
RESEARCH ARTICLE

Effects of an industrial passive assistive

exoskeleton on muscle activity, oxygen

consumption and subjective responses

during lifting tasks

Xishuai Qu1, Chenxi Qu2, Tao Ma3, Peng Yin1, Ning Zhao3, Yumeng Xia4,

Shengguan Qu1,3*

1 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou,

China, 2 School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester,

United Kingdom, 3 State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission

System, Inner Mongolia First Machinery Group Co., Ltd., Baotou, China, 4 China North Advanced

Technology Generalization Institute, Beijing, China

* qusg@scut.edu.cn

Abstract

The purpose of this study was to evaluate the effects of an industrial passive assisted exo-

skeleton (IPAE) with simulated lifting tasks on muscle activity, oxygen consumption, per-

ceived level of exertion, local perceived pressure, and systemic usability. Eight workers

were required to complete two lifting tasks with and without the IPAE, that were single lifting

tasks (repeated 5 times) and 15 min repeated lifting tasks respectively. Both of the tasks

required subjects to remove a toolbox from the ground to the waist height. The test results

showed that IPAE significantly reduced the muscle activity of the lumbar erector spinae, tho-

racic erector spinae, middle deltoid and labrum-biceps muscles; the reduction effect during

the 15 min lifting task was reached 21%, 12%, 32% and 38% respectively. The exoskeleton

did not cause significant differences in oxygen consumption and the perceived level of exer-

tion, but local perceived pressure on the shoulders, thighs, wrists, and waist of the subjects

could be produced. 50% of the subjects rated the usability of the equipment as acceptable.

The results illustrate the good potential of the exoskeleton to reduce the muscle activity of

the low back and upper arms. However, there is still a concern for the obvious contact

pressure.

Introduction

Despite the widespread use of robots instead of labors for material handling in the industrial

field, many short-distance material-lifting tasks are still performed manually [1]. Compared

with robots, workers’ subjective initiative can represent an irreplaceable advantage in some

tasks [2]. In manual handling, workers are likely to suffer from musculoskeletal disorder, of

which low back pain (LBP) is the number one cause of disability in the world [3]. LBP is a seri-

ous problem that plagues industrialized countries and workers, the indirect costs caused by

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0245629 January 20, 2021 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Qu X, Qu C, Ma T, Yin P, Zhao N, Xia Y, et

al. (2021) Effects of an industrial passive assistive

exoskeleton on muscle activity, oxygen

consumption and subjective responses during

lifting tasks. PLoS ONE 16(1): e0245629. https://

doi.org/10.1371/journal.pone.0245629

Editor: Peter Schwenkreis, BG-Universitatsklinikum

Bergmannsheil, Ruhr-Universitat Bochum,

GERMANY

Received: August 26, 2020

Accepted: January 4, 2021

Published: January 20, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0245629

Copyright: © 2021 Qu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

https://doi.org/10.1371/journal.pone.0245629
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245629&domain=pdf&date_stamp=2021-01-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245629&domain=pdf&date_stamp=2021-01-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245629&domain=pdf&date_stamp=2021-01-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245629&domain=pdf&date_stamp=2021-01-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245629&domain=pdf&date_stamp=2021-01-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245629&domain=pdf&date_stamp=2021-01-20
https://doi.org/10.1371/journal.pone.0245629
https://doi.org/10.1371/journal.pone.0245629
https://doi.org/10.1371/journal.pone.0245629
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


LBP represented overall 0.68% of Spanish Gross Domestic Product [4]. From 1990 to 2016,

12.8 million individuals with LBP had increased in China [5]. Besides, LBP is among the big-

gest causes of absence from work [6]. Despite the increasing awareness and the abundance of

research on ergonomics in the industrial field, the prevalence of musculoskeletal diseases has

not decreased [7]. Common treatment options for LBP include medication, physical therapy

or surgery, which can be painful, expensive and produce limited effects on recovery. Therefore,

further research is needed to prevent the musculoskeletal disorder.

To reduce the incidence of musculoskeletal diseases of workers during manual material

handling (MMH) work, off-body mechanical aids, such as trolleys and forklifts, are used to

carry toolbox beyond human capability. Although it can effectively reduce the situation of

workers carrying heavy loads [8], lifting aids are often not used due to their constraints [9].

