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In recent years, IL-17A (IL-17), a pro-inflammatory cytokine, has received intense
attention of researchers and clinicians alike with documented effects in inflammation and
autoimmune diseases. IL-17 mobilizes, recruits and activates different cells to increase
inflammation. Although protective in infections, overproduction of IL-17 promotes
inflammation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis,
psoriasis, among others. Regulating IL-17 levels or action by using IL-17-blocking
antibodies or IL-17R antagonist has shown to attenuate experimental autoimmune
diseases. It is now known that in addition to IL-17-specific transcription factor, RORγt,
several other transcription factors and select microRNAs (miRNA) regulate IL-17. Given
that miRNAs are dysregulated in autoimmune diseases, a better understanding of
transcriptional factors and miRNA regulation of IL-17 expression and function will be
essential for devising potential new therapies. In this review, we will overview IL-17
induction and function in relation to autoimmune diseases. In addition, current findings
on transcriptional regulation of IL-17 induction and plausible interplay between IL-17
and miRNA in autoimmune diseases are highlighted.
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Introduction

Interleukin17 (IL-17) was initially termed in Rouvier et al. (1993) as cytotoxic T lymphocyte-
associated antigen-8 (CTLA-8) when it was first cloned from a rodent cDNA sequence.
Subsequently, IL-17 was also identified in humans (Yao et al., 1995). Among the members of IL-17
family, IL-17A (hence referred as IL-17) and IL-17F are known for their important functional and
biological properties. IL-17A and IL-17F are 50% homologous and map to the same chromosomal
loci. They exist either as homodimers or IL-17A/F heterodimers (Liang et al., 2007). IL-17A is
known to be secreted by many cell types including: CD4+ (Th17), CD8+ (Tc17), γδ+ T cells,
natural killer cells, mast cells, neutrophils among other cell types (Rachitskaya et al., 2008; Lin
et al., 2011; Zhao et al., 2012; Gelderblom et al., 2014; Li et al., 2014a; Ravichandran et al., 2014).

Although IL-17 is known to have protective effects in infections, increased IL-17 and/or aberrant
responses to IL-17 has been shown to aggravate disease conditions and contribute to tissue injury
as observed in many autoimmune diseases (Weaver and Murphy, 2007). IL-17 stimulates the
production of various inflammatory mediators such as IL-6, IL-8, CNTF, TGF-β2, IL-10, BMP6,
IL-1α, TNF-α, CCL19, CCL4, and M-CSF, CXCL1, CXCL2, CCL2, CCL12, CCL20 (Kang et al.,
2010; Nardinocchi et al., 2014; Rodgers et al., 2014); MCP-1, KP, macrophage inflammatory protein
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(MIP)-2, TIMP-1, granulocyte chemotactic protein-2 (GCP-2)
and matrix metalloproteinases (MMPs) -3, 9, and 13 (Qiu et al.,
2009) and nitric oxide, HGF, MCP-1, KC, MIP-2, PGE1, PGE2,
and VGEF (Numasaki et al., 2004). Studies have demonstrated
that IL-17 cosynergizes with different ligands and signaling
pathways such as toll-like receptor (TLR) ligands, B cell-
activating factor (BAFF), IFNγ, IL-1β, CD40-ligand and TNFα to
fine-tune inflammatory responses (Woltman et al., 2000; Andoh
et al., 2001; Liu et al., 2014a; Nardinocchi et al., 2014; Francois
et al., 2015).

