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A five-gene signature for
 predicting overall
survival of esophagus adenocarcinoma
Tian Lan, MDa,b , Weiguo Liu, MSc, Yunyan Lu, MSd, Hua Luo, MSa,∗

Abstract
Esophageal adenocarcinoma (EAC) is common and aggressive with increasing trend of incidence. Urgent need for an effective
signature to assess EAC prognosis and facilitate tailored treatment is required.
Differentially expressed mRNAs (DEMs) were identified by analyzing EAC tissues and adjacent normal samples from The Cancer

Genome Atlas (TCGA). Then univariate regression analyses were performed to confirm prognostic DEMs. We used least absolute
shrinkage and selection operator (LASSO) to build a prognostic mRNA signature whose performance was assessed by Kaplan–
Meier curve, receiver operating characteristic (ROC). GSE72874were used as an external test set. The performances of the signature
were also validated in internal TCGA and external test sets. Gene set enrichment analysis (GSEA) and tumor immunity analysis were
performed to decipher the biological mechanisms of the signature.
A 5-mRNA signature consisted of SLC26A9, SINHCAF, MICB, KRT19, and MT1X was developed to predict prognosis of EAC.

The 5-mRNA signature was promising as a biomarker for predicting 3-year survival rate of EAC in the internal test set, the entire TCGA
set, and the external test set with areas under the curve (AUC)=0.849, 0.924, and 0.747, respectively. Patients were divided into low-
and high-risk groups based on risk scores of the signature. The high-risk group was mainly associated with cancer-related pathways
and low levels of B cell infiltration.
The 5-mRNA prognostic signature we identified can reliably predict prognosis and facilitate individualized treatment decisions for

EAC patients.

Abbreviations: AUC = areas under the curve, DEMs = differentially expressed mRNAs, EAC = esophageal adenocarcinoma,
ESCA = esophagus cancer, ESCC = esophageal squamous cell carcinoma, GO = gene ontology, GSEA = gene set enrichment
analysis, KEGG = Kyoto Encyclopedia of Genes and Genomes, LASSO = least absolute shrinkage and selection operator, ROC =
receiver operating characteristic, TCGA = The Cancer Genome Atlas, TIMER = the tumor immune estimation resource, TNM =
tumor–node–metastasis, TPM = transcripts per kilobase million.
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1. Introduction
Esophagus cancer (ESCA) is the 6th most lethal cancer and the
8th most prevalent malignancy globally.[1] The 2 major subtypes
of ESCA include esophageal adenocarcinoma (EAC) and
esophageal squamous cell carcinoma (ESCC). In recent decades,
ESCC has decreased in prevalence whilst EAC has gradually
increased.[2] EAC is a particularly aggressive form of ESCA with
overall 5-year survival rates as low as ∼18%.[3] The lack of early
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stage diagnostics coupled to high rates of metastasis and drug
resistance contribute to the poor outcomes of EAC.[2,4] Despite
the improvements in EAC therapeutics, their benefits must be
balanced with their side effects. Precision therapy based on
the molecular basis for EAC development offers the most hope
for effective therapeutic interventions. Although tumor–node–
metastasis (TNM) staging has been applied for prognostic
prediction and individual treatment,[5] the patients with the same
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stage can have significantly different outcomes in clinical practice.
As such, urgent need for effective models to assess EAC prognosis
and facilitate tailored treatment are required.
In recent years, with development of microarray and high-

throughput sequencing, studies have focused on mRNAs for the
prediction of EAC prognosis. Kim et al identified a 2-gene
signature (SPARC and SPP1) associated with prognosis in
EAC.[6] In addition, dysregulated DCK, PAPSS2, SIRT2, and
TRIM44 have been linked to overall survival. As such, a 4-gene
signature based on these genes was independently developed for
EAC prognostics.[7] By evaluating the gene expression profiles in
64 patients with EAC, Pennathur et al constructed an internally
cross-validated 59-mRNA prognostic signature.[8] There were
however limitations in these studies, including a lack of the cross-
platform validation datasets, small sample sizes, and the absence
of external testing.
The Cancer Genome Atlas (TCGA) is a cancer genome project

that provides large-scale genomic and clinical information
spanning 33 cancer types. The Gene Expression Omnibus
archives Array- and sequence-based data.[9] Here, we explored
the available EAC data from the TCGA and GEO, and developed
a 5-mRNA signature for EAC. This signature was validated in
independent external test set, highlighting its promise for EAC
prognostics.
2. Material and methods

