein 
[312].

 The neuroendocrine phenotype in PCa was shown 
to be mechanistically linked to the downregulation of 
transcriptional complex REST [313]. REST is expressed 
in neural stem cells and is known as a transcriptional 
repressive complex that recruits HDACs, and is essential 
for the maintenance of the stem cell phenotype [314, 
315] and suppression of neuronal phenotype. In addition 
to downregulation of REST, a component of the REST, 
PHF21A was found to be differentially spliced in NEPC 
to produce a protein lacking DNA binding domain and 
therefore rendered inactive in respect to its function [313]. 
Finally, a recent report describes loss of RB1 as a common 
occurrence in CRPC with neuroendocrine features [316].

In addition to classic chemotherapy regimens, 
potential novel treatment options for this clinically 
aggressive type of PCa could involve Aurora kinase 
inhibitors. Clinical trials with inhibitor MLN8237 are 
ongoing (NCT01799278) or planned (NCT01848067), in 
combination with abiraterone or chemotherapy. A recent 
study performed in vitro and in a mouse neuroblastoma 
model demonstrated that inhibition of AURKA with 
MLN8237 or MLN8054 actually triggers degradation of 
NMYC mediated by the Fbxw7 ubiquitin ligase [317]. 

Diagnostic and prognostic biomarkers

Search for diagnostic and prognostic tests in 
localized PCa. Testing for PSA prostate-specific antigen as 
a screening tool for PCa has been useful in diagnosis and 
follow-up to treatments in PCa, but it has shortcomings. 
These include false positives, unnecessary treatments for 
men with low grade PCa but elevated PSA, and occasional 
lack of PSA in high grade PCa (particularly with NE 
phenotype). Inter-individual variations in PSA levels 
have been reported to be associated with three particular 
polymorphisms in the individual genomes [318], and this 
information might be used for “correction” of PSA scores.
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Detection of TMPRSS2-ERG (T/E) fusion in 
urine in combination with serum PSA was reported 
to be successful in risk stratification for PCa [319]. A 
combination urine test for ERG and PCA3 (a noncoding 
RNA associated with PCa) by PCR, and PSA serum 
levels, was reported to have a superior diagnostic value 
compared to either marker alone [320], in particular in 
the active surveillance group of patients [321]. Obviously, 
considering that T/E fusion is associated with 40 to 60% 
of PCa, these tests will not be useful for T/E negative 
patients. These tests, however, have not entered routine 
clinical use.

The predictive value of testing is particularly 
high in active surveillance, a treatment (or lack of 
treatment) approach that has been supported by several 
recent clinical trials. They demonstrated better quality 
of life for low-risk prostate cancer patients who were 
actively monitored rather than treated for their disease. 
One such study, the Prostate Cancer Intervention Versus 
Observation Trial (PIVOT), found that men who have 
low-risk cancer may not need early treatment for prostate 
cancer [322]. However, the prognostic markers are 
badly needed to identify patients who will benefit from 
aggressive treatments versus the truly low-risk group. 
PCA3, a noncoding RNA overexpressed in PCa [323], 
is one of the biomarkers explored, but it could be useful 
only in combination with testing for ERG [324, 325]. 
Both could be detected in urine, which is an important 
consideration. A much more extensive test, Prolaris from 
Myriad, analyzes an expression signature of 31 cell-cycle 
related genes to predict biochemical recurrence, but tumor 
biopsies are needed for this analysis. Genomic Health will 
be providing the OncotypeDX test soon to help identified 
patients in danger of being “overtreated”. Both of these 
tests hold promise but their clinical validation is not yet 
complete.

A recent study has reported identification of a 19 
gene expression signature enriched in genes associated 
with aging and senescence, which allows to distinguish 
indolent low Gleason tumors. Moreover, expression of just 
three genes: FGFR1, PMP22, and CDKN1A accurately 
predicted outcome of low Gleason score tumors. Protein 
expression of this three-gene panel in biopsy samples 
distinguished Gleason 6 patients who failed surveillance 
over a 10-year period [326], but these tests need a full 
validation.