IL-17 and Autoimmune Diseases

In healthy homeostatic conditions, the levels of IL-17A in human
sera are undetectable, however, the levels are markedly increased
in inflammatory bowel disease, psoriasis, systemic lupus
erythematosus (SLE), multiple sclerosis (MS), and rheumatoid
arthritis (RA; Wang et al., 2012; Jiang et al., 2014; Babaloo et al.,
2015; Mease, 2015; Talaat et al., 2015). IL-23 has been shown to be
critical for expansion, and/or survival and stabilization of Th17
cells by activating STAT3 and partially STAT4 (Aggarwal et al.,
2003; Harrington et al., 2005). Interaction of IL-23-producing
APCs and Th17 cells has been shown to have a role in many
autoimmune diseases. In support of this view, targeting IL-23
pathway, IL-17 production or action by using IL-17R antagonist
and IL-17A-blocking antibodies have been shown to attenuate
autoimmune diseases (Hueber et al., 2010; Yeilding et al., 2011;
Leonardi et al., 2012; Papp et al., 2012; Sofen et al., 2014). In this
regard, several clinical trials are underway to treat psoriasis. These
include, ustekinumab anti-p40-IL-23 mAb and guselkumab, an
anti-IL-23-specific mAb, ixekizumab and secukinumab (anti–
IL-17A mAbs) and brodalumab (an anti-IL-17RA mAb) are
currently under clinical trials. A recent study has demonstrated
that a combination of inhibition of IL-23 and IL-17 is more
efficacious in treating Th17-mediated autoimmunity in mouse
models (Mangan et al., 2015). In addition, human recombinant
IL-37 has also been shown to decrease IL-17 expression and Th17
cell frequency in PBMCs and CD4+ T cells from RA patients
(Ye et al., 2015). Together these studies have shown promising
results of targeting IL-17 induction and signaling pathways in the
treatment of chronic autoimmune diseases.

Molecular Aspects of IL-17 Induction

Although initial reports showed that TGFβ1 inhibits IL-17A
production in a dose-dependent manner in human naïve CD4+
T cells (Acosta-Rodriguez et al., 2007), other studies have shown
that low concentrations of TGFβ1 in combination with either IL-
21 (Yang et al., 2008a), or IL-1β and IL-23 (Manel et al., 2008;
Duhen and Campbell, 2014) or IL-1β, IL-23, and IL-6 (Volpe
et al., 2008) promote differentiation of human CD4+ T cells
into Th17 cells. Interestingly, it was recently shown that TGFβ3-
induced Th17 cells have pathogenic effector signature when
compared to TGFβ1-induced Th17 cells (Lee et al., 2012). Studies
have also shown that IL-17 expression may be transient and not a

terminal/end-stage Th cell differentiation (Kurschus et al., 2010;
Hirota et al., 2011). Further, there is dynamic plasticity among Th
subsets and Th17 differentiation is highly dependent on the kind
of stimuli (polarizing conditions) received from the local tissues.

Sentinel cells of innate immune system (neutrophils, γδ T,
Lti, Paneth, and iNKT cells) also secrete IL-17 (Cua and Tato,
2010). These cells constitutively express transcriptional regulators
for IL-17 induction (discussed in the next section), therefore,
upon activation produce IL-17 within hours of stimuli (Sutton
et al., 2009; Cua and Tato, 2010). The next section will focus
on multiple transcription factors involved in the positive and
negative regulation of IL-17 (Figure 1).

Positive IL-17 Regulators
RORγt and RUNX1
It is now well established that for Th17 differentiation, it is
critical to have TGFβ1 in the presence of IL-1, IL-6, or IL-
21 to decrease suppressive FoxP3 and upregulate RORc gene
encoded unique lineage-specific transcription factor, RORγt, an
retinoic acid related-orphan nuclear receptor (Bettelli et al., 2006;
Ivanov et al., 2006; McGeachy et al., 2007; Yang et al., 2008b;
Biswas et al., 2010; Ikeda et al., 2014). Runt-related transcription
factor 1 (Runx1) regulates Th17 differentiation by upregulating
RORγt expression and by direct binding to RORγt (Zhang et al.,
2008; Liu et al., 2015). Interestingly, a study has shown that
IL-17-secreting Treg cells (Tr17) have co-expression of FoxP3,
RORγt, Runx1, and Runx3 (Li et al., 2012). A recent study has
shown that RORγt-transcriptional activity, and subsequent IL-17
induction is increased by Sirtuin 1 (SIRT1), a protein deacetylase.
Inhibition of SIRT1 by chemical Ex-527 based inhibition or T
cell specific deletion strongly suppressed the development of
experimental autoimmune encephalitis (EAE) in mice (Lim et al.,
2015). In addition, a selective RORγt inverse agonist (TMP778)
has been shown to inhibit Th17 signature gene expression,
and IL-17 production from Tc17 and γδ T cells indicating
the therapeutic potential of targeting RORγt in inflammatory
conditions (Skepner et al., 2014).

