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Elevated level of oxidized RNA was detected in vulnerable neurons in Alzheimer patients.
Subsequently, several diseases and pathological conditions were reported to be
associated with RNA oxidation. In addition to several oxidized derivatives, cross-linking
and unique strand breaks are generated by RNA oxidation. With a premise that
dysfunctional RNA mediated by oxidation is the pathogenetic molecular mechanism,
intensive investigations have revealed the mechanism for translation errors, including
premature termination, which gives rise to aberrant polypeptides. To this end, we and
others revealed that mRNA oxidation could compromise its translational activity and
fidelity. Under certain conditions, oxidized RNA can also induce several signaling
pathways, to mediate inflammatory response and induce apoptosis. In this review, we
focus on the oxidative modification of RNA and its resulting effect on protein synthesis as
well as cell signaling. In addition, we will also discuss the potential roles of enzymatic
oxidative modification of RNA in mediating cellular effects.
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INTRODUCTION

Reactive oxygen species (ROS) and free radicals play major roles in normal biological functions.
However, they can also react rapidly with biomacromolecules, such as nucleic acids, proteins, or
lipids, and alter their biological functions. Therefore, they have been implicated in a wide range of
age-related neurodegenerative diseases and aging (See (Stadtman and Berlett, 1997; Beckman and
Ames, 1998; Thannickal and Fanburg, 2000) for Rev.). With respect to nucleic acid oxidation, DNA
is known to be protected by its binding proteins, and by a number of repair systems to minimize its
damaging effects (Evans et al., 2004). However, RNAs are reportedly more susceptible to oxidation
than DNA (Hofer et al., 2005). As a result, age-related diseases would be more likely to be associated
with RNA oxidation. Consistent with this notion, an elevated level of oxidized RNA was found in
Alzheimer’s disease (AD) (Nunomura et al., 1999), and Parkinson’s disease (PD) (Zhang et al., 1999).
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Abbreviations: AD, Alzheimer’s disease; A, adenosine; ALS, amyotrophic lateral sclerosis; APE1, apurinic/apyrimidinic
endonuclease1; AP site, apurinic/apyrimidinic site; ARP, aldehyde reactive probe; Cyt c, cytochrome c; C, cytidine; EGFP,
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7,8-dihydro-deoxyguanosine; 8-oxo-A, 8-oxo-7,8-dihydro-adenosine.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6853311

REVIEW
published: 12 May 2021

doi: 10.3389/fmolb.2021.685331

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.685331&domain=pdf&date_stamp=2021-05-12
https://www.frontiersin.org/articles/10.3389/fmolb.2021.685331/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.685331/full
http://creativecommons.org/licenses/by/4.0/
mailto:mikiei.tanaka@nih.gov
https://doi.org/10.3389/fmolb.2021.685331
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.685331


Consequently, research on RNA oxidation has been directed
toward understanding the potential mechanisms by which
oxidized RNA mediates age-related diseases. To date, elevated
oxidation of RNA, monitored by the formation of 8-oxo-7,8-
dihydroguanosine (8-oxo-G), has been reported in a variety of
diseases such as diabetes (Cejvanovic et al., 2018), schizophrenia
(Jorgensen et al., 2013), and depression (Jorgensen et al., 2013).
The fact that 8-oxo-G rather than 8-oxo-7,8-
dihydroxydeoxyguanosine (8-oxo-dG) was found elevated in
the urine or plasma of disease patients, suggests that the
disease is associated with the elevation of RNA oxidation.
Therefore, monitoring the extent of RNA oxidation via its
oxidative stress biomarker provides a useful method for
diagnosing age related diseases (see review (Poulsen et al.,
2012; Jacob et al., 2013; Larsen et al., 2019)). However, the
molecular analysis of RNA oxidative modifications and cellular
responses have not been fully investigated. Based on DNA
oxidation studies (Lindahl, 1993), 8-oxo-G and abasic site,
which is the ribose moiety after depurination/
depyrimidination, are most likely to be the predominant
oxidative derivative of ribonucleosides. In addition, RNA
oxidation could lead to the formation of cross-linking with
proteins and a strand scission. From the pathogenetic point of
view, we and others have reported the effects on translational
activity mediated by the oxidation of tRNA (Preiss et al., 1959;
Sochacka et al., 2015), mRNA (Shan et al., 2007; Tanaka et al.,
2007; Calabretta et al., 2015; Thomas et al., 2019), and rRNA
(Honda et al., 2005; Willi et al., 2018). The decrease in
translational activity is due to the accumulation of aberrant
polypeptides caused by premature termination and amino acid
misincorporation. Together, these could constitute a pathogenic
mechanism, since accumulation of abnormal proteins is known
to disrupt protein homeostasis, a phenomenon observed in many
pathological features in diseases (Hipp et al., 2014). On the other
hand, recent extensive research on the RNA quality control
systems revealed that dysfunctional mRNA including oxidized
mRNA, in which ribosomes are stalled or collided would be
eliminated together with nascent polypeptides by a set of proteins
including endoribonuclease and ubiquitin ligase (see review
(Ikeuchi et al., 2018; Collart and Weiss, 2020)). However, the
regulatory mechanisms mediated by oxidized RNA per se are not
fully investigated.

ROS are known to be involved in mediating cell signaling
(Rhee, 2006; Bochkov et al., 2010; Alenko et al., 2017; Lanz et al.,
2019; Sengupta et al., 2020). In line with this notion, it has been
reported that oxidatively modified RNAs could interact with
various biological molecules known to mediate cell signaling.
In addition to the negative impacts caused by compromising the
RNA biological functions, RNA oxidation could also modulate
certain cell signaling pathways. Evidence has emerged showing
the products of RNA oxidation, e.g. 8-oxo-G as well as 8-oxo-dG
could exhibit an antioxidant function (Lee et al., 2013). In
addition, 8-oxo-GTP has been reported to modulate G-protein
GTPase activity (Yoon et al., 2005) and soluble guanylyl cyclase
(Bolin and Cardozo-Pelaez, 2009). Furthermore, oxidation of
mitochondrial RNA could modulate the inflammatory
response through cytokine induction (Saxena et al., 2017).