ConfrimMDx test from MDxHealth examines 
methylation status of a three genes, GSTP1, APC and/
or RASSF1 in PCa biopsies. The company claims that 
their test is more accurate in detection of PCa in biopsies, 
because it could detect the effects of cancerous growth 
in cells adjacent to it, and does not have to rely on the 
identification of PCa foci in the needle core biopsies. 

Prognostic tests for CRPC. Significant work has 
been conducted in order to develop a minimally invasive 
diagnostic procedure, considering the risks associated with 

needle biopsies and the fact that biopsies of metastases 
present a number of risks and limitations. “Liquid” 
biopsies or predictive gene signatures based on DNA and 
mRNA analyses of whole blood are being developed. In 
one study, an expression signature of six genes was highly 
effective in predicting survival [327], and, similarly, a 
nine gene signature was highly predictive in another 
study [328], but these are relatively far away from clinical 
implementation. 

Isolation and analysis of circulating tumor cells 
(CTC) is a developing technology that is promising in 
metastatic cancers. According to several studies, the mere 
enumeration of CTCs in blood samples is prognostic and 
could be predictive of response to therapies in CRPC 
[329-332]. Capture of CTC presents a technological 
challenge, such as the frequent EMT observed in CRPC, 
which eliminates the expression of epithelial markers 
(antibodies to E-cadherin are frequently used to selectively 
isolate circulating metastatic cells from whole blood.) 
Identification of cell surface markers selectively expressed 
on metastatic cells with stem cell/EMT signature is 
needed. The challenges and significance of CTC analyses 
in PCa were reviewed recently [333, 334].

Reactivation of AR signaling despite continuous 
treatment with new drugs such as abiraterone (CYP17A1 
inhibitor) is a common phenomenon. Prediction of 
response in patients is highly desirable, and a non-invasive 
test is much preferred to repeated biopsies. Isolation and 
analysis of CTC was explored as a diagnostic or prognostic 
factor for ADT. Earlier attempts to analysis of CTC were 
limited to quantification only. The feasibility of measuring 
the AR pathway activity in CTC was demonstrated [335]. 
This approach became feasible due to technological 
advances in microfluidic capture of CTC and imaging, 
enabling single cells immunofluorescence analysis of 
AR activity. The “AR-ON” signature was observed in 
untreated patients whereas patients with CRPC had mixed 
levels of AR activation on, off and mixed). First line ADT 
induced a switch from AR-ON to AR-OFF, but secondary 
hormonal therapy evoked mixed responses. Responses to 
second line ADT (abiraterone) showed presence of “AR-
mixed” CTCs and increasing “AR-on” cells, which were 
associated with an adverse treatment outcome. This test 
could be used a predictive of responses to ADT. 

Other possibilities for novel non-invasive tests 
include mRNA seq in captured CTC [336] and detection 
of telomerase hTERT mRNA in plasma [337]. The latter 
was reported to be a useful predictor of biochemical 
recurrence, and could be considered in combination with 
other known markers.

Immunotherapy for PCA

There has always been an interest in development 
of immunotherapeutics for PCa, and the only approved 
cell-based immunotherapy, Sipuleucel-T, was developed 
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for PCa. Numerous other approaches are in clinical 
development (Table 4), some of which are mentioned 
below. 

Immunomodulatory antibodies. A growing 
number of trials are ongoing with the immune checkpoint 
antibodies in prostate cancer. Ipilimumab, FDA approved 
anti-CTLA4 antibody, is in several trials in PCa, including 
randomized phase III NCT01057810 for patients with 
asymptomatic mCRPC and randomized phase III trial 
NCT00861614 with ipilimumab or placebo administered 
after radiotherapy. The results of latter trial failed to 
reach the primary endpoint of increasing OS, but showed 
some signs of activity of ipilimumab that warrant further 
investigation [338]. The second study of ipilimumab 
which examines the drug in chemotherapy-naïve 
patients, is still under way. Ipilimumab is also combined 
with Abiraterone and prednisone in a phase II study 
NCT01688492 for patients with progressive mCRPC. 
Phase II trial NCT01498978 is exploring addition of 
ipilimumab to patients with mCRPC under treatment with 
ADT agents such as LHRH agonists or antiandrogens 
such as bicalutamide. Ipilimumab is also being evaluated 
in a neoadjuvant setting (phase II NCT01194271), and in 
combination with Sipuleucel-T in phase II NCT01832870, 
as well as several other trials. 