On-body assistive devices, such as widely-sold back belts, have no definitive research evidence

to show that they are effective in protecting or preventing injury when workers are involved in

MMH tasks [10–12]. In recent years, people have paid more and more attention to wearable

robot technology (including exoskeletons) to help workers perform manual lifting tasks with-

out risk [13]. Exoskeleton is a new type of wearable assistive device that can reduce the risk of

musculoskeletal disorder by aiding the human body.

Exoskeletons are generally classified as active and passive. The active types usually use the

drive system (motor, hydraulic system or pneumatic system, etc.) to enhance human strength

and reduce the body’s energy consumption. Naruse et al. [14] developed an electric motor-assis-

ted device to assist trunk flexion and extension to reduce the load on the waist; however, the

weight of the second-generation prototype is still 6.5 kg, which is too heavy for workers in a

bent position. The smart suit developed by Takayuki et al. could reduce about 14% of muscle

fatigue in the bending process [15]. Their device was driven by a 24V DC motor, and it was

hard to incorporate into the workplace because the motor was difficult to carry around. Besides,

several other well-known active exoskeletons, such as HAL, Muscle Suit and BLEEX, were large

and expensive so that they were not suitable for workers [16–18]. At present, the price, stability

and versatility of active exoskeletons have not been recognized by the industry, and some active

exoskeletons dedicated to industrial applications are still in the laboratory [19, 20].

Passive exoskeletons use elastic members to store and release energy during lifting works.

Some passive exoskeletons have entered the marketing stage. Several passive exoskeletons were

shown to reduce the muscle activity of the lower back significantly, such as Happyback, Per-

sonal Lifting Assist Device (PLAD), Laevo and Bendezy. Happyback is composed of fiberglass

rods with a chest harness, waist belt and leg units attached to it [21]. PLAD is made up of elas-

tic elements, which support part of the weight of the upper body when bending down [22].

Laevo is a chest and back supporting exoskeleton composed of flexible tubes that transfer part

of the load to the chest and legs [23]. Bendezy consists of a back unit and straps that wrap

around the shoulders, back and legs; springs bear part of the weight. Most of these passive exo-

skeleton studies only focused on the protection of the lower back muscles but ignored the

fatigue of the arm muscles in the lifting task. There was little research on the local discomfort

caused by the exoskeleton. Moreover, experiments for exoskeleton usually emphasized the col-

lection of EMG, lacked the detection of other physiological indicators. The test results could

not fully reflect whether an exoskeleton met the needs of subjects.

In response to the above problems, an novel industrial passive assistive exoskeleton (IPAE)

was developed by us to reduce the risk of disorder to both low back muscles and arm muscles

of workers during lifting works. The IPAE’s total weight is only 4 kg because of the structural

optimization and the surface is wrapped by flexible fabrics, which improves the comfort of

wearing. Some early subjects have felt the differences in whether they wore the IPAE working

in the stooped posture; however, the objective effectiveness of this exoskeleton to relieve
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fatigue was unclear, and there is still a lack of quantitative indicator to evaluate the subjective

feelings. Therefore, in this study the effects of exoskeletons on the wearer’s muscle activity,

oxygen consumption, local perceived pressure, perceived fatigue level and systemic usability

were investigated by testing each subject finishing two types of simulated lifting tasks to evalu-

ate the IPAE fully.

Materials and methods

Passive exoskeleton

IPAE is a passive wearable exoskeleton that consists of a back support, waist elastic units and

leg supports connected in sequence. The structure diagram of IPAE used in the tests is shown

in Fig 1. The IPAE was worn by subjects like a backpack. After putting it on, the straps on the

chest, waist, thighs and wrists needed to be fixed and adjusted. When the upper body is low-

ered, energy is stored in the waist elastic elements; on the ensuring upward phase, the stored

energy is released, thereby reducing the activity of the lower back muscles. The lifting object is

fixed with the hooks and the straps connecting shoulders and wrists transfer part of the weight

of the object to the shoulders during lifting tasks to relieve the fatigue of the arm muscles.