RNA containing the 8-oxo-G could modulate an apoptotic
signaling pathway mediated by the oxidized RNA’s binding
proteins (Ishii et al., 2020). In addition, an oxidatively
modified microRNA such as miR-184 has been shown to
mediate cellular apoptosis via its interaction with the 3-UTR
region of Bcl-xL and Bcl-w (Wang et al., 2015), and processing of
miRNAs such as miR-221 has been shown to be regulated via
oxidative modification and the apurinic/apyrimidinic
endoribonuclease1 (APE1) (Antoniali et al., 2017). We have
shown that cytochrome c (cyt c) could form a cross-linked
complex with oxidized RNA, and facilitate its dissociation
from mitochondria to the cytosol, a process required to
initiate the mitochondria-mediated apoptosis. Our findings
imply that oxidative modification of RNA facilitates cellular
apoptosis via a protective signal in response to oxidative stress
(Tanaka et al., 2012). In addition, in this review, we will also
describe other possible roles of enzyme-catalyzed, oxidation-like
modifications of RNA. In this case, the formation of the RNA
abasic site is catalyzed by an N-glycosylase which in turn is
processed by APE1 in the R-loop region to modulate DNA
replication or transcription possibly (Liu et al., 2020).
Pokeweed antiviral protein initiates an antiviral defense by
abasic formation of viral RNAs (Di and Tumer, 2015). As
illustrated in Figure 1, oxidized RNA could exert extensive
biological functions, a subject that needs further investigation.

RNA OXIDATIVE MODIFICATIONS

Among endogenous ROS, superoxide anions and H2O2 are
ubiquitously generated from the electron transport chain
(Boveris and Chance, 1973; Boveris and Cadenas, 1975). A
superoxide anion is converted to H2O2 in a reaction catalyzed
by superoxide dismutase. While the reactivity of both the
superoxide anion and H2O2 are relatively mild, in the presence
of metal ion such as Fe(II), H2O2 is converted to hydroxyl radical,
which is a highly reactive ROS (Goldstein et al., 1993; Wardman
and Candeias, 1996). This metal ion catalyzed hydroxyl radicals
generation is known as the Fenton reaction, a reaction thought to
be the most pathophysiologically relevant in mediating RNA
oxidation (Nunomura et al., 1999; Honda et al., 2005). Since RNA
contains multiple high affinity binding sites for iron, some of
these irons are likely to bind to the Mg(II) binding sites (Berens
et al., 1998; Athavale et al., 2012; Zinskie et al., 2018). Hereafter,
we primarily consider the RNA oxidation proceeds via iron
mediated Fenton reaction.

8-oxo-G
To our knowledge, the first investigation to quantify 8-oxo-G as a
RNA oxidative derivative was reported in 1989 (Fiala et al., 1989).
8-oxo-G in rat liver RNA was elevated by treatment with a
hepatocarcinogen, 2-nitropropane. It has been generally
thought that 8-oxo-G is the most abundant oxidative
derivative in RNA oxidation. In addition, there have been
several assays developed to quantify 8-oxo-G: 1) high-
performance liquid chromatography coupled with an
electrochemical potential detector (Floyd et al., 1986;
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Shigenaga et al., 1989), 2) liquid chromatography/mass
spectrometry or gas chromatography/mass spectrometry
(Dizdaroglu et al., 2001; Weidner et al., 2011; Weimann et al.,
2002), and 3) immunological assays using an anti-8-oxo-G
antibody, including enzyme immunoassay, northern blotting,
and immunoprecipitation (e.g. (Görg et al., 2008; Shan and
Lin, 2006)). Therefore, most studies have assessed RNA
oxidation based on 8-oxo-G production, while there have been
no detailed investigations about the oxidation of G to 8-oxo-G.
Conversely, DNA oxidation studies suggest that the hydroxyl
radical does not react with the guanine base by electron transfer
but by direct addition of the radical onto the double bonds of
guanine at the C8 and C4 positions. Subsequently, the former
guanine adduct that is attacked at the C8 position reacts with
oxygen to give rise to 8-oxo-G (Figure 2) (Candeias and

Steenken, 2000). In vivo study on iron metabolism revealed
that 8-oxo-G in human urine was correlated with the
expression levels of ferritin, transferrin, and transferrin
saturation in the plasma (Cejvanovic et al., 2018). Several
reports showed a positive correlation between RNA oxidation
and cellular iron levels (Honda et al., 2005; Zinskie et al., 2018).
Using immunoprecipitation with anti-8-oxo-G antibodies,
oxidized mRNA was isolated from AD brains. Microarray
analyses of the oxidized mRNA showed that the oxidation
levels were dependent on the mRNA species; for instance, Cu/
Zn superoxide dismutase 1 or presenilin 1 was found to be highly
oxidized compared to other genes (Shan et al., 2003; Shan and
Lin, 2006). Subsequent studies consistently showed selective
mRNA oxidation in ALS patients’ brains, although which
mRNAs were highly oxidized seemed to be different between

FIGURE 1 | A schematic diagram of the potential roles of oxidized RNA. Three types of oxidized RNA, free 8-oxo-GTP, oxidized RNA, and the equivalently modified
RNA modulate several cellular functions and signaling pathways. The possible effects of those modulations, but not limited to are also represented. The detailed
mechanisms are described in the text.

FIGURE2 |Chemical structures of the representative oxidative derivatives. 8-oxo-G (8-oxo-7,8-dihydro-guanosine), 8-oxo-A (8-oxo-7,8-dihydro-adenosine), H2U
(4-pyrimidinone ribofuranoside), and AP site (apurinic/apyrimidinic site). AP site is tautomerized to give rise to two forms.
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ALS and AD (Shan et al., 2003; Chang et al., 2008). Selective
oxidation of mRNA was also reported in ripened seed (Bazin
et al., 2011), and other pathologies including ammonia toxicity
(Görg et al., 2008) and formaldehyde exposure (Gonzalez-Rivera
et al., 2020). Of note, highly oxidized mRNA species in their
studies seemed to be inconsistent, suggesting that further study is
necessary to clarify determinants to regulate selective mRNA
oxidation.