STAT3
Activation of IL-6R (ligand binding IL-6Rα and signal
transducing gp130) by IL-6 results in activation of JAK-
2/STAT3 pathway. Activated STAT3 binds to the promoter of
IL-17A and IL-17F (Chen et al., 2006). Depletion of either STAT3
or gp130 in CD4+ T cells by utilizing Cre-loxP recombination
results in decreased RORγt expression and Th17 differentiation,
suggesting that IL-6-gp130-STAT3 regulate IL-17 induction
at least in part by regulating RORγt levels (Nishihara et al.,
2007). In vivo inhibition of JAK2-STAT3 pathway by AG490
was recently shown to decrease Th17 but increase Tregs in
collagen-induced arthritis mice (Park et al., 2014).

NF-κB
It has recently been shown that members of NF-κB family
RelA (p65) and c-Rel bind to promoters of RORγ and RORγt,
respectively (Ruan et al., 2011). The positive role of NF-κB
in IL-17 induction was further substantiated by the findings
that activation of NF-κB increases secretion of IL-17 (Huang
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FIGURE 1 | Positive and negative transcriptional tegulators of IL-17
induction: Different cytokines and antigen specific stimuli trigger (black
arrows and lines) different signaling cascades for activation of RORc
and consequently Il17 gene. Negative regulators (red arrows and lines), T-bet
or FoxP3 interaction with RUNX1 prevents RORγt-RUNX1 interaction, which
prevents RORγt-mediated IL-17 induction. Def6 binding to IRF4 prevents
ROCK2-mediated IRF4 phosphorylation and subsequent IL-17 induction.

PPARγ, peroxisome proliferator activated receptor γ; SOCS, suppressors of
cytokine signaling; TCR, T cell receptor; BATF, B cell-activating transcription
factor; IL, interleukin; TGFβ, transforming growth factor β; RORγt, retinoic
acid-related orphan receptor γt; STAT, signal transducer and activator of
transcription; IRF-4, interferon-inducible factor-4; RUNX1, Runt-related
transcription factor 1; IRAK, IL-1 receptor-associated kinase; TRAF6, TNF
receptor associated factor-6; ROCK, Rho-associated serine/threonine kinases.

et al., 2008). c-Rel deficient mice have decreased EAE due to
impaired activation of RORc gene and subsequently decreased
Th17 development (Lazarevic et al., 2011). Peripheral blood
mononuclear cells (PBMCs) from RA patients have increased IL-
17 induction by activation of PI3K/Akt, which increases the DNA
binding activity of NF-κB (Kim et al., 2005). In addition, in DC
and CD4 T cells co-culture system, dendritic cells (DCs) that are
deficient in RelB have decreased induction of IL-12p70, IL-23,
and IL-6 when compared to control DCs, thereby resulting in
decreased Th17- and Th1-related markers but increased Th2 and
Treg markers (Yang et al., 2010).

Interferon Regulatory Factor 4
Interferon regulatory factor 4 (IRF4) is also critical for IL-17 and
IL-21 induction (Ciofani et al., 2012; Huber and Lohoff, 2014). It
has been shown that IRF4-deficient mice have decreased RORα

and RORγt expression but increased FoxP3 levels (Brustle et al.,
2007; Huber et al., 2008). TGFβ-mediated activation of Rho-
ROCK pathway, promotes phosphorylation of IRF4 by ROCK
kinase. Once phosphorylated, IRF4 translocates to nuclei and
binds to IL-17 and IL-21 promoters (Biswas et al., 2010; Mudter
et al., 2011). It is noteworthy that in autoimmune models such as
MRL/lpr, there is enhanced ROCK2 activation concomitant with
increased IRF4 function and IL-17 levels (Biswas et al., 2010).