In spite of successes achieved with anti-PD-1 and 
PD-L1 antibodies in other malignancies, there are only 
two clinical trials with these agents ongoing for prostate 
cancer. NCT01420965 combines sipuleucel and anti-PD-1 
antibody CT-011, and anti-PD-L1 antibody MSB0010718C 

is tested in a several cancer types including prostate. The 
relative dearth of trials with checkpoint antibodies is most 
likely due to the fact that in the trial of BMS-936558, anti 
PD-1 antibody, remarkable responses were observed in 
patients with melanoma, NSCLC and RCC, but not PCa 
[339]. Immunostimulatory antibody to OX-40 is in early 
clinical testing (NCT01303705), but will be administered 
only on short-term basis after cyclophosphamide. The 
antibody is of mouse origin and cannot be used for longer 
treatments.

Adoptive cell transfer. Phase I trial NCT01140373 
for mCRPC patients is testing harvested autologous T cells 
transduced in vitro with CAR (chimeric antigen receptor) 
recognizing PSMA. Treatment will involve myeloablation 
with cyclophosphamide in patients with CRPC. 

An early phase clinical study is exploring potential 
of natural killer (NK) cells in various malignancies 
including PCa. In particular, this phase I trial 
(NCT00720785) will examine if the limited anti-tumor 
activity of NK cells could be significantly increased by 
pretreating patients with proteasome inhibitor bortezomib, 
which has been reported to enhance the sensitivity of 
tumor cells to NK killing in numerous studies [340, 341]. 
In the future, the complex regulation of NK cells activity 
by tumors themselves will have to be considered. A very 
recent study has demonstrated a striking role of the well 
known NK ligand NKG2D in regulating the cytotoxic 
activity of NK cells in prostate tumors in a mouse model. 
Apparently, membrane-restricted and soluble NKG2D 
ligands pose opposite impacts on tumor progression and 

Table 4: Targeting immune system in prostate cancer
Approach Agent description Drug Stage of development

Blockade of 
the inhibitory 
T cell receptor 
CTLA4 

Antibody to CTLA4 expressed on 
immune cells Ipilimumab/Yervoy In numerous clinical 

trials; part of combination 
therapies. 

Blockade of the 
inhibitory T cell 
receptor PD-1

Antibody to PD-1 CT-011/Pidilizumab
One trial with CT-011 
in combination with 
Sipuleucel-T, phase 2 

Vaccination

Fowlpox virus based vaccine; 
expression of immunostimulants B7.1, 
ICAM-1, and LFA-3
and PSA

PROSTVAC®-VF
In clinical trials; phase II; in 
combination therapies with 
other agents

Cell based 
immune 
therapy

Enriched for dendritic cells  (exposed 
to GM-CSF) fused to prostatic-acid 
phosphatase (PAP)

DC expressing PSMA

Autologous T cells expressing CAR to 
PSMA

Sipuleucel-T

BPX-201

T cells with CAR

Approved for minimally 
symptomatic metastatic 
CRPC, 2010

Phase 1
Phase I

Whole cell 
vaccination 

Irradiated PCa cells expressing GM-
CSF GVAX Phase 1,2; combination 

Activation of 
co-stimulatory 
receptor

Antibody to OX40, stimulatory Anti-OX40 Phase 1,2; combination 
treatment
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metastasis. The membrane-restricted NKG2D ligand 
MICB.A2 could sustain NKG2D protective immunity and 
prevent spontaneous tumorigenesis, whereas the native 
NKG2D ligand MICB facilitates tumor progression 
through soluble ligand-mediated impairment of NK cell 
peripheral maintenance [342].