Abasic Site
Abasic site is a sugar moiety formed after a nucleobase is cleaved
off. It is estimated that the abasic sites in genomic DNA are the
most abundantly generated oxidative modification. It yielded
approximately 10,000 to 50,000 sites mediated by site-specific
spontaneous reaction (Fresco and Amosova, 2017), enzymatic
reaction (Dizdaroglu et al., 2017), and oxidative reaction
(Greenberg, 2016) in a given day (Lindahl, 1993). In addition
to the typical abasic site, which is termed the AP site, several
different structures of abasic sites are generated by DNA
oxidation, for instance 2-deoxypentos-4-ulose and 2-
deoxyribonolactone (Greenberg, 2016). While these atypical
abasic sites have not been identified individually in oxidized
RNA, our previous study using an aldehyde-reactive probe
(ARP) revealed that AP site is generated by different types of
oxidative reactions, including the iron mediated Fenton
reaction, γ-irradiation, and peroxynitrite in vitro, and in cell
cultures after oxidative stress with H2O2 (Tanaka et al., 2011).
As shown in Figure 2, there are two tautomers, one that closed
ring form and another that gives an open ring form which gives
rise to an aldehyde group. These results indicate that an AP site
is a biomarker for RNA oxidation. Conversely, Leumann’s
group have established a method for synthesizing RNA with
an AP site at a specific location (Küpfer and Leumann, 2007a)
and characterized their chemical property. Their studies
revealed that the AP site in RNA was chemically more stable
relative to that in DNA (Küpfer and Leumann, 2007b) and
preferentially base-paired with dA or dC during reverse
transcription (Küpfer et al., 2007). In order to measure the
oxidation levels of individual RNA species including mRNA,
our group isolated and quantified abasic RNA from total RNA
by pull-down assay using ARP (Tanaka et al., 2011). While the
mitochondrial mRNAs which are encoded in the mitochondrial
genome had comparable oxidation levels to those of cytoplasmic
mRNA under normal conditions, the mitochondrial mRNAs
were oxidized distinctly higher than cytoplasmic mRNAs after
H2O2 treatment. Consistent with the findings of selective
mRNA oxidation monitored with 8-oxo-G (Shan and Lin,
2006; Görg et al., 2008; Bazin et al., 2011; Gonzalez-Rivera
et al., 2020), the oxidation levels of mRNA based on the AP site
quantity vary depending on mRNA studied. For instance, AP
site levels of Oma1 mRNA were found to be about five-fold
higher than that of ribosomal protein Rpl5mRNA (unpublished
data).

Other Oxidative Derivatives
The 8-oxo-A is known to be an intermediate of adenosine
oxidation by xanthine oxidase (Wyngaarden and Dunn, 1957),

however, it was also identified by mass spectrometry in polyA
after oxidative reactions (Figure 2) (Alexander et al., 1987). 8-
oxo-A has been assumed to be a minor oxidized ribonucleoside
relative to 8-oxo-G, since 8-oxo-dA was reported to be
generated approximately one-tenth of 8-oxo-dG in DNA
(Frelon et al., 2000; Choi et al., 2017). However, it was
reported that 8-oxo-A adduct was increased in the most
affected brain regions of late stage AD compared to the
age-matched control subjects while 8-oxo-G adduct was
decreased (Weidner et al., 2011). In vitro oxidoreduction of
yeast RNA in the presence of NADH and K3Fe(CN)6 gave rise
to the hydroxylated pyrimidines 5-OH-C and 5-OH-U in
addition to 8-oxo-G and 8-oxo-A (Yanagawa et al., 1990;
Yanagawa et al., 1992). Due to having lower redox
potentials, those oxidized ribonucleosides would be
susceptible to further oxidative modifications; for example,
5-guanidinohydantoin was identified after a metal ion
catalyzed oxidation of 8-oxo-G (White et al., 2005). In a
separate study, Crean et al. reported the generation of
spiroiminodihydantoin from 8-oxo-G by a carbonate radical
anion, using 2′,3′,5′-tri-O-acetyl-8-oxo-G instead of 8-oxo-G
(Crean et al., 2005). Oxidation mediated by manganese
porphyrin generated spiroiminodihydantoin and 5-
dehydroguanidinohydantoin as well (Tomaszewska-Antczak
et al., 2015). Likewise, it was reported that oxidation of 8-oxo-
A generated the quinoidal intermediate that tends to form
adducts with a variety of nucleophilic compounds (Nilov et al.,
2013).

Transfer RNA contains a variety of modified nucleotides,
some of which serve as targets for oxidative modifications.
The oxidative desulfration of thiouridine which contains sulfur
in place of carbonyl oxygen atom has been investigated in detail.
Nawrot’s group reported that the 2-thiouridine (S2U) is oxidized
via a sequence of intermediates starting with sulefenic acid
(-SOH), and then becoming sulfinic acid (-SO2H), and then
sulfonic acid (-SO3H), which is desulfrated to generate 4-
pyrimidinone ribofuranoside (H2U) (Figure 2) and uridine by
H2O2 treatment (Sochacka et al., 2011) under physiological pH
conditions (Sochacka et al., 2013) and cytochrome c (cyt c)
mediated peroxidation (Sierant et al., 2018). Conversely,
selenouridine which contains selenium instead of sulfur is
oxidized in a similar pathway; however Payne et al.
investigated redox chemistry between 2-selenouridine and 2-
thiouridine to find that oxidized selenouridine was more
prone to be reduced in the presence of antioxidants such as
glutathione and ascorbate than oxidized thiouracil since
selenouridine was highly resistant to oxidative deprivation of
selenium which is the key atom to catalyze redox reaction (Payne
et al., 2017).