Other IL-17 Promoting Transcription Factors
Kruppel-like factor (KLF) 4, has been shown to regulate Th17
development by binding to the IL-17 promoter directly without
altering RORγt expression (Lebson et al., 2010; An et al.,

2011). Basic leucine zipper transcription factor, ATF-like (BATF),
synergizes with RORγt to induce IL-17 by direct interaction
with conserved intergenic elements of Il17A/Il17F loci (Jordan-
Williams et al., 2013). Additionally, other signaling pathway
Rho-associated kinase, ROCK2 (Zanin-Zhorov and Waksal,
2015), Ets-family transcription factor (Etv5; Pham et al., 2014),
Sphingosine 1-phosphate- /type 1 S1P receptors (S1P1s; Liao
et al., 2007), RORα (Yang et al., 2008b) and aryl hydrocarbon
receptor (Hayes et al., 2014) have also been shown to be
important for the induction of IL-17.

Negative IL-17 Regulators
Both IFNγ and IL-4 markedly inhibit Th17 differentiation
(Harrington et al., 2005; Yeh et al., 2014). In addition, IL-
25 and IL-27 have been found to negatively regulate Th17
cells (Batten et al., 2006; Kleinschek et al., 2007; Tang et al.,
2015). Suppressor of cytokine signaling (SOCS3) also negatively
regulates IL-6-gp160 signal transduction resulting in decreased
IL-17 (Babon et al., 2014; Vartoukian et al., 2014). FoxP3 interacts
directly with RORγt through the exon 2 region and forkhead
domain of FoxP3 and suppresses the activation of the IL-17
promoter (Ichiyama et al., 2008). Moreover, it has also been
shown that Runx1 interacts with FoxP3 and negatively regulates
Th17 differentiation (Zhang et al., 2008). T-bet, a Th1-lineage
specific transcription factor, also suppresses Th17 development
by binding to Runx1 via tyrosine 304 of T-bet. This T-bet-
Runx1 binding has been shown to block the transactivation
of RORc gene and therefore IL-17 induction (Lazarevic et al.,
2011). These studies indicate that Runx1 associates either with
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RORγt to upregulate IL-17, or with T-bet /FoxP3 to suppress
Th17 differentiation (Gocke et al., 2007). Interestingly, a recent
report has shown that in EAE, pathogenic IFNγ-secreting
Th17 cells have co-expression of T-bet, Runx-1 or -3 (Wang
et al., 2014). These findings suggest a critical role of Runx1
in differentiation of Th cells into different specific Th cell
lineages.

Another T-bet interacting transcription factor, v-ets
erythroblastosis virus E26 oncogene homolog 1 (ETS-1),
has been shown to inhibit Th17 differentiation. ETS-1-deficient
mice have increased IL-17 levels (without affecting RORγt),
suggesting that ETS-1 is a negative regulator of IL-17 (Moisan
et al., 2007). Recently, IRF8, also known as ICSBP, has been
shown to physically interact with RORγt and regulate IL-17
by silencing Th17 differentiation and downregulating Th17-
associated genes (Qi et al., 2009; Ouyang et al., 2011). Peroxisome
proliferator-activated receptor γ (PPARγ) also acts as an intrinsic
suppressor of Th17. It prevents the removal of repressor
complexes from RORγt promoter, resulting in decreased RORγt
expression and RORγt-induced Th17 differentiation (Klotz
et al., 2009). In addition, there are other compounds such as

digoxin and signaling molecules [e.g., STAT1, STAT4, STAT5,
STAT6, NFAT, SOCS1, early growth response gene 2 (Egr-2),
IRF-4 binding protein Def6, epidermal fatty acid binding
protein (E-FABP)] which negatively regulate IL-17 induction
(Fujita-Sato et al., 2011; Huh et al., 2011; Grange et al., 2013;
Miao et al., 2013). Overall these reports confirm that there
are multiple transcription factors, which fine-tune and tightly
regulate IL-17 induction. In the next section, we will focus
on the miRNAs, which epigenetically either regulate IL-17
induction or response in different autoimmune and other disease
conditions.

