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Abstract

Motivation: Modern biological screens yield enormous numbers of measurements, and identifying and interpreting
statistically significant associations among features are essential. In experiments featuring multiple high-dimensional
datasets collected from the same set of samples, it is useful to identify groups of associated features between the
datasets in a way that provides high statistical power and false discovery rate (FDR) control.

Results: Here, we present a novel hierarchical framework, HAllA (Hierarchical All-against-All association testing), for
structured association discovery between paired high-dimensional datasets. HAllA efficiently integrates hierarchical
hypothesis testing with FDR correction to reveal significant linear and non-linear block-wise relationships among
continuous and/or categorical data. We optimized and evaluated HAllA using heterogeneous synthetic datasets of
known association structure, where HAllA outperformed all-against-all and other block-testing approaches across
a range of common similarity measures. We then applied HAllA to a series of real-world multiomics datasets,
revealing new associations between gene expression and host immune activity, the microbiome and host
transcriptome, metabolomic profiling and human health phenotypes.

Availability and implementation: An open-source implementation of HAllA is freely available at http://huttenhower.
sph.harvard.edu/halla along with documentation, demo datasets and a user group.

Contact: chuttenh@hsph.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Pattern discovery in high-dimensional, heterogeneous data is a long-
standing problem in applied statistics (Bühlmann and Van De Geer,
2011; Johnstone and Titterington, 2009). It is challenging for sev-
eral reasons, including the inherent tradeoffs between sensitivity and
generality—that is, the ability and power to detect associations given
varying assumptions about the functional form of the relationship
(Altman and Bland, 1994). When applied in contexts such as high-
throughput biology, these challenges are exacerbated by noisy, di-
verse and non-linear data. Examples include biospecimens drawn
from large cohorts, in which each sample may be decorated with
heterogeneous phenotypic variables (clinical features, diseases sta-
tus, etc.) and multiple high-dimensional molecular measurements
(microbial taxa, epigenetic markers, gene expression, etc.). In the
biological sciences specifically, selecting a subset of associations for
follow-up validation experiments can be a complex yet important
decision point. A gap remains to efficiently identify related features

in such data, while both maintaining sensitivity and controlling
spurious association reporting.

All-against-all (AllA) approaches, which test all pairs of features
and then correct for false discovery, scale well only in completely in-
dependent tests of moderate size (Bourgon et al., 2010). Under other
conditions, such feature-wise approaches can have limited statistical
power due to testing many correlated hypotheses for individually
weak associations (Rosenberg et al., 2006). This has led to the devel-
opment of a variety of (typically parametric) block-testing
approaches, such as partial least squares (PLS; Abdi, 2010), canonic-
al correlation analysis (CCA; Hardoon et al., 2004), PLS discrimin-
ant analysis, sparse principal component analysis (SPCA; Zou et al.,
2006) and SPARSE-CCA (Lykou and Whittaker, 2010). These serve
to detect associations between reduced-dimensional representations
of large input datasets, but they are typically limited by one or more
of (i) applicability only to continuous measurements with no missing
values (or only categorical, not mixed; PLS, CCA, SPCA); (ii) a focus
on the single, strongest axis of covariation between the datasets
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(CCA); (iii) an assumption of linear covariation (CCA, SPCA, PLS);
(iv) identifying complex combinations of feature loadings implicated
in associations, rather than specific features [particularly in kernel
methods such as Kernel PCA (Mika et al., 1998)]; and (v) a lack of
explicit control of the false discovery rate (FDR).

Recent advances have focused on nonparametric methods for
identifying highly general (i.e. linear and non-linear) associations be-
tween individual pairs of features, sometimes relying on computa-
tional or permutation-based methods not readily accessible to early
applied statisticians. These include, for example, distance correl-
ation (dCor; Sz�ekely et al., 2007), which measures (not necessarily
linear) the dependency of two random variables with possibly differ-
ent dimensions. The Chatterjee rank correlation (XICOR;
Chatterjee, 2020) is another recently introduced similarity measure
that uses rank differences to assess the degree to which one variable
is a measurable function of another. While dCor and XICOR pro-
vide comparatively general methods to discover complex associa-
tions between individual pairs of features, when applied to many
combinations of linear feature pairs with varying degrees of depend-
ence, the resulting statistical power can fall below simpler tradition-
al approaches after controlling FDR for multiple hypothesis tests
(Kinney and Atwal, 2014).