Cross-Linking
There have been numerous studies regarding RNA-protein
artificial cross-linking, mainly for mapping between RNA and
its associated RNA binding proteins by means of site-specific
probe insertion and UV irradiation (i.e. (Van Nostrand et al.,
2016; Lin and Miles, 2019; Sharma et al., 2021)). For
pathophysiological cross-linking, Mirzaei and Regnier reported
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RNA and protein cross-linking in yeast after H2O2 treatment
(Mirzaei and Regnier, 2006). Proteomic mass spectrometric
analysis for the isolated carbonylated proteins showed that the
cross-linking was mainly between rRNA and ribosomal proteins at
multiple sites. Cross-links were formed mainly between lysine,
arginine, methionine, and tyrosine residues in ribosomal proteins,
and guanine residue in rRNA. To this end, we have shown the
in vitro oxidative cross-linking between tRNA and cyt c (Tanaka
et al., 2012). Cyt c catalyzes the peroxidation of mitochondrial
membrane lipids in the presence of H2O2 (Bayir et al., 2006; Yin
et al., 2017) and exhibiting binding affinity between RNA and the
heme c moiety. In this case, G appeared preferentially subject to
oxidative modifications, including depurination and cross-linking,
while the cross-linked structure between ribonucleotide and amino
acid has not been identified (Tanaka et al., 2012). Thus, although
there have been few studies in this field until now, it would be
possible that oxidative stress induces RNA-protein cross-linking,
which may contribute to impaired translation, deregulation of
RNA binding proteins, or deteriorated protein homeostasis due to
protein aggregation.

Strand Scission
Strand scission would be one of the major outcomes observed
due to RNA oxidative modification. Approximately 40% of
in vitro reactions between hydroxyl radicals and RNA strands
lead to strand scission, in which nucleobase radicals are
primarily generated, followed by H-abstraction from ribose
rings, and resulting in a strand break (Lemaire et al., 1984;
Jones and O’Neill, 1990). Joyner et al. investigated the
mechanism of oxidative RNA cleavage and formation of 3′-
and 5′-overhangs using MALDI-TOF MS (Joyner et al., 2013).
HIV-1 Rev Response Element was fragmented at various sizes
by oxidation in the presence of ascorbate, H2O2, and Fe(II)-
EDTA. The cleavage site and chemical structure of the terminal
overhangs were identified by their molecular weights. In
addition to 3′-PO4, 2′,3′-cyclic PO4 and 3′-phoshoglycolate
were the main 3′-end structures, while 5′-PO4 and 5′-OH
were the main 5′-end structures. Based on previous DNA
studies, it was deduced that there are three different modes
of cleavage reactions, hydrolysis, H-abstraction, and 2′-OH
mediated transesterification: 3′-PO4 was generated by the
hydrolytic process; 3′-phosphoglycolate formation occurred
by oxidative 4′-H abstraction in the ribose moiety, and base
2-propenal was generated as a byproduct. In addition, 2′,3′-
cyclicPO4 could be generated due to 2′-OH mediated
transesterification (Joyner et al., 2013). Ingle et al.
investigated oxidative cleavage in the GUA base triple in rat
sarsin/ricin loop RNA. The reactivity of the GUA triplet with
sodium borohydride, and the products analyses showed that the
aldehyde moiety was generated at the 5′-end possibly due to 5′-
hydrogen abstraction (Ingle et al., 2014). To date, several
nucleases are known to cleave DNA 3′-phosphoglycorate
(Kuo et al., 1993; Inamdar et al., 2002; Povirk et al., 2007),
however no ribonuclease to cleave RNA 3′-phosphoglycorate
has been reported. It may be important to investigate this
enzyme activity for understanding RNA homeostasis during
oxidative stress.

EFFECTS OF RNA OXIDATION ON
TRANSLATION

To our knowledge, since inhibition of the aminoacylation activity
by RNA oxidation was first reported in 1959 (Preiss et al., 1959),
translational activity has been investigated to assess biological
consequences of RNA oxidation. Here we review translational
alternation by oxidation of mRNA and rRNA mainly modified
with 8-oxo-G or abasic site. As for tRNA, we review here the
effects of oxidative desulfration of thiouridine.

tRNA Oxidation
In vitro aminoacylation of tRNA after oxidation were
substantially reduced for glutamic acid, glutamine and lysine
compared to other amino acids. Their tRNAs contain thiouridine
residues, which were desulfurated (Rao and Cherayil, 1974). It
was also reported that desulfrated tRNAs substantially reduced
ribosome binding depending on the mRNA template (Walker
and RajBhandary, 1972). Since thiolated uridines are frequently
located at the wobble position, the first nucleotide of anticodon, it
is of interest how codon-anticodon interaction is changed by
thiouridine desulfration. To this end, Sochacka et al. investigated
base pairing with S2U and H2U which were incorporated into
RNA duplex oligonucleotides with A or G as the complementary
nucleotides. Based on thermodynamic analyses and the
computational calculation, it was found that the H2U-G
paired duplex was thermodynamically more stable than the
H2U-A paired duplex, possibly because there are two putative
hydrogen bonds between H2U and G, whereas there is only one
hydrogen bond between H2U and A. Thus, although S2U is
known to form a base pair with A, H2U seems to base pair with G,
which may alter decoding kinetics by oxidation of thiouridine at
the wobble position (Sochacka et al., 2015).

mRNA Oxidation
Previously we reported on translational inhibition of oxidized
mRNA in vitro (Tanaka et al., 2007). Using cell free translation
systems, oxidized luciferase mRNA was found to compromise
translational activity, even if the mRNA was incubated with only
iron under aerobic conditions, and in the absence of ascorbate
and H2O2. In addition, we observed the accumulation of short
polypeptides, possibly due to premature termination as they were
mostly N-terminal fragments. These fragments were also
generated in cell cultures transfected with the oxidized mRNA
or treated with paraquat following transfection with non-oxidized
mRNA. But the peptide fragments were observed only in the
presence of a proteasome inhibitor, MG132. Together, these
observations indicate that the abnormal polypeptides were
readily eliminated by proteasomes. In addition, we found that
the catalytic activity of the full-length luciferase generated using
oxidized mRNA is compromised, suggesting that the protein
structure so generated was altered (Tanaka et al., 2007).
Consistent with the notion that protein synthesis using
oxidized mRNA leads to the generation of abnormal proteins,
overexpression using oxidized mRNA encoding EGFP in
HEK293 cells has been shown to generate an EGFP protein
that aggregated in abnormal cytoplasmic foci. This observation
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indicates that EGFP generated with oxidized mRNA tended to be
aggregation-prone, possibly due to structural changes caused by
miscoding (Shan et al., 2003). Together, these studies
demonstrated that oxidized mRNA expression in cells would
lead to abnormal polypeptide production, although it is not
known exactly how it occurred.