2.1. Data sources and processing

RNAseq data and clinical data were downloaded from TCGA
database (https://portal.gdc.cancer.gov/). Gene annotations were
obtained fromGENCODEdatasets (www.gencodegenes.org).We
converted thenumber of fragments per kilobase of non-overlapped
exons per million fragments mapped into the value of transcripts
per kilobase million (TPM) to mimic those of the microarrays.[10]

Only mRNAs with TPM values>0.1 in at least 50% of the ESCA
samples were enrolled for analysis. Expressionwas defined as log2
(x+1), whilst x represented the TPM value. To predict the
prognosis of EAC, we excluded samples with a <30-day censor
time. We obtained 86 samples from the TCGA including 75 EAC
cases and 11 normal tissue samples. Differentially expressed
mRNAs (DEMs) were identified using the R package “limma” in
EAC versus normal tissue. Selection criteria for significant DEMs
were P< .05 and jlog2 fold changej >1.5.
We downloaded GSE72874 from the Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database
as an external validation set using R package “GEOquery.”
Corresponding clinical data were achieved from Supplemental
data submitted by Krause et al.[11] Since the data came from the
TCGA database and the Gene Expression Omnibus database, no
ethical approval was required.
The tumor immune estimation resource (TIMER) algorithm

(https://cistrome.shinyapps.io/timer/) was used to measure the
abundance of B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells in EAC.[12] This provided
details on the immune infiltration in EAC and its relevance to the
identified gene panel signature.
2.2. Construction and validation of the mRNA signature

To further screen DEM correlating with prognosis, univariate
COX proportional hazards regression analysis was performed.
2

Only prognostic DEMs with P< .05 were considered as
statistically significant mRNAs.
We divided the TCGA datasets into training (n=37) and tests

(n=38). Least absolute shrinkage and selection operator
(LASSO) regression was selected as the optimal dimension
reduction technique,[13] previous reported studies have applied it
to filter significant genes.[14] LASSOwas performed to screen and
confirm the selected DEMs in the training set. Risk scores for each
patient were calculated with the linear combinational of the
selected gene expression weighted by their regression coefficients.
The formula was set as follow:

Risk score=b1 � gene 1 + b2�gene 2 + . . . + bn�gene n,

where b is the coefficient of each gene, and gene indicates relative
expression of gene.
Datasets were divided into low- and high-risk groups using the

median score. Survival curves between these groups were assessed
via the Kaplan–Meier method, whilst P-values were estimated
using log-rank tests. Receiver operating characteristic (ROC) and
areas under the curve (AUC) were calculated to determine the
accuracy of the mRNA signature by using the R “timeROC”
package. Further, validations in the internal and external tests
were performed using the risk score formula.
2.3. Biological functions of the mRNA signature

Gene set enrichment analysis (GSEA) was performed using the R
package “clusterProfiler”[15,16] to study the biological mecha-
nisms between low- and high-risk EAC groups. Kyoto Encyclo-
pedia of Genes and Genomes (KEGG, c2.cp.kegg.v7.0.entrez.
gmt) and Reactome (c2.cp.reactome.v7.0.entrez.gmt) datasets
were selected from the molecular signature database.
Gene Ontology (GO)[17] of the Biological Process (GO_BP),
Cellular Components (GO_CC), and Molecular Functions
(GO_MF) was performed to examine the biological functions
of the signature. Cut-off values for significant enriched terms
were P< .05.
2.4. Statistical analyses

The R statistical package (R version 3.5.2; http://www.Rproject.
org) was used to perform all statistical analyses and for plot
construction. We used “survival” package of R to carry out
univariate and multivariate Cox proportional hazard assess-
ments. Hazard ratios (HR), 95% confidence intervals, and P-
values were calculated. A Student t test was performed to
compare continuous variables. A 1-way analysis of variance was
used for multiple group comparisons. The association between
tumor immunity infiltration and gene expression level was
estimated using the Spearman correlation test. P-values< .05
were considered significant.
3. Results

3.1. Study datasets

A flowchart of the study is shown in Figure 1. We obtained data
from 75 patients with EAC from the TCGA dataset, divided into
training (n=37) and internal test sets (n=38). In total, 43
patients with EAC from the GSE72874 dataset were enrolled for
further analysis. Basic characteristics in these 2 datasets are
shown in Table 1.

https://portal.gdc.cancer.gov/
http://www.gencodegenes.org/
https://www.ncbi.nlm.nih.gov/geo/
https://cistrome.shinyapps.io/timer/
http://www.rproject.org/
http://www.rproject.org/


Table 1

Clinical characteristics of patients with EAC in TCGA and
GSE72874 datasets.