In this work, we develop a hierarchical AllA association testing
framework (HAllA) that identifies highly general association types
in paired, high-dimensional and potentially heterogeneous datasets.
HAllA preserves statistical power in the presence of collinearity by
testing coherent clusters of variables in a hierarchical manner, while
controlling overall FDR with hierarchical multiple hypothesis test-
ing. HAllA discovers associations between blocks of features among
paired datasets in a way that increases interpretability by grouping
features according to their relatedness.

2 Materials and methods

In this section, we provide an overview of the HAllA algorithm and
its component steps. Additional methods details, including pseudo-
code, are provided in the Supplementary material.

2.1 The HAllA algorithm
Hierarchical All-against-All Association testing (HAllA) identifies
block associations between two potentially heterogeneous datasets
coindexed along one axis (Fig. 1A). This coindexing is referred to as
the ‘samples’ axis (columns) and the measurement axis as ‘features’
(rows). For a pair of datasets containing measurements that describe
the same set of samples and a specified pairwise similarity measure,
the HAllA algorithm proceeds by (i) optionally discretizing features
to a uniform representation (if required by the similarity measure),

(ii) finding the Benjamini–Hochberg (BH) FDR threshold, (iii) hier-
archically clustering each dataset separately to generate two data
hierarchies, (iv) coupling clusters of equivalent resolution between
the two data hierarchies, (v) testing coupled clusters for statistically
significant association in block format where the block passes a
threshold for false-negative tolerance (FNT) and (vi) iteratively
increasing resolution by descending through the pair of hierarchies
according to which split results in a higher Gini score gain. The final
groups of features are those that lead to the largest hypothesis blocks
that pass the FNT threshold (Fig. 1C and Supplementary Fig. S2).

2.2 Optionally discretizing input datasets
This step permits direct comparison of continuous and categorical
features and further enables the application of highly general meas-
ures of association from information theory, such as mutual infor-
mation (MI). This combination allows HAllA to detect significant
(i) non-linear associations between paired continuous features (e.g.
quadratic or sinusoidal relationships), (ii) differences in group means
for paired continuous and categorical features and (iii) non-random
associations between paired categorical features. HAllA’s default
discretization scheme divides continuous features into bins of equal
size once at the start of processing. By default, the number of bins is
the cube root of the sample size, which provides reasonable power
at a variety of sample sizes and correlation levels (Supplementary
Fig. S2). HAllA also removes features with low variance by applying
a configurable frequency threshold (defaulting to 100%, meaning
only features with no variability are removed) in order to reduce the
number of unnecessary tests.

2.3 Hierarchical clustering and cluster coupling allow

detection of associations between groups of features
Each dataset is subjected to average-linkage hierarchical clustering
using the specified similarity measure (Spearman’s rank correlation
by default) within each dataset (Fig. 1A). Associations between data-
sets are tested in a top-down manner by pairing nodes of similar
resolution between their respective data trees. More specifically,
HAllA recursively builds a tree of hypotheses to test (the ‘hypothesis
tree’), beginning at the top of each dataset’s tree, descending to a set
of nodes within each data tree and then pairing each selected node
from the first tree with each selected node of the second tree. At
each step in the descent process, the choice of whether to descend
within the X or Y hypothesis tree is made by comparing which split
leads to a higher Gini score gain. In the case of ties, both descent
steps are made. This procedure is repeated until termination, i.e.
when the hypothesis block passes the FNT threshold or when the
selected nodes represent single features in their respective data trees