Recent studies have expanded mechanistic understanding of
the above observations using mRNA templates which
incorporated 8-oxo-G, AP site, or other oxidative nucleotides
at a specific position (Simms et al., 2014; Calabretta et al., 2015;
Hoernes et al., 2018a; Hoernes et al., 2018b; Thomas et al., 2019).
Zaher’s group revealed, when an mRNA oligomer was incubated
with wheat germ or an E. coli derived in vitro translation system,
the translation process would stop or take an extremely long
pause at the 8-oxo-G site wherever it was located within a triplet
codon (Simms et al., 2014). This in vitro study demonstrated that
8-oxo-G in mRNA largely inhibits translation elongation. Later it
was found that inhibition of translation elongation is a common
dysfunctional mechanism for other oxidized derivatives.
Calabretta et al. investigated amino acid incorporation at the
lesioned site, where 8-oxo-G, 8-oxo-A, 5-OH-C, or 5-OH-U was
incorporated into a synthetic mRNA oligomer using rabbit
reticulocyte lysate. They found the translated products were
substantially truncated at the lesioned site where 8-oxo-G, 8-
oxo-A, 5-OH-C, or 5-OH-U was inserted, while 1,N6-
ethenoAdo, 3,N4-ethenoC, or abasic site showed no
translation elongation at the insertion site (Calabretta et al.,
2015). Thus, all the oxidized ribonucleosides tested appear to
cause translation arrest. In this situation, the No-Go decay system
is activated and endoribonucleolytic degradation of the mRNA
stalled on the ribosome triggers downstream quality control
pathways (Simms et al., 2017). Yeast mutants dom34Δ and
xrn1Δ, which correspond to the ribonucleolytic activity,
showed an increase of the 8-oxo-G levels in polyA RNA. This
observation indicates that once ribosomes are stalled at the
oxidative modified sites of mRNA, a No-Go decay enzyme
complex is recruited to the sites and starts to degrade of the
mRNA (Simms et al., 2017; Yan et al., 2019) interacting with
Rps3/uS3 at the entry tunnel of the ribosomal small subunit
(Simms et al., 2018).

In terms of miscoding, base-pairing against 8-oxo-G on the
ribosome has been investigated using an in vitro system (Thomas
et al., 2019). 8-oxo-G at the first codon preferentially base paired
with C while 8-oxo-G at the second codon tended to base pair
with A taking presumably syn conformation. Under translation
error prone conditions, such as treatments with paromomycin,
streptomycin or having an error-prone ribosome mutant,
increased the rate of peptide bond formation in both base-
pairings. Thus, these findings provide evidence that 8-oxo-G
in mRNA has potential to cause amino acid misincorporation
during the coding process, despite the fact that the peptide bond
formation rate was very low (Thomas et al., 2019). Erlacher’s
group investigated translation products from mRNA containing
non-standard codon nucleotides including AP site using mass
spectrometry to identify decoding amino acid (Hoernes et al.,
2018a). When one AP site was inserted in the third codon (A-U-
AP site) in a synthesized reporter mRNA, the in vitro bacterial

translation system translated the codon into predominantly as Ile
(95%), but also a small amount of Met (5%). Even though the
translation was not efficient, the AP site was found to be decoded
in certain nucleotides but not a single nucleotide. Conversely,
HEK293T eukaryotic cells did not translate the modified codon
(Hoernes et al., 2018a). In addition, they investigated the
translational termination at stop codons with several modified
ribonucleotides including AP site as well (Hoernes et al., 2018b).
Triple AP sites completely inhibited the peptide release in both
bacterial and eukaryotic release factors. Insertion of an abasic site
at the second or third codon inhibited peptide release; the exact
influence was significantly different based on the release factor
and the abasic position (Hoernes et al., 2018b).

rRNA Oxidation
Honda et al. investigated translational activity of in vitro oxidized
ribosomes. As expected, iron catalyzed oxidation significantly
reduced the translational activity, which was measured by
radiolabeling amino acid incorporated in the proteinaceous
fraction (Honda et al., 2005). The peptidyl transferase center
(PTC) region in the ribosome plays a pivotal role in
aminoacyltransferase activity, where it is mediated by highly
structured rRNA but not associated ribosomal proteins.
Polacek’s group chemically synthesized in E. coli large rRNA
in which certain ribonucleotide was replaced with an abasic site in
the PTC region and integrated to reconstitute a whole ribosome.
It was found that translational activity, including peptide bond
formation, was reduced by substitution at A2450, A2451, or
C2063, whereas substitution in positions, U2585 and U2506,
increased translational activity (Erlacher et al., 2005; Erlacher
et al., 2006; Amort et al., 2007; Chirkova et al., 2010). Schrode
et al. investigated translational activity of 16S rRNA modified by
replacing the AP sites at A1492 and A1493, which are critical for
A-site binding of aminoacyl tRNA, and this was found to abolish
translational activity (Schrode et al., 2017). Willi et al. extended
the investigation using hydroxylated ribonucleotides (Willi et al.,
2018). Large 23S rRNA which was individually substituted to 8-
oxo-G (G2447), 8-oxo-A (A2451 or A2602), 5-OH-C (C2063) or
5-OH-U (U2585 or U2506) in the PTC region was synthesized
and reconstituted the ribosome. It turned out that 8-oxo-A2451
caused slow peptide bond formation and 5-OH-U2585 interfered
with A-site tRNA accommodation, while 5-OH-U2506, 8-oxo-
A2602, and 8-oxo-G2447 did not affect the translational activity.
Conversely, 5-OH-C2063 facilitated translation (Willi et al.,
2018). Thus, these results suggested that depurinated or
oxidative modifications in rRNA do not necessarily impair
ribosomal translational activity, but rather the effect is
dependent on the modified position.