IL-17 and miRNA

Positive correlations in miRNA expression and IL-17 levels have
been observed in different studies (Table 1). In experimental
autoimmune uveoretinitis (EAU), miR-142-5p and miR-21 were
increased but miR-182 decreased in eye. The kinetic changes in
these miRNA paralleled with increased IL-17 levels (Ishida et al.,
2011). Given that IL-17 levels are increased in skin lesions and

TABLE 1 | miRNAs involved in regulation of IL-17 induction/response.

miRNA IL-17 correlation Signaling pathway Autoimmune/infection Reference

miR-142-5p
miR-21
miR-182

Positive
Positive
Negative

- Experimental autoimmune
uveoretinitis

Ishida et al. (2011)

miR-1266 Positive Psoriasis Ichihara et al. (2012)

miR-146 Positive Psoriasis
RA

Xia et al. (2012)
Niimoto et al. (2010)

miR-29a Positive Tuberculosis Kleinsteuber et al. (2013)

miR-21 Negative STAT3 RA Dong et al. (2014)

miR-15a/16, miR-34a,
miR-194

Negative Multiple myeloma Li et al. (2014b)

miR-135b Positive STAT6
GATA3

Anaplastic large cell lymphoma Matsuyama et al. (2011)

Let-7e Negative Liver disease Zhang et al. (2013)

Let-7f Negative IL-23R Li et al. (2011)

miR-145 Negative Experimental autoimmune
myasthenia gravis

Wang et al. (2013)

miR-223 Positive Roquin Colonic inflammation Schaefer et al. (2011)

miR-146b
miR-21

Positive RORγt
SMAD7

Viral myocarditis
EAE

Liu et al. (2013)
Murugaiyan et al. (2015)

miR-155 Positive SOCS1 Helicobacter pylori
Streptococcus pneumoniae
RA

Oertli et al. (2011)
Verschoor et al. (2014)
O’Connell et al. (2010)
Yao et al. (2011)

miR-212 Positive Bcl6 Nakahama et al. (2013)

miR-206 Positive
Negative KLF4 Dermatomyositis

Haas et al. (2011)
Tang et al. (2015)

miR-132 Negative EAE Hanieh and Alzahrani (2013)

miR-23b Negative TAB2, TAB3
IKK-α

EAE
Bechet’s disease

Zhu et al. (2012)
Qi et al. (2014)

miR-20b Negative RORγt
STAT3

MS/EAE Zhu et al. (2014)

miR-873 Positive A20
NF-κB

MS/EAE Liu et al. (2014b)

miR-326 Positive Ets-1 MS/EAE Du et al. (2009)
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sera of psoriasis vulgaris patients, it is noteworthy that miR-
1266 levels, a putative regulator of IL-17A, were also increased
in the sera of these patients (Ichihara et al., 2012). miR-146 is
also positively correlated with IL-17A levels in psoriasis (Xia
et al., 2012) and in RA disease severity, and is co-expressed with
IL-17A in the PBMC and synovium in RA patients (Niimoto
et al., 2010). Inverse relationship between select miRNAs and
IL-17 has also been observed in autoimmune conditions and
other diseases (Table 1). For example, combined treatment
with anti-TNFα/disease-modifying antirheumatic drugs (anti-
TNFα/DMARDs) increased miR-16-5p, miR-23-3p, miR125b-
5p, miR-126-3p, miRN-146a-5p, miR-223-3pmiRNA with a
concomitant decrease in TNFα, interleukin (IL)-6, IL-17,
rheumatoid factor (RF), and C-reactive protein (CRP; Castro-
Villegas et al., 2015). Imbalance of Th17/Treg in RA patients has
been associated with decreased miR-21 levels, increased STAT3
activation and decreased STAT5/pSTAT5 protein and FoxP3
mRNA levels (Dong et al., 2014). In experimental autoimmune
myasthenia gravis (EAMG), there is marked downregulation
of miR-145 expression. Administration of lentiviral-miR-145
decreased EAMG disease severity by decreased IL-17 production
(Wang et al., 2013). miRNA dysregulation has been best studied
in cancer and in several cancer studies miRNA regulation of
IL-17 has been demonstrated, which may have implications
for autoimmune diseases (Matsuyama et al., 2011; Arisawa
et al., 2012; Zhang et al., 2013; Li et al., 2014b). A positive
correlation in expession of miR-133b and miR-206 and IL-
17 in both αβ and γδ T cells in human and inbred mouse
strains have also been reported (Haas et al., 2011). It was
found that these miRNAs were clustered nearly 45 kb upstream
of Il17a/f locus (Haas et al., 2011). On the other hand, in
dermatomyositis patients, there is downregulation of miR-
206 and upregulation of miR-206 predicted target KLF4, a
positive regulator of IL-17 and Th17 cells (Tang et al., 2015).
It is likely that miR-206 regulation of IL-17 may be context
dependent.