Vaccination. PROSTVAC-V and PROSTVAC-F are 
vaccinia and fowlpox based virus vaccines expressing PSA 
and TRICOM (three immunostimulatory proteins B7.1, 
ICAM-1, and LFA-3), and with GM-CSF. PROSTVAC-V 
is given for priming, and PROSTVAC-F for boosting 
the response. A phase II trial was completed without 
clear clinical benefits, such as increase in PFS, observed. 
However, the clinical evaluation of PROSTVAC-V/F 
should be re-considered considering different endpoints 
for immune therapies [343]. Indeed, evaluation of patients 
at three year post-study showed an increase in OS [344]. 
Phase III trial NCT01322490 for PROSTVAC-V/F with 
GM-CSF is in progress. Phase I trial NCT00450463 
examines PROSTVAC-V/F-TRICOM versus placebo 
in patients treated with flutamide, and phase II 
NCT01875250 with enzalutamide. Development of a 
humoral response to an viral antigen in PROSTVAC as 
reported to be a potential predictive marker for favorable 
response to PROST-VAC in patients [345].

Phase II trial NCT01341652 examines PAP 
vaccine plus GM-CSF versus GM-CSF alone in non-
metastatic PCa. Adenovirus/PSA vaccine is tested in 
Phase II NCT00583024 in hormone-refractory PCa, while 
NCT00583752 will test the same vaccine in men with 
locally treated PCa. 

Dendritic cells. Sipuleucel-T/Provenge/ was the 
first cellular immunotherapeutic to be approved by the 
FDA to treat cancer. This treatment consists of autologous 
peripheral blood mononuclear cells (PBMCs) enriched for 
a CD54+ DCs (dendritic cells). These are primed in vitro 
with the recombinant fusion protein consisting of prostatic 
acid phosphatase (PAP) and GM-CSF. This causes the 
activation and expansion of the autologous antigen-
presenting cells (APCs) and lymphocytes, even though 
the precise mechanism is still unknown. Treatment with 
Sipuleucel-T does not have an effect on levels of PSA or 
radiological parameters of disease, but has a modest effect 
on OS. 

Sipuleucel-T is also examined as a neoadjuvant in 
patients with localized PCa: phase II, NCT00715104; 
in combination with external beam radiation therapy 
in CRPC patients (NCT01807065, Phase II), and with 
abiraterone in phase II NCT01487863. Combination of 
Sipuleucel-T with Ipilimumab, an immune checkpoint 
antibody targeting inhibitory CTLA-4, is in a phase II 
trial NCT01804465 which examines immediate versus 
delayed CTLA-4 blockade, and in phase I NCT01832870 
for advanced PCa. A trial of Sipuleucel-T with another 
checkpoint antibody, CT-011 targeting PD-1 is also 
ongoing (NCT01420965, phase II). 

BPX-201 DCs vaccine with activating agent AP1903 
is undergoing testing in phase I trial NCT01823978 for 
mCRPC. DCs in this trial are transduced with adenovirus-
based vector expressing PSMA and a fusion protein 
composed of synthetic inducible adjuvant iMC, drug-
inducible costimulatory CD40 receptor (iCD40) and the 
adaptor protein MyD88, with potential immunomodulating 
and antineoplastic activities. The iCD40 contains a 
membrane-localized cytoplasmic CD40 domain fused to 
the FK506 modified drug-binding protein 12 (FKBP12). 
Upon intradermal administration of BPX-201, these DCs 
accumulate in local draining lymph nodes. Twenty-four 
hours after vaccination, the dimerizing agent AP1903 is 
administered. AP1903 binds to the drug binding domain, 
leading to iMC oligomerization and activation of iCD40 
and MyD88-mediated signaling in iMC-expressing DCs.