When subjects restoring upright, part of the box weight is transferred to the shoulders and

back support by the straps, and the elastic unit releases the potential energy to provide assis-

tance. After returning to an upright position, the box weight is partly transferred to the shoul-

ders. A researcher was required to assist in the initial wearing, and the entire wearing process

takes about 2 min. Before the formal tests, the subjects needed to finish normal walking and

lifting actions until the straps and elastic elements were adjusted to the appropriate range.

Fig 1. The structure diagram of IPAE used in the tests. It consists of a back support, waist elastic units, leg supports,

hooks, shoulder straps and waist straps showed in two views: (a) front view; (b) rearview.

https://doi.org/10.1371/journal.pone.0245629.g001
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Participants

Eight healthy adult male workers (right inertial hand) with no history of muscle injury and LBP in

the past three months were invited to participate in this study. The subjects read and signed an

information and consent form approved by the South China University of Technology Research

Ethics Board. To reduce the influence of physical factors, the selected subjects were 27.4±4.1 years

old, 73.2±8.1 kg in weight and 174±5.4 cm in height. All subjects read the test process and precau-

tions in detail before the tests and signed the consent form. The subjects did not engage in vigor-

ous exercise one week before the tests, and a 5 min warm-up was performed before the tests.

Instrumentation

Previous research showed that there was no significant difference between the left and right

EMG signals [24]. Four-channel portable Flexvolt Bluetooth EMG Sensor with a sampling rate

of 2048 Hz was used to collect surface EMG data of the right four muscles: thoracic (T9) erec-

tor spinae (TES), lumbar (L4) erector spinae (LES), middle deltoid (MD) and labrum-biceps

(LB) respectively. The position of the electrodes was shown in Fig 2. A pair of Ag/AgCl elec-

trodes parallel to the orientation of the muscle fibers (distance between electrodes: 2 cm) was

placed over each muscle belly. The reference electrode placed on the electrically neutral side of

the vertical muscle fiber orientation. Before fixing the electrodes with medical tape, the skin

surface was shaved and cleaned with alcohol, and finally sprayed by antiperspirant to prevent

electrode displacement and signal loss due to sweating. Oxygen consumption was collected

with VO2 Master Health Sensor equipment. The subjects had worn the equipment for infor-

mation entry and calibration before formal measurement. Each subject finished 3 maximum

voluntary contractions (MVCs) intervals separated by 1 min before the start of all tests. After

completing the maximum back extensor force (MVE) tests on the subject given by Christy A.

Lotz et al. [25], a toolbox with a weight of 20% MVE was set as the load to be lifted.

Testing procedures

Preparation. The laboratory used for sessions maintains a constant temperature of 22˚C,

and all irrelevant electronic equipment had been cleaned to reduce signal interference before

the tests. After subjects entered the laboratory, the staff demonstrated how to wear and use

test-related equipment and introduced the test process in detail until the subjects were profi-

cient to complete the lifting task at a roughly uniform speed with the metronome. After

Fig 2. The electrodes placed on (a) the low back and (b) the upper arm. The EMG of thoracic (T9) erector spinae

(TES), lumbar (L4) erector spinae (LES), middle deltoid (MD) and labrum-biceps (LB) are collected by Ag/AgCl

electrodes.

https://doi.org/10.1371/journal.pone.0245629.g002
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training, the subjects performed the single lifting task for total 5 times with an interval of 1

min each time. Then the subjects finished two 15 min lifting tasks (with or without exoskele-

ton) in random order, and the interval between two tasks was more than 12h. It is necessary to

confirm that the subjects did not experience muscle discomfort before all tests.

Lifting tasks. Each lifting task started when subjects remained relaxed and upright. The

lifting process is shown in Fig 3. The tasks were executed in the sagittal plane, using free pos-

tures. Subjects lifted the toolbox on the ground in front of them. After returning to the upright

position, the toolbox was placed on a table at the same height as the waist. Then the subjects

put the toolbox back on the ground and returned to the starting posture. The entire process

was controlled by a metronome to maintain about 12s after training. Each subject completed

75 groups in 15 min lifting task. The subjects’ oxygen consumption data and the EMG data of

four muscles tested were collected throughout.