Fig. 1. Hierarchical all-against-all (HAllA) association testing. (A) HAllA provides a novel method for heterogeneous association discovery in high-dimensional data. Input

data are represented in matrix form as features (rows) and samples (columns). Features within each dataset are hierarchically clustered using average-linkage and Spearman as-

sociation as default methods. (B) Starting with the feature hierarchies and the full pairwise association matrix, HAllA descends through both trees rejecting putative blocks

that fail the FNT threshold using Benjamini–Hochberg FDR threshold for pairwise associations within the block. When a block fails the FNT threshold, the decision of

whether to cut the X or Y feature tree is guided by whichever cut yields a higher Gini impurity improvement. The process stops when a block is dense with marginal associa-

tions. (C) Significant associations are reported in a block-wise manner once the hierarchical descent step has terminated. In this example, the X3:Y2 pair is correctly included

among the significant associations, where it would have been missed by an AllA approach
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(Fig. 1B). Another way to visualize this process is by focusing on the
all-by-all hypothesis matrix. The process begins by checking if the
entire matrix passes the FNT threshold. If not, the matrix is recur-
sively cut horizontally or vertically into smaller hypothesis blocks,
with the position of each cut decided by each dataset’s similarity
tree and Gini score gain. The cutting process stops when the smaller
hypothesis blocks pass the FNT threshold or have been reduced to
one-by-one blocks (Fig. 1C).

The notion of identifying and testing hypotheses in a hierarchical
manner was previously proposed by Yekutieli (2008). HAllA’s hy-
pothesis tree similarly groups more specific child hypotheses below a
more general parent hypothesis. However, HAllA’s approach differs
fundamentally from the Yekutieli approach in that HAllA tests hier-
archical hypotheses until a null hypothesis can be rejected; Yekutieli’s
method tests until the first failure to reject a null hypothesis. This
results in HAllA maintaining greater power, while Yekutieli’s method
instead maintains greater specificity (Supplementary Fig. S1).

2.4 Determining the statistical significance of block

associations
The method proceeds by testing the nodes in the hypothesis tree (each
representing a pair of feature clusters, one from each dataset) for sig-
nificant between-cluster associations. Each node in the hypothesis tree
is evaluated using the following procedure: let H denote the null hy-
pothesis that the two clusters of features are not related, andHi be the
null hypothesis of no association between two individual features
within those clusters. Define Ri as the P-value of the association be-
tween an individual pair of features considered by Hi. We then count
all rejected Hi (i.e. Ri � kBH), and all Hi that failed to reject, i.e.
Ri > kBH where kBH is the global BH FDR threshold. The block-wise
FNT is provided by the user (default FNT¼0.2) and acts as the
allowed fraction of paired associations that are expected to fail to re-
ject despite being true associations. If the fraction of paired associa-
tions in a block with Ri > kBH is greater than or equal to FNT, we
reject the entire block hypothesisH.

If any hypothesis involved clusters rather than feature tips, and
failed to reject, the procedure is repeated with new null hypotheses
for associations between sub-clusters (Fig. 1B), as described in sec-
tion ‘Descending in sub-hypotheses of block hypotheses’ in the

Supplementary material. HAllA reports all significant associations
between clusters of any size that pass the FNT threshold (Fig. 1C).

2.5 Visualizing outputs
Once the analysis is complete, the results are visualized in a
‘HAllAgram’ (Fig. 4). This heatmap visualizes the relatedness and
strength of association between pairs of features in the two datasets.
Features are ordered along each axis according to their position in
the hierarchical tree so that clusters of significant features can be
boxed into contiguous units. Marginally associated pairs are dotted,
and each hypothesis block is labeled with the rank of its association
strength. Features not associated with any block are not plotted by
default. For analysis results where large numbers of blocks are
detected, only the strongest blocks are shown (30 by default), with
potentially incomplete, lower-ranked blocks boxed in gray.
Together, this set of plotting techniques allows users to visually
understand the related sets of hypotheses that HAllA has detected.
Other plotting utilities are also included with the method’s current
implementation, such as a clustermap that displays the entire associ-
ation tree in the margins for both datasets, as well as a diagnostic
plot that displays the input data associated with individual hypoth-
esis blocks.

3 Results

3.1 Halla increases power while controlling FDR to

report block-wise associations
When applied to paired datasets with no significantly related blocks
of features, HAllA’s descent algorithm reduces to AllA direct pair-
wise feature testing. In such circumstances, HAllA is expected to
perform similarly to AllA. However, when there are sets of corre-
lated features within one dataset that are correlated with another set
of features in the other, HAllA will report the association block.
Notably, we expect this behavior to be common in multiomics data,
where we see large clusters of molecular features (e.g. coexpressed
genes in a pathway).