OXIDATIVELY MODIFIED RNAS AS
POTENTIAL SIGNALING MODULATORS

Oxidized Ribonucleoside as Redox Catalyst
and Antioxidant
Yanagawa et al. reported that hydroxylated ribonucleosides, 5-
OH-C, 5-OH-U, and 8-oxo-G, are capable of facilitating the
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oxidoreduction between K3Fe(CN)6 and NADH. The redox
potentials (E7) for 5-OH-C, 5-OH-U, 8-oxo-A and 8-oxo-G
were found to be 0.42, 0.44, 0.72, and 0.38 V, respectively.
Considering the redox potentials of K3Fe(CN)6 (0.42 V) and
NADH (−0.35 V), it is reasonable that 5-OH-C, 5-OH-U, and
8-oxo-G but not 8-oxo-A could catalyze the oxidoreduction
between the two compounds (Yanagawa et al., 1992). It is
possible that those oxidized ribonucleosides are more reactive
in the tested conditions than the standard ribonucleosides since
the redox potentials (E7) of A and G were 1.42 and 1.29 V,
respectively (Steenkcn and Jovanovic, 1997).

As mentioned above, due to the low redox potential, 8-oxo-G
is readily oxidized by the reaction with ROS (Crean et al., 2005;
White et al., 2005), suggesting that this oxidized ribonucleoside
could function as an ROS absorber. Lee et al. reported that levels
of hydroxyl radical generated by Fenton reaction, peroxynitrite,
and superoxide anion could be reduced by co-incubation with 8-
oxo-G or 8-oxo-dG, equivalent or even more efficient than
N-acetyl cysteine (Lee et al., 2013). Thus, due to its relatively
low redox potential, oxidized ribonucleoside such as 8-oxo-G
could function as a catalyst for the oxidoreduction within a
certain range of redox potentials or as an antioxidant to
remove the ROS in cells as well as in biofluid.

Free 8-Oxo-GTP as a Signaling Modulator
Although 8-oxo-GTP is hydrolyzed to 8-oxo-GMP by MutT/
MTH1 (Taddei et al., 1997), the cytoplasmic 8-oxo-GTP pool
increased during oxidative stress (i.e. approx. 4 and 9 pmol/mg
protein in control and stress conditions in PC12 cells, respectively
(Bolin and Cardozo-Pelaez, 2009)). Chung’s group investigated
the effects of free 8-oxo-GTP on several small G-proteins: in
HEK293 cell lysate the recombinant Ras was activated and
enhanced the downstream Ras-ERK signaling pathway by 8-
oxo-GTPγS more efficiently than GTPγS, the unhydrolyzable
analog of GTP. In contrast, recombinant Rac1 and Cdc42 were
activated by GTPγS, while they were inactivated by 8-oxo-GTPγS
(Yoon et al., 2005). Additionally, the production of NADPH
oxidase-derived superoxide anion was elevated by GTPγS, while
it was decreased by 8-oxo-GTPγS in human neutrophil lysate
activated by phorbol myristate acetate (PMA). Consistently,
activity of Rac1 which is bound to the active form of NADH
oxidase was increased by GTPγS but decreased by 8-oxo-GTPγS,
suggesting that 8-oxo-GTP is a negative modulator to
inflammatory responses involving the NADPH oxidase and
Rac1 complex (Kim et al., 2007).

In the presence of nitric oxide, the soluble guanylyl cyclase
(sGC) is activated to catalyze GTP to cyclic-GMP (cGMP), the
second messenger for various downstream signaling for
proliferation, synaptic plasticity, vasodilation, and platelet
aggregation. Bolin and Cardozo-Pelaez investigated the effect
of 8-oxo-GTP on sGC (Bolin and Cardozo-Pelaez, 2009). They
observed that when purified sGCwas incubated in the presence of
a NO donor with different doses of 8-oxo-GTP, cGMP
production was decreased in a manner of reducing Vmax
without altering the value of Km. Conversely, sGC activity was
decreased in cultured cells after a copper/ascorbate mediated
Fenton reaction, a condition which did not induce the reduction

of the intracellular GTP pool or oxidative damage of the protein.
Instead, it would be, in part, due to the increase in intracellular 8-
oxo-GTP (Bolin and Cardozo-Pelaez, 2009).

Oxidized Mitochondrial RNA as an
Inflammation Modulator
Oxidized mitochondrial DNA transfected into the cytoplasm or
injected into animal tissue, induced an inflammatory response
mediated by the NLRP3 inflammasome (Collins et al., 2004;
Shimada et al., 2012). Saxena et al. investigated the immune
response by oxidized mitochondrial RNA (mtRNA) in a mouse
bone marrow derived macrophage (Saxena et al., 2017). When
oxidized mtRNA isolated from H2O2 treated HA1 hamster
fibroblast cells was transfected, production of proinflammatory
cytokines, IL-6, MCP-1, and type I interferon were found lower
than those of control mtRNA isolated from untreated cells. In
contrast, when oxidized mtRNA derived from H2O2 treated
THP-1, human monocyte cells were transfected to the
differentiated THP-1 induced by PMA, the inflammatory
response to induce IL-6 and TNF-α was more activated
relative to that of control mtRNA (Ilic et al., 2019). Taken
together, it seems to be inconclusive whether oxidized mtRNA
in cytoplasm shows differential effects on inflammatory response
compared to control mtRNA. However, it is possible that
oxidation of mtRNA may acquire differential inflammatory
responses under certain conditions.