Subjective responses. After the single lifting task, perceived musculoskeletal pressure was

rated by Local Perceived Pressure (LPP) method adapted from Van der Grinten [26]. LPP rat-

ings ranging from 0 (no pressure at all) to 10 (extremely strong pressure) were used to assess

the musculoskeletal pressure of areas that are in close contact with IPAE, including the waist,

shoulders, wrists, and thighs. During the 15 min lifting tasks, subjects rated the current fatigue

level referring to Borg’s Rate of Perceived Exertion Scale (Borg RPE 6–20) every minute. After

the task, the subjects needed to use the System Usability Scale (SUS) evaluating of IPAE [27].

The SUS consists of ten questions rated from one (strongly disagree) to five (strongly agree).

The score of 0–100 can reflect the degree of acceptance of the exoskeleton by subjects. The

score over 70 is generally considered acceptable for this exoskeleton.

Data processing

All original EMG signals were rectified and then a second-order Butterworth filter was used

for 20–500 Hz bandpass filtering. Finally, 30 Hz and 50 Hz notch filter were used to eliminate

ECG contamination and eliminate power frequency interference in the signal [28]. The RMS

of EMG data was calculated to determine the signal amplitude, and it was normalized accord-

ing to the maximum EMG obtained during the MVC test to compare different subjects (MVC

% = RMS/ RMSmax�100%).

Statistical analysis

The independent variables in the tests were whether to wear IPAE and the test time (i.e. 15

min). The dependent variables were the RMS amplitude of four muscles, oxygen consumption

Fig 3. A subject performing the whole lifting process with the exoskeleton. The toolbox was set at 20% MVE of the subject and the table had been adjusted to the

waist height.

https://doi.org/10.1371/journal.pone.0245629.g003
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and Borg RPE scale. The paired sample t-test was used to evaluate the differences in RMS and

oxygen consumption with and without IPAE. After the K-S test, the Borg scale did not violate

the assumption of normality, and repeated measures analysis of variance (ANOVA) was used.

All statistical analyses were performed by SPSS for Windows. The significance was set at

p<0.05.

Results

Muscle activity

LES, MD and LB muscle activity was significantly lower (p<0.05) with the IPAE, but not for

the TES in the single lifting task (Table 1). Fig 4 shows the RMS amplitude of the two tasks. In

the single lifting task, IPAE helped the LES muscles the most, reducing muscle activity by 26%.

During the 15 min lifting task, MD and LB muscle activities were reduced by 32% and 38%,

the IPAE’s effect on the upper arm muscles was more obvious.

Oxygen consumption

Fig 5 shows the average relative oxygen consumption of 8 subjects with and without IPAE dur-

ing the 15 min tests. The paired sample t-test result showed that there was no significant differ-

ence in relative oxygen consumption between the two conditions (p = 0.59). The average value

of all subjects over the entire 15 min was 16.02±1.64 ml/kg/min (IPAE) and 15.98±1.55 ml/kg/

min (NO-IPAE).

Subjective responses

Borg’s Rate of Perceived Exertion Scale. The Borg RPE scale under the two conditions is

shown in Fig 6. After repeated measure ANOVAs test, the main effect of time was significant

for both conditions (p = 0.047<0.05), that is, the scale would increase significantly with time.

Table 1. The result of EMG tests.

Muscle Condition Single/15 min RMS amplitude (MVC%) Standard deviation (MVC%) P value

LES I single 25.5 5.6 0.002

LES NI single 34.7 5.1

LES I 15 min 29.5 6.9 0.041

LES NI 15 min 37.4 6.8

TES I single 17.6 3.0 0.107

TES NI single 20.8 2.9

TES I 15 min 19.1 2.6 0.027

TES NI 15 min 21.6 2.9

MD I single 13.6 2.8 0.009

MD NI single 17.8 3.4

MD I 15 min 17.7 4.9 0.017

MD NI 15 min 26.1 4.4

LB I single 13.2 1.7 0.001

LB NI single 17.6 1.7

LB I 15 min 14.7 1.2 0.000

LB NI 15 min 23.7 1.3

The summary of means and standard deviations of RMS amplitude for all muscles (LES, TES, MD and LB) and tasks (Single lifting task and 15 min lifting task) was

listed. P<0.05 means the test result is significant.