New directions

Neoneurogenesis in PCa development. An exciting 
new target in treatment of PCA is neoneurogenesis, 
or the ingrowth of new nerve endings into a tumor. It 
was discovered recently that the autonomous nervous 
system plays a direct role in PCa growth and metastasis. 
Sympathetic and parasympathetic nerves in the normal 
prostate control the physiological function of both muscle 
fibers and epithelial compartment, but their involvement 
in PCa was unsuspected. As was demonstrated in [346], 
adrenergic fibers from the sympathetic nervous system 
contribute to the development of PCa by release of 
noradrenaline which stimulates β2- and β3-adrenergic 
receptors expressed on smooth muscle cells in the stroma. 
Deletion of β2- and β3-adrenergic receptors in stroma 
prevented development of PCa in different mouse models 
of PCa. Cholinergic fibers of the parasympathetic nervous 
system (PNS) stimulate dissemination of prostate cancer 
cells by releasing acetylcholine that stimulates muscarinic 
receptors on stromal cells. Deletion of type 1 muscarinic 
receptors in stroma inhibited tumor invasion and 
metastasis. Importantly, higher overall densities of nerve 
fibers were detected in PCa patients with poor prognosis 
compared to a group with better prognosis. Targeting the 
autonomous nervous system could therefore prevent tumor 
progression in PCa. 

Metabolic regulation of PCa development. A 
recent population study performed in Toronto showed 
that increasing duration of metformin use among diabetic 
men after a diagnosis of prostate cancer was associated 
with decreased prostate cancer–specific and all-cause 
mortality [347]. The findings were significant irrespective 
of what treatments the subjects were receiving for their 
PCa. Metformin is a widely used drug to treat type II 
diabetes, and is currently explored in numerous types of 
cancer, including PCa, in about 10 trials. In particular, 
addition of metformin to various forms of ADT is explored 
based on the rationale that ADT is associated with the 
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metabolic syndrome, hyperinsulinemia and insulin 
resistance. Hyperinsulinemia was reported to stimulate 
tumor growth and development of CRPC via activation 
of IGFR. Metformin through its activation of the AMPK-
LKBI pathway reduces liver gluconeogenesis secondarily 
decreasing insulin levels, which might explain the effects 
on tumor growth. Other effects of metformin on cellular 
metabolic processes could contribute to its anti-cancer 
properties, such as indirect effects on mTOR and SIRT1. 
Metformin acts directly on mitochondrial complex I 
reducing respiration rates, and this activity is probably 
relevant to the recently demonstrated improvement of 
prostate tumors oxygenation and radiotherapy response in 
vivo [348]. Metformin use was associated with significant 
decrease in biochemical relapse in patients [348]. 

L-type amino acid transporters (LATs) uptake neutral 
amino acids including L-leucine into cells, stimulating 
mTORC1 signaling. LAT1 and LAT3 are overexpressed in 
PCa, and they are responsible for increasing nutrients and 
stimulating cell growth. LAT3, in particular, is expressed 
at high levels in all stages of PCA, and its expression is 
suppressed after ADT [349]. Pharmacological inhibition 
of LATs lead to downregulation of the E2F regulated 
M phase genes, and silencing of LAT1 or LAT3 in the 
xenograft model inhibited tumor growth and metastases. 
[349]

Regulation of AR activity by long noncoding 
RNA (lncRNA). A recent study uncovered how two 
lncRNAs, PRNCR1 and PCGEM1, overexpressed in 
many CRPCs, concordantly enhance AR transcriptional 
activity in a complicated series of events. These lncRNAs 
localize to chromatin in androgen response area, whereby 
PRNCR1 binds the acetylated carboxyl end of AR, recruits 
methylase DOTL1, which methylates the amino terminus 
of AR, a pre-requisite to binding of PCGEM1. AR-bound 
PCGEM recruits protein Pygo2 bound to H3K4me3 on 
chromatin in the promoter area, thus inducing chromatin 
looping that brings enhancer and promoter area into close 
proximity. The proximity of AR bound enhancer and 
promoter sequences of target genes results in enhanced 
transcription of AR target, many of which contribute 
to oncogenesis [350]. These lncRNAs could serve as 
therapeutic targets because their silencing inhibited growth 
of xenograft tumors. 