TCGA GSE72874
Training
dataset

Testing
dataset

External validation
dataset

Sample number 37 38 43
Survival time (yr [SD]) 1.29 (1.24%) 1.57 (1.44%) 1.71 (1.36%)
Status
Alive 23 (62.2%) 19 (50.0%) 26 (60.5%)
Dead 14 (37.8%) 19 (50.0%) 17 (39.5%)

Age
<60 10 (27.0%) 18 (47.4%) 11 (25.6%)
>60 27 (73.0%) 20 (52.6%) 32 (74.4%)

Sex
Female 5 (13.5%) 6 (15.8%) 3 (7.0%)
Male 32 (86.5%) 32 (84.2%) 40 (93.0%)

Height (cm)
<175 18 (48.6%) 17 (44.7%)
>175 16 (43.2%) 19 (50.0%)
NA 3 (8.1%) 2 (5.3%)

Weight (kg)
<85 19 (51.4%) 24 (63.2%) 40 (93.0%)
>85 17 (45.9%) 14 (36.8%) 3 (7.0%)
NA 1 (2.7%) 0 (0.0%) 0 (0.0%)

Race
Non-white 0 (0.0%) 1 (2.6%)
White 28 (75.7%) 30 (78.9%)
NA 9 (24.3%) 7 (18.4%)

Alcohol history
No 14 (37.8%) 12 (31.6%)
Yes 22 (59.5%) 26 (68.4%)
NA 1 (2.7%) 0 (0.0%)

Barrett disease
No 21 (56.8%) 25 (65.8%)
Yes 14 (37.8%) 10 (26.3%)
NA 2 (5.4%) 3 (7.9%)

Tumor size
I+II 14 (37.8%) 15 (39.5%)
III+IV 22 (59.5%) 22 (57.9%)
NA 1 (2.7%) 1 (2.6%)

Node status
Negative 11 (29.7%) 8 (21.1%)
Positive 24 (64.9%) 28 (73.7%)
NA 2 (5.4%) 2 (5.3%)

Metastasis
0 29 (78.4%) 26 (68.4%)
1 2 (5.4%) 8 (21.1%)

Figure 1. A flow diagram of establishment and validation of the prognostic
mRNA signature. DEMs = differentially expressed mRNAs, EAC = esophageal
adenocarcinoma, LASSO = least absolute shrinkage and selection operator,
TCGA = The Cancer Genome Atlas.

Lan et al. Medicine (2021) 100:14 www.md-journal.com
3.2. DEMs associated with EAC prognosis

Through the analysis of EAC and normal tissues in the TCGA
dataset, we extracted 852 upregulated and 160 downregulated
genes (Supplemental Fig. S1, http://links.lww.com/MD2/A24).
By subjecting DEMs to univariable COX regression analysis, 138
differentially expressed genes (DEGs) related to overall survival
were identified for the prognostic signature (Supplemental
Table S1, http://links.lww.com/MD2/A30).
NA 6 (16.2%) 4 (10.5%)
Stage
I+II 16 (43.2%) 16 (42.1%)
III+IV 21 (56.8%) 20 (52.6%)
NA 0 (0.0%) 2 (5.3%)

EAC = esophageal adenocarcinoma, NA = not available, SD = standard deviation, TCGA = The
Cancer Genome Atlas.
3.3. Construction of the mRNA signature and evaluation of
its prognostic ability in the training set

Lambda value was set using the lambda.min. Five mRNAs with
non-zero coefficients were identified (Supplemental Fig. S2, http://
links.lww.com/MD2/A25). We created a risk score formula as
follows:

Risk score=
(�0.0755� relative expression of SLC26A9)+
(0.6688� relative expression of SINHCAF)+
(0.3071� relative expression of MICB)+
(�0.5899� relative expression of KRT19)+
(�0.4242� relative expression of MT1X)