https://doi.org/10.1371/journal.pone.0245629.t001
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Fig 4. Mean RMS amplitude. The values include lumbar erector spinae (LES), thoracic erector spinae (TES), middle deltoid (DM) and labrum-biceps (LB) with (I) and

without (NI) IPAE. (a)single lifting task; (b)15 min lifting task. Significant results (p< 0.05) are marked with an �.

https://doi.org/10.1371/journal.pone.0245629.g004

Fig 5. Average relative oxygen consumption. The oxygen consumption of 8 subjects was checked over time under the IPAE(I)

and No-IPAE(NI) conditions.

https://doi.org/10.1371/journal.pone.0245629.g005
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There was no time and equipment interaction to indicate that IPAE affects the Borg scale, and

whether to wear IPAE did not cause a significant difference. At the end of the tests, the Borg

scale was 10.88±1.13 with IPAE, which was lower than 11.5 (±0.93) without IPAE.

Local perceived pressure. The mean scores of the local perceived pressure of all subjects

are shown in Fig 7. The scores of the four parts most in contact with IPAE are: Shoulders

(2.38) > Thighs (1.75) > Wrists (1.38) >Waist (1). Subjects felt the greatest contact pressure

on the shoulders, followed by the thighs, and less pressure on the wrists and waist.

Usability. Fig 8 shows the system usability scores of 8 subjects. All subjects rated the sys-

tem usability scores, and four subjects rated SUS scores above 70 points, which was higher

than the acceptable usability standard, and other 4 subjects’ scores were rated within the

accepted critical value range.

Discussion

The test results of EMG show that whether the single lifting tasks or the 15 min lifting tasks,

IPAE can reduce the muscle activities of the low back and upper arms. IPAE provided greater

assistive effects on upper arm muscles compared to low back muscles during the 15 min tests.

This is consistent with the feedback from the subjects. Wearing IPAE would make arms feel

much easier to lift the toolbox. Due to the decrease in muscle activity with IPAE, it can be

expected that when workers wear IPAE during bending over and lifting, muscle fatigue of the

low back and upper arms will be reduced. Also, the studies from Granata et al. [29] have

shown that when the spine is overloaded, waist injury would occur. IPAE reduces muscle

activity in the low back and also helps protect the spinal structure.

Fig 6. Mean Borg scale ratings of 8 subjects over time for the IPAE(I) and No-IPAE(NI) conditions.

https://doi.org/10.1371/journal.pone.0245629.g006
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With/without IPAE does not affect subjects’ oxygen consumption, which meets the

expected assumption and is also consistent with the conclusion drawn by Brett H. Whitfield

et al. [30]. Wearing a passive exoskeleton does not significantly increase or reduce the oxygen

consumption index in repeated lifting tasks. The average relative oxygen consumption without

IPAE was 15.98 ml/kg/min, which is lower than the 17.8 ml/kg/min measured by Brett H.

Whitfield et al. This difference may be due to the different lifting task, subject aerobic capacity,

free choice of lifting postures, and lifting weights. The Borg RPE scale increased significantly

over time during the 15 min tasks, but there was no significant difference with or without

IPAE.

Combining the results of oxygen consumption and Borg RPE, IPAE does not significantly

reduce the fatigue of subjects. Even if it can effectively reduce the muscle activity of the low

back and upper arms, IPAE did not reduce the body’s energy requirements and oxygen con-

sumption during lifting tasks. But the studies by Baltrusch et al. has showed a reduction in

energy consumption during lifting with the LAEVO [31]. When wearing IPAE for handling

work, it will result in a significant increase in some other muscle activities, such as shoulders

Fig 7. Mean local perceived pressure of 8 subjects for the single lifting task with IPAE.

https://doi.org/10.1371/journal.pone.0245629.g007
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and thighs. The LPP scores of subjects in Fig 6 indirectly verified this. Therefore, for workers

equipped with IPAE, they should not increase the workload and the working frequency or

extend the working hours.