To evaluate these claims, we applied HAllA and AllA to paired,
synthetic datasets generated with the data simulator function in the
HAllA software. These datasets contained prespecified block

Fig. 2. HAllA improves statistical power while controlling the FDR. Fifty paired, synthetic datasets with 200 features and 50 samples containing clusters with linear block asso-

ciations were analyzed. (A) With FNT¼0.2, HAllA maintains the simulated FDR below the target (here (0.05, 0.1, 0.25 and 0.5), with associated tradeoffs in statistical power.

In addition, HAllA is consistently better powered than AllA association testing across this range of target FDR values. Dashed lines parallel to the x-axis indicate the target

FDR value in each comparison. (B) By increasing the FNT, HAllA can improve the true positive rate with a comparatively minor increase in FDR
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associations, which allowed us to evaluate the statistical and computa-
tional performance of these two methods (Figs 2 and 3). Dimension-
reducing methods such as CCA and PCA were not included because
of their inability to dichotomize individual pairs of features as associ-
ated or not associated post hoc. With a constant target FNT in associ-
ated blocks of 0.2, HAllA controls FDR, reports association in block
form and improves power on average by 7–11% (Fig. 2A) across var-
ied FDR thresholds. HAllA also consistently boosts the true positive
rate relative to AllA using different target FNT values in associated
blocks (Fig. 2B).

We evaluated many different forms of feature association,
including linear, quadratic, logarithmic, sinusoidal, stepwise, para-
bolic and mixed (combined discrete and continuous) data. We com-
pared HAllA and AllA across these association types using a variety
of similarity measures, including XICOR, MI, Spearman correlation
and Pearson correlation. Across datasets and similarity measures,
HAllA consistently detected more built-in associations (had better
average power by as much as 10%) than AllA while controlling
FDR at the same prespecified level (Fig. 3B). Each similarity measure
exhibited various strengths and weaknesses across evaluations de-
pending on data type. As expected, for mixed and categorical data,
MI is appropriate, and for monotonic associations in continuous
data, Spearman correlation performs well. XICOR is applicable to
both continuous and discrete outcomes and performs well on diffi-
cult non-linear association types. However, it is rarely the most stat-
istically powerful option, and its interpretation is limited to

measuring the association of features in Y as a measurable function
of features in X and not vice versa. A similar power analysis that
used a fixed association structure with varying correlation strength
led to similar conclusions (Supplementary Fig. S3). Supplementary
Figure S5 provides a flowchart to assist in deciding which similarity
measures are appropriate depending on the structure of the input
data. Together these results show that the HAllA approach increases
statistical power while maintaining the FDR across a wide variety of
association structures under simulation.

3.2 Halla identifies novel fatty acid-xenobiotic metabol-

ism associations in PPARa-deficient mice
PPARa is a nuclear receptor that regulates transcription of genes
related to lipid metabolism in the liver (Martin et al., 2007). These
genes show high fatty acid catabolism rates, which can in turn affect
hepatic fat storage and lipoprotein metabolism. We used HAllA to
examine associations between 120 hepatic transcript levels and 21
liver lipid levels in a previously published dataset (González et al.,
2008; Fig. 4). These data were originally collected from 40 wild-
type and peroxisome proliferator-activated receptor-a (PPARa)-defi-
cient mice (Martin et al., 2007). HAllA recovered 109 block associa-
tions comprising 225 pairwise associations at target FDR of 0.05
(chosen to match the previous study). HAllA’s results included all
associations that were previously reported using CCA, including a
key relationship between fatty acids and the xenobiotic metabolism
genes Cyp3a11 and Car1 (MGI:88268).

We further identified several novel associations, including a link
between polyunsaturated fatty acids eicosatrienoic acid (C20:3n6)
and arachidonic acid (C20:4n6; Selvaraju et al., 2012) with a group
of transcripts including Mcad (Acadm, MGI:87867). This gene (C-4
to C-12 straight chain acyl-Coenzyme A dehydrogenase) encodes
one of the main catalysts of the beta-oxidation process used for the
degradation of these fatty acids. Genes Car1 (MGI:88268) and
Acot11 [MGI:1913736; a carbonic anhydrase and lipid transfer pro-
tein, respectively (Hunt et al., 2000; Lynch et al., 1995)] fell in the
same cluster with C20.3n.6 and C20.4n.6, which would suggest a
trafficking and transport relationship between these genes and fatty
acids.