Oxidized RNA in Apoptotic Pathways
Wang et al. investigated genome-wide analysis to identify
selectively oxidized miRNAs under oxidative stress conditions
in a rat heart cell line. They revealed that miR-184 was one of the
highly oxidized miRNAs. The oxidized miR-184, but not non-
oxidized miR-184, preferentially interacted with two anti-
apoptotic genes, Bcl-xl and Bcl-w mRNA at 3′-UTR and lead
to their downregulation (Wang et al., 2015). Although the
oxidized positions in the miRNA have not been identified, the
putative mismatch between oxidized miRNA184 and the target
3′-UTR indicated that several G residues in miRNA184 were
base-paired with A, the nucleoside that base paired with 8-oxo-G
(Koga et al., 2013). It should be pointed out that those putative
oxidized G sites are mostly located in the G repeat sequence,
which is more susceptible to oxidation compared to a single G due
to lower redox potential (Burrows and Muller, 1998; Margolin
et al., 2008). Degradation of anti-apoptotic genes due to binding
the oxidized miRNA would induce an acceleration of cellular
apoptosis. This observation suggests a molecular mechanism by
which oxidative stress induces cellular apoptosis. Moreover, this
would be the case in vivo because injection of oxidized miR-184
into the heart of an ischemia/reperfusion animal model
potentiated the reduction of Bcl-xl and Bcl-w, while increasing
the apoptotic cells and infarct size compared to control miR-184
injection (Wang et al., 2015). Thus, miRNA184 acquires the novel
function of binding to new target mRNAs by oxidative
modification which in turn regulates apoptotic signaling.

Sekiguchi’s group has identified several proteins that can bind
to oxidized RNA from bacteria andmammalian cells by screening
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RNA oligonucleotides containing 8-oxo-G as a probe;
polynucleotide phosphorylase 1 (PNPase) (Hayakawa et al.,
2001), Y box-binding protein (YB-1) (Hayakawa et al., 2002),
heterogeneous nuclear ribonucleoprotein splice form D0
(HNRNPD or AUF1) and C1 (HNRPNC) (Hayakawa et al.,
2010; Ishii et al., 2015), and poly(C) binding protein (PCBP) 1
(Ishii et al., 2018) and PCBP2 (Ishii et al., 2020). In vitro binding
tests showed that PCBP1 and PCBP2 bind to a highly enriched 8-
oxo-G oligo RNA in comparison to AUF1, which efficiently binds
to a single 8-oxo-G containing oligo RNA. PCBP1 deficient HeLa
cells showed lower capase-3 activation and poly (ADP-ribose)
polymerase 1 (PARP1) cleavage after H2O2 treatment leading to a
higher survival rate. In addition, PCBP1 mutant in KH1 domain
showed deficiency both in 8-oxo-G binding and PARP-1 cleavage
(Ishii et al., 2018). In contrast, PCBP2 deficient HeLa cells
exhibited growth retardation, with increasing caspase-3
activity, cleaved PARP, and apoptosis under oxidative stress
(Ishii et al., 2020). Together, these results indicate that PCBP1
and PCBP2 modulates apoptotic signaling in an opposite
direction after binding to highly oxidized RNA. While there
are many factors known to be involved in regulating cellular
apoptosis, the PCBP1 and PCBP2 may involve in mediating the
apoptosis in response to cellular RNA oxidation.

It is well established that cyt c catalyzes peroxidation through
the heme iron. To this end, we have reported that cyt c readily
oxidized tRNA to form a cross-link in the presence of H2O2

(Tanaka et al., 2012), partly due to cyt c binding to tRNA via heme
c domain (Gorla and Sepuri, 2014). Under these conditions, the
cyt c-tRNA complex would be released from a lipid vesicle
composed of cardiolipin, the main mitochondrial membrane
component. As a result, the oxidative cross-linking of cyt c
with tRNA could facilitate the release of cyt c from
mitochondria, and activate cellular apoptosis (Tanaka et al.,
2012). Nevertheless, it should be pointed out that Mei et al.
had reported that the cyt c-tRNA non-covalent complex could
bind to Apaf1 (Mei et al., 2010) and inhibit caspase activation.

miRNA Processing Regulated by Its
Oxidation
Apurinic/apyrimidinic endonuclease1 (APE1) is long known as
the endodeoxyribonuclease which cleaves off DNA strand
specifically at the 5′ side to the AP site during the process of
DNA base excision repair. Later, this enzyme was found to be able
to cleave c-myc mRNA (Barnes et al., 2009) and was confirmed to
be an endoribonuclease that cleaves at the RNA abasic site
(Berquist et al., 2008). Moreover, Tell’s group reported that
APE1-knockdown cells contain an increased level of oxidized
RNA, indicating that APE1 plays a critical role in clearance of
oxidized RNAs (Vascotto et al., 2009). Recently, they identified
the interacting miRNAs which are corelated to the cancer
development and characterized their maturation processes
(Antoniali et al., 2017). Among them, miR-221 and miR-222
which are involved in the expression of PTEN, the tumor
suppressor gene, was upregulated in cells treated with H2O2.
Their further analysis revealed that the precursors, pri-miR221
and pri-miR222 were elevated while their mature forms were

decreased, either by APE1 knockdown, APE1 mutant
overexpression, or the endoribonuclease inhibitor. Together,
their findings suggest that APE1 regulates the miRNA
processing, possibly through AP endoribonuclease activity. As
a matter of fact, APE1 knockdown cells increased the oxidative
AP site levels of miR221, while the revertant cells due to APE1
overexpression returned to control levels. Certainly, APE1
knockdown cells upregulated PTEN expression, and the
expression levels of APE1 were positively correlated with those
of miR221 but reciprocally correlated with those of PTEN in
human tumor tissue (Antoniali et al., 2017). These results
indicated that the miRNA processing and maturation are
regulated through AP site formation in the miRNAs and their
degradation by APE1.