The LPP score of shoulders with the highest perceived pressure was 2.38±0.92, indicating

that the additional pain or injury will not be produced by wearing the IPAE to the worker. But

it should be noted that the LPP score was collected after the subjects had finished single lifting

tasks. As lifting time increases, the LPP score may increase correspondingly. The significant

contact pressure was felt on the thighs, and the exoskeleton designed by Nilson et al. [32] has a

similar phenomenon, which may be due to the tight fixation of the leg units. Wrist and shoul-

der straps are designed to reduce the burden on the arm muscles of workers when subjects

carry out handling tasks. But this structure causes significant contact pressure on the shoulders

and wrists. The narrow shoulder straps may be one of the reasons for the highest LPP score.

Dispersing pressure over a large area is a common method to reduce the discomfort of exo-

skeleton design [33]. Adding soft pads to the exoskeleton can also prevent skin injuries [34].

Hence, the improvement plan of the IPAE ought to include measures to widen the straps and

add soft pads. All the subjects did not report that there was obvious stress caused by the exo-

skeleton in other structures of the body.

50% of the subjects rated the IPAE as having acceptable usability. Subjects with a usability

score of less than 70 were generally neutral about whether they would like to use the exoskele-

ton frequently. It can be speculated that longer use may reduce the acceptance of the exoskele-

ton. They also reflected that the appearance of the IPAE looked moderately awkward. In the

Fig 8. Participant SUS ratings of the exoskeleton.

https://doi.org/10.1371/journal.pone.0245629.g008
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future, it is necessary to optimize the appearance and weight loss of IPAE to improve the

acceptance of the subjects. The SUS scores might be negatively affected by additional testing

equipment, repeated task training, and assisted wearing. In actual industrial applications, these

negative effects will be greatly reduced. This study also finds that the score of SUS may also be

affected by the age of the subjects in this work. The SUS scores of 4 older subjects (30.5±3.1

years, 63.8±4.8 scores) were significantly lower than other 4 younger subjects (24.3±1.7 years,

71.9±4.7 scores). The younger subjects generally thought that IPAE was easy to learn, and they

had a negative attitude to learning many things before using the IPAE from the specific scores

of SUS.

It is worth noting that the small sample size is a limitation of the study. Due to the limita-

tion of the EMG channels, the signal acquisitions of subjects’ thighs, abdominal and forearm

muscles were not completed at the same time. In the future, an 8-channel device will be used

to complete the tests. To prevent musculoskeletal injuries to the subjects, the experiment only

set 15 min to simulate the industrial repeated lifting tasks. After optimizing the design of

IPAE, it will be tested for a longer time and completed in the actual factory. More workers will

be invited to wear IPAE in actual lifting tasks and give LPP and SUS scores, which will help to

evaluate the PLAD more accurately. Besides, the adjustable range of straps was too large in

order to meet subjects of different sizes, and the subjects often felt the straps were too loose or

too tight. Therefore, IPAE of different sizes will be considered to adapt to different

populations.

Conclusions

The test showed that IPAE significantly reduced low back and upper arm muscle activity for

both finishing the single lifting task and the 15 min repetitive lifting task. When finishing the

intermittent number of lifting tasks, IPAE had the most significant effect on the lumbar erector

spinae by reducing the muscle activity of 26.5%. The muscle activity of deltoid and labrum-

biceps muscles was more obviously reduced (32.3%, 38.1%) during the long-time repeated lift-

ing tasks. Whether to wear IPAE would not cause significant differences in the subjects’ oxy-

gen consumption and perceived fatigue level during lifting tasks. The LPP scores indicated

that IPAE would additionally increase the perceived pressure on the shoulders, wrists, and

thighs. 50% of the subjects’ feedback noted that the IPAE was acceptable. In summary, the

IPAE significantly reduced the muscle fatigue of both the low back and upper arms of subjects

during lifting works, but the test results reveals low effects and high discomfort at the same

time as a passive exoskeleton. The result of the oxygen consumption test shows that it is unrea-

sonable to require workers wearing IPAE to improve work efficiency or extend working

hours. The discomfort caused by IPAE on the part of the subject’s contact area reduced the

user’s level of satisfaction, which may be a common problem with passive exoskeletons. Future

design improvements to IPAE shall focus on solving this discovered problem.
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