Potential role of HHV-8 in prostate 
carcinogenesis. Presence of HHV-8 (also known as 
Kaposi sarcoma herpes virus) in normal prostate, prostate 
cancers and biological fluids was reported in a number 
of publications, some of which documented higher 
prevalence of HHV-8 in prostate cancer or seropositivity 
for HHV-8 in PCa patients, while others reported no such 
association. In general, HHV-8 infection was not linked 
etiologically to PCa. However, a recent publication 
reported that HHV-8 infection of androgen-responsive PCa 
cells confers androgen-independent growth via activation 
of EZH2 controlled gene silencing [351]. These findings 

warrant further investigation of the role that HHV-8 might 
play in development of CRPC.

CONCLUDING REMARKS

Even though NGS studies were conducted for 
prostate cancer, the identification of well defined and 
clinically meaningful subtypes based on genomic profiling 
has been difficult. It is likely due to the high number of 
molecular alterations that contribute to the development of 
localized PCa. For example, about half of prostate cancers 
have translocations involving the ETS family members, 
but these are not sufficient to cause frank PCa. The 
additional alterations that cooperate with deregulated ETS 
are many, and presumably each of them (for example, loss 
of PTEN versus loss of TP53 function) could determine 
the precise clinical subtype of the emerging tumor. The 
other known drivers of the PCa early development (in 
fusion-negative cancers) are also several: SPOP mutation, 
SPINK overexpression, CHD1 deletion and TAK1 loss, as 
well as chromosomal losses not characterized in terms of 
genes involved. These molecular subtypes of PCa await 
analysis of the clinical significance of the underlying 
somatic changes. 

The pervasive involvement of AR signaling in the 
later stages of PCa presents a conundrum as well, because 
it affects an entire massive transcriptional program that 
is further affected by additional alterations in tumor 
suppressors, transcription factors, chromatin remodeling 
enzymes and, almost universally, developmental factors. 
These multiple perturbations in advanced PCa present 
great difficulties in terms of not only treatments, but 
also identification of biomarkers of risk or prognostic/
theranostic value. 

Since androgen regulated pathways are affected in 
the vast majority of advanced PCa, the ADT is a logical 
therapeutic intervention. The persistent significance of 
the AR signaling in CRPC was recently validated by the 
evidence of the clinical efficacy of androgen synthesis 
inhibitors (abiraterone) and the novel, second-generation 
AR antagonists (enzalutamide). However, ADT is 
often used under circumstances where the mechanisms 
of resistance to it are most likely already present in 
a subpopulation of PCa cells. One possibility is the 
existence of a compartment of the androgen-independent 
cells with characteristics of stemness that already have the 
driver mutations such as ETS translocation or PTEN loss, 
and that are propelled into reproduction and acquisition 
of further genetic changes by the drop in androgen levels. 
Alternatively, a population of androgen independent or 
almost independent cells might emerge as a consequence 
of the ADT by selecting rare cells with de novo alterations 
in other signaling, developmental or epigenetic pathways 
that bypass the need for androgen signaling. 

The universal development of resistance to ADT, 
including the newest agents, is a testimony not only to the 
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adaptability of the activity of AR pathway to the low or 
even absent androgens, but also an evidence of enormous 
adaptability of PCa cellular oncogenic pathways. 
Resistance to ADT is enormously important clinically, 
and is the subject of intense research (reviewed in [135, 
352, 353]. Emergence of CRPC subtypes (like NEPC) that 
do not express AR and therefore are truly independent of 
androgen signaling presents a clinical conundrum that 
warrants more research in treatment options. 

It is becoming a shared understanding that in the 
future, ADT will be administered as one component 
in a combination of therapies, to try and forestall the 
development of resistance. However, the real conundrum 
will be to find a right “partner” to the ADT. The problem 
lies in the identification of the particular pre-existing or 
emerging alterations that ultimately contribute to the 
resistance to ADT. The acknowledged role of the tumor 
heterogeneity in this process is hard to dispute. However, 
it is difficult to address it in the context of limited biopsies, 
even if several are taken from the tumor. Comprehensive 
genomic analysis of the CTCs or free circulating tumor 
DNA might be a step toward identification of mutations 
present in heterogeneous subpopulations of tumor or its 
metastases.
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