3.3 Associating microbes with metabolites in the infant

gut microbiome
In a prior study, Kostic et al. (2015) examined the development of
the human gut microbiome in a prospective, longitudinally sampled
cohort of 33 Finnish and Estonian infants at high risk for type 1 dia-
betes. Stool samples and clinical metadata (e.g. breastfeeding status,
diet and appearance of allergies) were collected monthly. Subjects’
stool samples were analyzed using (i) 16S rRNA amplicon sequenc-
ing (to profile gut microbiome composition) and (ii) targeted mass
spectrometry (to profile host and microbial metabolites). The data-
set included 103 samples from 19 individuals, each with paired
metabolomics and 16S rRNA gene sequencing data. We applied
HAllA to identify associations between the residuals of microbial
and metabolite abundances after correcting for longitudinal trends
and subject-specific random effects using a linear mixed-effects
model (Skrondal and Rabe-Hesketh, 2004; DiabImmune dataset,
Supplementary material).

HAllA recovered 44 microbial/metabolite cluster associations be-
tween 13 microbial genera and 44 metabolites using the same
q<0.05 threshold as in the original study (Fig. 5A). These encom-
passed 57 pairwise associations, using Spearman correlation as the
measure of pairwise feature similarity (as both data types are con-
tinuous). Using pairwise, AllA testing, 56 associations were signifi-
cant at the same threshold.

Our results again replicate all significant associations from the pre-
vious study’s CCA, and most of the associations from the original pair-
wise association analysis of the previous paper. HAllA also found
additional associations, including a novel association between
Prevotella and inosine (Spearman coefficient¼ -0.439, FDR Q-val-
ue¼0.0053), which could be explained by a mechanism where
increased levels of urotoxins in the body from inosine decreased the

Fig. 3. HAllA discovers block-structured associations while controlling FDR. (A)

For a variety of feature linkage relationships, we simulated 50 independent paired

datasets, each containing 200 features, 50 samples and clusters of correlated fea-

tures. We then evaluated the ability of hierarchical versus AllA testing to recover

these associations using a variety of similarity metrics. (B) Performance was eval-

uated by comparing power and FDRs. Our hierarchical AllA approach improved

sensitivity relative to naive AllA approaches at a comparable FDR. Similarity met-

rics that do not accept categorical data have not been evaluated in the categorical or

mixed association type. Other similarity metrics included in HAllA (dCor, NMI)

were not applied in these simulations because their reliance on permutation tests

made them too slow for simulations of this size (i.e. with many repeated iterations),

although they are typically practical in individual real-world datasets
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abundance of intolerant Prevotella. HAllA also reports novel associa-
tions between fecal bile acids lithocholate and lithocholic acid and gen-
era Faecalibacterium and Veillonella (Spearman coefficients¼0.36,
-0.39; Q-values¼0.026, 0.015, respectively). Faecalibacterium is
Gram-positive anaerobic bacteria genera from order Clostridiales,
while Veillonella are Gram-negative anaerobic cocci. Relationships be-
tween these genera and global bile acid levels (with matching correl-
ation signs) have been previously indicated by several studies,
particularly in cirrhosis (Kakiyama et al., 2013). These data thus dem-
onstrate HAllA’s potential benefits relative to pairwise or omnibus
(e.g. CCA) testing by simultaneously providing both greater interpret-
ability and power.

3.4 Associating the gut microbiome with host

transcription in ulcerative colitis
We next applied HAllA to data combining (i) 16S rRNA amplicon
sequencing of the human gut microbiome and (ii) Affymetrix micro-
array screens of ileal RNA expression across 204 individuals in a co-
hort of ileal pouch-anal anastomosis (IPAA) patients (Morgan et al.,
2012). In the original multivariate analysis of these data (Morgan
et al., 2015), microbial operational taxonomic unit (OTU) abundan-
ces were decomposed into principal components (PCs), and PCs
accounting for up to 50% of the variance in the datasets were com-
pared by AllA testing (an example of PC regression). While this ap-
proach enables well-powered comparisons of large numbers of
features, the features are embedded as loadings in PCs, which com-
plicates biological interpretation of the resulting associations.