EFFECTS OF ENZYMATICALLY CREATED
RNA AP SITE

AP Sites for Antiviral Defense
AP site formation by depurination is not only due to RNA
oxidative modification by ROS, but is also known to be
created by proteins. Here we discuss mimic oxidative
modification and its biological consequences. Endo and
Tsurugi discovered that ricin A-chain depurinated 28S rRNA
at a conserved A4324 in the sarcin/ricin loop (Endo et al., 1987;
Endo and Tsurugi, 1987), which has an essential role on
translocation step associated with elongation factor binding
(Montanaro et al., 1975; Shi et al., 2012). To date, several
proteins and families with the RNA N-glycosidase activity
have been identified mainly in plants, fungi, and bacteria.
These ribosome inactivating proteins (RIPs) caused complete
inactivation of ribosomal function leading to cell death, although
it is arguable whether the potent cytotoxicity of RIPs is only due
to the N-glycosidase activity (Hudak et al., 2004). Pokeweed
antiviral protein (PAP) was first characterized as an antiviral
protein because plant virus infection was inhibited by co-
inoculation (Wyatt and Shepherd, 1969; Tomlinson et al.,
1974). PAP depurinates A residues not only in the host rRNA
but also in several viral RNAs following recognizing the cap
structure of the RNAs (Hudak et al., 2000; Hudak et al., 2002). As
mentioned in the previous section, depurinated viral RNA such as
Bromo mosaic virus RNA3 was not translated properly and
rapidly degraded by No-Go decay system (Gandhi et al.,
2008). Although the molecular mechanism to recognize viral
RNA has not been fully understood yet, depurination of both
rRNA and viral mRNA in the infected cells seems a quite potent
modification to cause malfunction on viral protein synthesis.
Organisms may have evolved to cope with viral infection by
taking advantage of the same chemical modification as occurred
in oxidative stress to the pathogen RNA and eliminating it using
the No-Go decay RNA quality control system.

AP Sites to Regulate R-Loop
R-loop is a three-stranded nucleic acid structure. It consists of a
DNA-RNA hybrid and displaced single-stranded of DNA. It is
formed during transcription when the nascent RNA reanneals
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with the template DNA strand. R-loops play vital roles in
regulating gene expression, DNA replication, and DNA and
histone modifications. It is thought to regulate several cellular
processes including immunoglobulin class switch recombination,
transcriptional gene expression, mitochondrial DNA replication,
and epigenetic modification. Conversely, dysregulated R-loop
formation causes DNA damage and genome instability, and
lead to a number of human diseases, including neurological
disorders, cancer, and autoimmune diseases (see review
(García-Muse et al., 2019; Hegazy et al., 2020)). However, it is
not well understood how R-loop structure is stabilized or
resolved. Recently proteomic analysis for the binding factors
on R-loop revealed hundreds of proteins involved in RNA
binding, splicing, helicase, transcription termination, and
telomere regulation (Wang et al., 2018). Among them, the
DNA damage excision repair enzymes, APE1, and
methylpurine DNA glycosylase (MPG) were further
investigated (Liu et al., 2020). It was found that RNA
substrates of APE1 and MPG co-localized to the R-loop
regions based on genome-wide analysis. The MPG knockdown
cells temporally decreased abasic RNA as well as R-loop regions.
Purified MPG had a N-glycosylase activity on the RNA strand in
the RNA-DNA duplex in vitro. In addition, APE1 incises the
abasic RNA strand in the RNA-DNA duplex (Liu et al., 2020).
These findings suggested that the RNA strand in the R-loop is
depurinated by MPG and cleaved off at the AP site by APE1. It is
possible that these two enzymes collaboratively regulate the
R-loop stability via the abasic site formation and the
ribonucleolytic cleavage of the abasic RNA strand.

The scheme in Figure 1 depicts the summary of potential
pathological and physiological effects of oxidized nucleoside, and/
or RNA. While these oxidative modifications not only could lead
to impairing their normal physiological functions, they could also
modulate cellular signaling pathways, such as inducing cellular
apoptosis in response to oxidative stress.

PERSPECTIVES

The level of oxidized cellular RNA is higher than that of genomic
DNA under oxidative stress conditions, in vitro and in vivo,
observed with H2O2 treatment (Hofer et al., 2005), UV irradiation
(Wamer and Wei, 1997), or treatment with hepatocarcinogen 2-
nitropropane (Fiala et al., 1989). These effects, in part, are due to

the DNA protection exerted by nucleosomal histone proteins
against iron-mediated damage (Enright et al., 1992) and the
presence of robust DNA oxidation damage repair/degradation
systems (Chapman et al., 2012; Chatterjee andWalker, 2017). On
the other hand, substantial evidence shows the presence of
enzyme systems that eliminate RNA oxidation; APE1 is an
endonuclease that breaks down the abasic RNA (Vascotto
et al., 2009). PNPase has been identified as a 8-oxo-G
binding protein (Hayakawa et al., 2001), and later it was
suggested to be involved in degradation of oxidized RNA
(Wu and Li, 2008). MutT/MTH1 is a pyrophophatase that
catalyzes the hydrolysis of 8-oxo-GTP to 8-oxo-GMP to
exclude incorporation of the oxidized ribonucleotide into
RNA (Taddei et al., 1997). Moreover, the No-Go decay
system, which degrades many different types of abnormal
mRNA, once they are stalled on the ribosome, plays a pivotal
role on the elimination of oxidized mRNA (Gandhi et al., 2008;
Yan and Zaher, 2019). Therefore, it is unlikely that high RNA
oxidation levels are due to the absence of oxidized RNA
removing systems. Instead, it may be possible that biosystems
have evolved to be tolerant of RNA oxidation relative to DNA
oxidation. Oxidized RNAs may not be eliminated instantly in
cells. Recent studies have revealed emerging roles for oxidized
RNA as signaling modulators in response to cellular oxidative
stress. The level of oxidized RNAs might be elaborately
controlled to prevent a global protein homeostasis crisis, as
well as to accommodate the regulatory functions of oxidized
RNA. Thus, it is clear that further research on oxidized RNA is
essential.
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