In the training set, we classified patients into high (n=19) and
low risk groups (n=19) using a median risk score of�1.60 as the
3

cut-off. Details on the survival status according to risk scores are
shown in Figure 2A. Upon analysis of the heatmaps of the
mRNAs (Fig. 2D), 2 mRNAs had positive coefficients including
SINHCAF and MICB which indicated that the higher expression
levels of these mRNAs were linked with poor survival. The other
3mRNAs with negative coefficients were SLC26A9, KRT19, and
MT1X which demonstrated that it was a positive correlation
between their expression levels and clinical outcome. Survival
curves indicated that patients in the lower-risk group had higher

http://links.lww.com/MD2/A24
http://links.lww.com/MD2/A30
http://links.lww.com/MD2/A25
http://links.lww.com/MD2/A25
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Figure 2. Risk score based on 5-mRNA signature significantly associates with prognosis. Distribution of each patient risk score (A, E, I, M) and individual mRNA
expression profiles (D, H, L, P); the Kaplan–Meier survival analysis between high- and low-risk groups (B, F, J, N); time dependent ROC curves at 1, 2, and 3years
(C, G, K, O) in training set, internal test set, the entire TCGA set, and external test set. ROC = receiver operating characteristic, TCGA = The Cancer Genome Atlas.

Lan et al. Medicine (2021) 100:14 Medicine
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Figure 3. Forest plot summary of univariate andmultivariate Cox regression analysis of overall survival in the whole TCGA set. CI= confidence interval, TCGA= The
Cancer Genome Atlas.
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survival rates (Fig. 2B). Time-dependent ROC analyses demon-
strated that AUCs of the mRNA-based signature were 0.760,
0.807, and 0.849 at 1-, 2-, and 3-year survival times, respectively
(Fig. 2C).

3.4. Validation of the signature

To further assess the prognostic power of the identified mRNA
signature, we determined its prognostic ability in internal TCGA
and external datasets. Risk scores were evaluated using the
training set formula. The distribution of the 5-mRNA risk score,
patient survival, and mRNA expression were obtained in the
internal test set (Fig. 2E and H), the entire TCGA set (Fig. 2I and
L), and external test set (Fig. 2M and P). Kaplan–Meier curves
demonstrated that patients in the low-risk group had improved
outcomes compared to high-risk patients (Fig. 2F, J, and N).
Comparable data were achieved through ROC analysis. The
AUCs of the signature at 3-year survival time were 0.849, 0.924,
and 0.747 in the internal test set (Fig. 2G), the entire TCGA set
(Fig. 2K), and the external test set (Fig. 2O), respectively. These
data were consistent with the training set data and validated the
mRNA signature as a reliable predictor for overall survival in
patients with EAC.
To investigate if the prognostic signature can be used

independently of other risk factors, we performed univariable
and multivariable Cox regression analyses across the TCGA
dataset considering age, sex, height, weight, alcohol consump-
tion, Barrett esophagitis, and TNM stage (Supplemental
Table S2, http://links.lww.com/MD2/A31). As shown in the
Figure 3, the mRNA signature was most significantly related to
overall survival (hazard ratio, 4.32; 95% confidence interval,
1.91–9.79; P= .00046). In addition, the sensitivity and specificity
of the mRNA signature performed numerically better than the
TNM stage for 1-, 2-, and 3-year prognostic evaluation of EAC
5

(Supplemental Fig. S3, http://links.lww.com/MD2/A27). When
patients were stratified by clinicopathological factors, the mRNA
signature represented a statistically significant prognostic model
(Fig. 4). These findings demonstrate that high-risk scores
possessed a strong association with a poor prognosis.

3.5. Clinical and immune relevance of the mRNA signature

We next evaluated the correlation between the mRNA signature
and clinical parameters (tumor size, node status, metastasis, and
TNM stage) of EAC in TCGA set. Those with a positive lymph
node status possessed higher risk scores (Fig. 5A). Stage III+IV
patients also showed higher risk scores upon comparison to stage
I+II patients (Fig. 5B).
Using the TIMER analysis, the low-risk groupwas significantly

related to higher levels of B cell infiltration (Fig. 5C). The
expression of SLC25A45 negatively correlated with the infiltra-
tion of B cell (P< .0001; Fig. 5D). High levels of B cell infiltration
prolonged survival in the EAC patients (P= .078; Fig. 5E).
3.6. Identification of biological processes associated with
the mRNA signature