HAllA identified 327 block associations in these microbial and
gene expression data using an FDR threshold of 0.05 and an FNT of
0.1 (Fig. 5B). Total relationships encompassed 125 OTUs, 187 tran-
scripts and the equivalent of 368 pairwise associations. The original
study focused on the 9th principal component (PC9) of the dataset
due to its linking of a group of IL12/complement pathways to mem-
bers of the microbiome, using an FDR threshold of 0.25. Of
HAllA’s reported microbe–transcript associations when run with the
same threshold, 20 genes were drawn from the 26 transcripts whose
largest loading was in PC9. HAllA’s findings support a surprising re-
sult of the original study: although PC9 represented only 1% of the
transcriptional variation in these samples, it captured most associa-
tions between transcription and the microbiome during pouchitis.
These results also agree with a previous re-analysis of these data
(Zhan et al., 2017) assessing global covariation between gut micro-
bial and transcriptional structure, which called out three pathways
(interleukin-12, inflammatory and inflammatory bowel disease

genes) that overlap heavily with HAllA’s block results (e.g. 28 out of
51 tested genes in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) TRP channel mediator pathway and 34 of 61 tested genes
in the KEGG IBD pathway were significantly associated with micro-
bial species).

Expanding on these previous associations, HAllA found a group
of facultative anaerobes (mainly streptococci) to be positively associ-
ated with the expression of the genes WDR49 and SERPINI2.
WDR49 is a WD repeat-containing protein upregulated in alveolar
macrophages, a cell type specifically responsible for nasopharyngeal
pathogen uptake (Patel et al., 2017). This association suggests this
protein may also be involved in recognition of bacteria in the gut en-
vironment. Another novel association in HAllA’s results linked a
group of Bifidobacterium OTUs with FABP1, a member of the long-
chain fatty acid-binding protein family involved both in lipid sensing
and metabolic regulation of energy harvest (Furuhashi and
Hotamisligil, 2008). This positive relationship has also been observed
in mice (Patterson et al., 2017). Finally, during intestinal inflamma-
tion and bleeding, host-microbial iron competition is a limiting factor
in subsets of microbial growth (Werner et al., 2011), which may be
responsible for the significant negative association identified between
the siderophore-rich genus Blautia and SLC40A1, a human intestinal
epithelial iron ion transmembrane transporter (Donovan et al., 2005).

3.5 HAllA’s applicability to heterogeneous datasets
We finally applied HAllA to identify associations between mixed
clinical metadata and RNA expression in the breast cancer cohort of
the Cancer Genome Atlas (TCGA; Weinstein et al., 2013) available
from the LinkedOmics R package (Vasaikar et al., 2018), focusing
on highly expressed yet variable transcripts (Supplementary Fig. S4).
HAllA identified 483 significant (Q-value < 0.1) metadata-RNA
associations within 261 blocks, including clusters of transcripts
associated with tumor purity, PAM50 subtype and ER Status.
Notably, the transcripts occupying the block associated with
PAM50 subtype include CA12, GABRP, NAT1 and TBC1D9,
which have been previously proposed as predictor genes for breast
cancer mortality, recurrence (Andres et al., 2013) and drug response
(Pogue-Geile et al., 2013). Coupled with the results of the preceding
applications, these results speak to the generality of HAllA’s associ-
ation discovery power across large, heterogeneous datasets.

In order to demonstrate the usefulness of alternative similarity
measures like XICOR, we decided to look for non-linear functional
relationships between RNA and protein expression in the breast
cancer cohort of the Cancer Genome Atlas (TCGA; Weinstein et al.,

Fig. 4. Association of fatty acids with host transcriptional activity in murine liver. We applied HAllA to paired data comprising 120 hepatic transcript levels and 21 liver lipid

levels in a set of 40 previously profiled mice (Martin et al., 2007). In this ‘HAllAgram’ visualization of results, block associations are numbered in descending order of signifi-

cance, with each numbered block corresponding to a group of coexpressed transcripts related to a group of co-occurring lipids. A white dot indicates the marginal significance

of a particular pair of features. A total of 109 block associations achieved significance at FDR 0.05, matching the previous study’s threshold based on canonical correlation

(González et al., 2008). HAllA’s associations were a strict superset of those found earlier by CCA. Spearman correlation was used as a similarity metric
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2013). We applied HAllA to these data using both Spearman and
XICOR as similarity measures, then examined the significant associ-
ations that came out with the latter but not the former. Among
these, we noticed three associations between RNA expression of
transcription factor FOXC1 and protein expression of CCNE2,
PIK3CA and SRSF1 (FDR Q-value¼9.3 � 10�7, 3.9 � 10�5,
0.015, respectively), which showed compelling U-shaped relation-
ships (Fig. 6). When compared with PAM50 clinical subtypes, these
relationships emerge as a result of two features of the originating

tumors. First, the different PAM50 subtypes vary in average FOXC1
expression (i.e. average position on the x-axis). Secondly, the effect
of FOXC1 on the expression of each protein appears to vary be-
tween the subtypes, with the opposite sign in the basal subtype.
There are individually well-established links between subtype and
FOXC1, CCNE2 and PIK3CA (Caldon et al., 2012; Elian et al.,
2018; López et al., 2010). However, the varying relationship of each
protein with FOXC1 by subtype has seemingly gone unnoticed in
the literature, presumably due to the marginally non-linear shape of

Fig. 5. HAllAgram for block-wise associations. (A) Using HAllA to associate multiomic data for the analysis of metabolome–microbiome interactions. We used HAllA to asso-

ciate paired stool metabolomic and 16S rRNA gene sequencing data from the DIABIMMUNE (Kostic et al., 2015) cohort, in which infants were recruited at birth and sampled

monthly for the first 3 years of life. The data comprise 104 samples and describe the abundance of 20 genera and 284 labeled metabolites. A white dot indicates the marginal

significance of a particular pair of features. Here, we show the 30 strongest associations ranked by P-value (target FDR¼ 0.05). (B) Relating host transcriptome and microbial

taxa in inflammatory bowel disease (IBD) patients. We applied HAllA to identify associations between the human gut microbiome and transcriptome in 204 patients receiving

IPAA surgeries (Morgan et al., 2012). Block associations are numbered in descending order of significance based on best P-values in each block with each numbered block cor-

responding to a group of coexpressed transcripts related to a group of co-occurring microbial taxa (OTUs)
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the overall relationship. While further study of the clinical import-
ance of these relationships is warranted, these findings demonstrate
the ease of well-powered, flexible, non-linear association discovery
with HAllA.

4 Discussion

In this work, we proposed and validated HAllA, a novel statistical
method to find associations between multiomic datasets. HAllA
addresses several important methodological challenges in the ana-
lysis of high-dimensional datasets. It is applicable to data that are
heterogeneous both within and between experiments, and it main-
tains statistical power using a novel hierarchical association testing
and FDR control procedure. In this method, groups of correlated
tests are modeled as blocks, ultimately reporting associations within
blocks and between block representatives from multiple data types
and experiments. This permits both great flexibility in the types of
measurements to which it is applied and ease of interpretation of the
resulting significant associations.

Class prediction approaches are commonly used to model rela-
tionships between high-dimensional datasets with variables meas-
ured using shared observational units. For example, PLS (Chin,
1998) and its close relative CCA (Sun et al., 2009) identify latent
variables in one dataset that are maximally correlated to latent vari-
ables in the other dataset. These methods, and robust and penalized
varieties (Hubert and Branden, 2003; Witten et al., 2009), can iden-
tify blocks of variables that are correlated within one dataset and in
turn with another block of correlated variables in another dataset.
They do not, however, control for family-wise error or FDR, and so
are most suitable for prediction or exploratory, visual and descrip-
tive analysis. With these methods, inference on the existence of asso-
ciations between the variables of two datasets against null
hypotheses of independence still relies on univariate hypothesis tests
(and possibly dimension reduction or clustering) and is performed
subsequently in a separate step. The FDR for the potentially large
number of tests can be controlled by the Benjamini and Hochberg
method (Benjamini and Hochberg, 1995), which has been adapted
for dependent tests (Yekutieli and Benjamini, 1999) and hierarchic-
ally organized tests (Winkler, 1967) that are continued until non-
significance. The approach described here thus aims to combine the
best features of these different existing approaches, yielding cluster-
ing of potentially heterogeneous variable types within each dataset
with hierarchical testing and control of FDR.