To infer the potential mechanisms of the mRNA signature, GSEA
was applied to the TCGA and GSE72874 datasets. Gene sets
based on KEGG and REACTOME pathways were associated
with high-risk patients and identified in the TCGA datasets
(Supplemental Table S3, http://links.lww.com/MD2/A32 and S4,
http://links.lww.com/MD2/A34). The top 5 KEGG and REAC-
TOME pathways in the TCGA are shown in Figure 6A and B.
Meanwhile, GSEA was also performed in the GSE72874 dataset,
and the results associated with KEGG and REACTOME
pathways were presented in Supplemental Tables S5, http://
links.lww.com/MD2/A35 and S6, http://links.lww.com/MD2/

http://links.lww.com/MD2/A31
http://links.lww.com/MD2/A27
http://links.lww.com/MD2/A32
http://links.lww.com/MD2/A34
http://links.lww.com/MD2/A35
http://links.lww.com/MD2/A35
http://links.lww.com/MD2/A37
http://www.md-journal.com


Figure 4. Survival curves for EAC patients in different subgroup in the entire TCGA set. Kaplan–Meier analysis (low risk vs high risk) in subgroups stratified by age (A,
B), sex (C, D), height (E, F), weight (G, H), alcohol consumption (I, J), Barrett esophagitis (K, L), TNM stage (M, N), and race (O). EAC= esophageal adenocarcinoma,
TCGA = The Cancer Genome Atlas, TNM = tumor–node–metastasis.

Lan et al. Medicine (2021) 100:14 Medicine
A37. Two commonly enriched KEGG pathways were screened
including cell cycle and PI3K–Akt signaling pathway. The
enriched REACTOME pathways were involved in nucleotide
metabolism (DNA replication, DNA synthesis, and repair) and
cell cycle progression (G1/S phase, S phase, andG2/Mphase).We
constructed enrichment maps and organized the enriched terms
into networks with overlapping gene sets (Supplemental Fig. S4,
http://links.lww.com/MD2/A29).
As shown in Figure 6C to E, the mRNA signature correlated

with chromosomes in the CC, mediated MFs such as DNA-
dependent ATPase activity and catalytic activity, and regulated
DNA replication, chromosome segregation, and RNA splicing of
the BP. These corresponding biological functions may contribute
to poor prognosis of EAC patients with high-risk score.
6

4. Discussion
As a highly malignant neoplasm, the incidence of EAC is
increasing and has surpassed ESCC in some areas of North
America.[2] TNM staging is a conventional and effective tool
based on anatomical information. It helps us to improve current
empirical treatment decisions and predict prognosis in patients
with EAC. It is however unable to achieve adequate assessments
of disease outcome in EAC. Molecular prognostic biomarkers
such as mRNAs, microRNAs, and lncRNAs can supplement or
substitute TNM staging in EAC.[6,14] Gene expression and
relevant clinical data of EAC available in TCGA and GEO
facilitate the establishment of novel molecular signatures related
to prognosis. Here, we employed TCGA and GEO datasets to
build prognostic mRNA signatures for EAC.

http://links.lww.com/MD2/A37
http://links.lww.com/MD2/A29


Figure 5. Clinical- and tumor immunity relevance of the mRNA signature. The distribution of the risk score in different status of node and TNM stage in the whole
TCGA set (A, B). The B cell infiltration level in high risk and low risk group in the entire TCGA set (C). The abundances of B cells were estimated using the TIMER
algorithm (https://cistrome.shinyapps.io/timer/). The correlation of SINHCAF expression with B cell infiltration level in EAC patients (D). The Kaplan–Meier survival
curves of different B cell infiltration level (E).

∗
P< .05,

∗∗
P< .01,

∗∗∗
P< .001,

∗∗∗∗
P< .0001. EAC = esophageal adenocarcinoma, TCGA = The Cancer Genome

Atlas, TIMER = the tumor immune estimation resource, TNM = tumor–node–metastasis.
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We screened and selected significant DEMs associated with
survival in the training set. Based on LASSO, we constructed a 5-
mRNA signature in the training set and further validated its
accuracy in internal and external test sets. As a supplement of
TNM staging, the 5-mRNA signature could guide the stratifica-
tion of patients with EAC and aid in decision making for
individualized treatments.
7

SLC26A9, SINHCAF, MICB, KRT19, and MT1X formed the
5-mRNA signature that could predict the prognosis of EAC in the
independent datasets. SINHCAF, also known as FAM60A, is a
component of SIN3/HDAC deacetylase complex.[18] In esoph-
ageal carcinoma, FAM60A was reported as a driver gene with a
significant correlation with prognosis. FAM60A silencing could
inhibit the proliferation, migration, and invasion of cells, increase

https://cistrome.shinyapps.io/timer/
http://www.md-journal.com


Figure 6. Functional analysis depicted the potential biological mechanism associated with the mRNA signature. The top 5 enriched KEGG pathways in patients
with high risk (A). The top 5 enriched REACTOME pathways in patients with high risk (B). Significant GO terms enriched by themRNA signature (C, D, E). GO=Gene
Ontology, GSEA = Gene Set Enrichment Analysis, KEGG = Kyoto Encyclopedia of Genes and Genomes.

Lan et al. Medicine (2021) 100:14 Medicine
apoptosis and arrest cells in the G2/M phase.[19] FAM60A is
overexpressed in gastric cancer tissues compared to adjacent
tissue, and its overexpression enhances the gastric cancer cell
proliferation through the PI3K/AKT pathway.[20] In lung cancer
8

and liver cancer cells, FAM60A acts as a tumor suppressor,[18]

which is not consistent with present study.
Major histocompatibility complex (MHC) class I chain-related

protein B (MICB) is a ligand of NKG2D receptors on NK cells
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and T cells.[21] When MICB is expressed on the cell surface,
engagement between MICB and NKG2D actives the tumor
killing effects of NK cells and T cells.[22] In hepatocellular
carcinoma and cervical cancer, patients with high expression of
MICB showed an improved outcome.[23,24] However, when
MICB is retained in the cytoplasm, higher rates of immune
evasion of cancer cells occurs, decreasing patient survival.[25] The
function ofMICBmarkedly differs depending on the cancer type.
Li et al[26] reported that high levels of MICB are linked to poor
prognosis in ovarian cancer. In ESCA, the expression of MICB
was upregulated and associated with the histological grade of
ESCA.[27]

The function of KRT19 in a range of cancer types differs to its
role in EAC based on our findings. KRT19 promoted cancer cell
proliferation and invasion and was identified as a marker of poor
prognosis for hepatocellular carcinoma, pancreatic ductal
adenocarcinoma, and breast cancer.[28–31] Liu et al[32] found
that MT1X could serve as a favorable prognostic marker and
inhibit the progression and metastasis of hepatocellular carcino-
ma. In oral squamous cell carcinoma, the upregulation of MT1X
was related with a lack of metastasis which indicated that MT1X
may aid prediction of prognosis.[33] However, few cancer-related
studies have been performed regarding the function of SLC26A9,
which warrants further investigation.
In this study, we found that B cell infiltration was significantly

higher in low-risk groups and suggestive of an improved outcome.
T cells are therapeutic targets with the immune checkpoint
inhibitors in ESCA, but the efficacy of this therapy is variable.[34,35]

B cells are major effector cells of humoral immunity and mediate
immune responses. They prevent cancer progression through
immunoglobulins secretion, T cell responses enhancement and
cancer cell killing.[36] To balance immunotherapy and adverse
events, further stratification based on B cell infiltration or risk
scores are necessary tomake informed treatmentdecisions. Further
experimental studies are similarly required to decipher the function
of B cells during cancer progression.
To our knowledge, this mRNA signature associated with

prognosis built using the TCGA and GEO datasets have not been
reported previously. Inevitably, there are some limitations in the
current study. First, although 2 datasets were used to construct
and validate the signature, the sample size was small. This
signature requires further validated in large prospective clinical
trials. In addition, Dong et al[19] demonstrated the function of
SINHCAF in ESCA, but no experimental studies on the other
genes of the signature in ESCA have been reported. To better
understand the potential mechanisms behind the signature, in
vitro and in vivo experiments should be performed.
In conclusion, despite the limitations described, the 5-mRNA

signature that we constructed through a comprehensive analysis
of the mRNA profiles of EAC may serve as a novel and reliable
tool to aid prognosis predictions and tailored treatments for
EAC. This study also provides significant information for
molecular research and clinical treatment in EAC.
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