While these approaches are frequentist, Bayesian models are also
used to improve power and share information among feature blocks
(Cantor et al., 2010; Lewinger et al., 2007; Mourad et al., 2010,
2011). While such methods are extremely powerful within their tar-
get domains, they are typically intended for the incorporation of spe-
cific prior knowledge, such as graph structure (Ben-Gal, 2008;
Winkler, 1967), phylogeny (Ronquist and Huelsenbeck, 2003) or
pathway-based functional roles (Huson et al., 2011). They can also
be computationally expensive in cases where many or long

simulation chains are required for convergence (Huelsenbeck et al.,
2001). HAllA’s non-parametric frequentist approach will likely re-
sult in reduced power relative to such models within the domains for
which they are designed, but with substantially reduced computa-
tional cost and without the need to specify model relationships and
priors in each new application domain. Like most statistical trade-
offs, HAllA’s generality as a tool for association discovery thus
comes at a cost in specific circumstances where it is desirable to in-
stead utilize prior knowledge and known data structure.

A limitation of the current method is that it can only look for
associations between two datasets at a time. While the method can
be applied to multiple pairs of joint datasets manually, this becomes
combinatorially prohibitive in particularly thorough studies where a
large number of high-dimensional data types are available (e.g. stud-
ies that collect genetics, gene expression, epigenetics, microbial pro-
files, metabolites and metadata from each sample). In circumstances
such as these, repeated application of HAllA across each pair of
datasets would no longer properly control FDR. A potential exten-
sion would be to incorporate multivariate testing directly as an asso-
ciation measure, e.g. block PERMANOVA (Anderson, 2001;
McArdle and Anderson, 2001) or Procrustes analysis (Goodall,
1991), to lower the combinatorial burden by performing inference
on sets of features rather than individual feature pairs. Second, the
model does not share information between blocks, as would be the
case in a fully multivariate test (Anderson, 2001) or a hierarchical
Bayesian model (Mourad et al., 2011). Cases in which data do in-
clude such multilayered non-independence structure may indeed be
better handled in a Bayesian framework. Finally, and relatedly, it is
not straightforward to incorporate any type of prior knowledge into
the HAllA framework, again because of HAllA’s intention for wide
applicability. Prefiltering can be used, as in several of our own
examples, but this can be either beneficial or detrimental depending
on context (Fan et al., 2009; Waldron et al., 2011).

Future work could also provide several refinements to the method,
in addition to addressing these limitations. Currently, for example,
known but undesirable confounders must be separately regressed out
prior to using HAllA, and the method run on the resulting residuals
instead of raw data. Integrating such covariate adjustment would be
possible in future versions of the method’s implementation. Perhaps
most importantly, it may be possible to place tighter theoretical
bounds on the block-wise and global FDR control beyond what is
provided by HAllA’s adaptation of the Benjamini–Hochberg
(Benjamini and Hochberg, 1995) and Benjamini–Yekutieli methods
(Benjamini and Yekutieli, 2001). This would also suggest a theoretical
framework within which to characterize the amount and types of
non-independence best handled by hierarchical block association test-
ing. Ultimately, tradeoffs must be made between power and general-
ity (Simon et al., 2014). However, we aim for HAllA to provide a
happy medium, capable of serving as an easy-to-use first pass analysis
in a wide range of multiomics data types.
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Fig. 6. Non-linear relationships detected between RNA and protein expression in a

breast cancer cohort. By using an association metric sensitive to non-linear relation-

ships (XICOR), HAllA detects U-shaped relationships between FOXC1 RNA ex-

pression and the protein expression of three genes. Overlaying the PAM50 subtype

reveals that the U-shapes seem to emerge from a varying response to increased

FOXC1 RNA expression by subtype. This effect seems to have gone unnoticed in

the literature, thus demonstrating the ease with which HAllA can aid in the discov-

ery of complicated relationships that might be missed otherwise
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