A study demonstrated that in vitro treatment of colonic
intraepithelial lymphocyte with IL-10 decreased miR-19a, miR-
21, miR-31, miR-101, miR-223, and miR-155 and IL-17 (Schaefer
et al., 2011). miR-223 affects IL-17 by targeting Roquin, which
resulted in increased IL-17 expression (Schaefer et al., 2011). In
PPARγ deficient mice, there is increased colonic inflammation
accompanied with increased IL-17A and miR-146b expression
(Viladomiu et al., 2012).

A recent report has shown that miR-21 increased Th17
differentiation by targeting and depleting a negative regulator
of TGF-β signaling SMAD-7 (Murugaiyan et al., 2015).
Treatment of wild type mice with anti miR-21 oligonucleotide
decreased EAE clinical severity along with decreased Th17 cells
(Murugaiyan et al., 2015). InMS patients, there is downregulation
of miR-20b. In EAE, miR-20b overexpression decreased disease
severity by decreasing Th17 differentiation by targeting RORγt
and STAT3 (Zhu et al., 2014). There is upregulation of miR-
873 in brain tissue of EAE mice and in IL-17 activated mouse
primary astrocytes (Liu et al., 2014b). In EAE model, miR-873
induced by IL-17 stimulation aggravated disease severity and
increased inflammation by targeting A20/NF-κ (Liu et al., 2014b).

Importantly, Du et al. (2009) reported that miR-326 expression
correlated with MS disease severity in human patients. Further
in EAE mice, miR-326 played an important role in pathogenesis
by regulating Th-17 cell differentiation through translational
inhibition of Ets-1, a negative regulator of Th17 differentiation
(). In MS patients there is decreased expression of an IL-6-related
miRNA, miR-26a (Zhang et al., 2015). In vivo silencing of miR-
26a increased Th17-related cytokines and EAE severity (Zhang
et al., 2015).

miR-155 deficiency results in decreased severity of different
autoimmune diseases such as EAE, collagen induced arthritis
(CIA) by impairment of Th17 polarization and decreased IL-17
levels (O’Connell et al., 2010; Bluml et al., 2011;Murugaiyan et al.,
2011). The above studies indicate a strong correlation between
miR-155 expression and Th17 differentiation, which is potentially
mediated by miR-155 targeting of signaling molecule, SOCS1
(Yao et al., 2011, 2012).

Interleukin 17 has been shown to down regulate miR-
23b expression in human fibroblast-like synoviocytes, mouse
primary kidney cells and astrocytes. miR-23b suppresses IL-17-
mediated autoimmune inflammation by targeting TNF-α- or
IL-1β-induced NF-κB activation by targeting TGF-β-activated
kinase 1/MAP3K7 binding protein 2 (TAB2), TAB3 and inhibitor
of NF-κB kinase subunit α (IKK-α; Zhu et al., 2012). Behcet’s
disease (BD) patients have increased activation of Notch pathway
and Th17 response but decreased miR-23b (Qi et al., 2014).
These studies indicate the potential of miR-23b as a therapeutic
target for IL-17-related autoimmune conditions. miR-21 levels
are also increased in BD patients and decrease in miR-21 in
herpes simplex virus (HSV)-induced BDmouse model decreased
serum IL-6 and IL-17 levels and improved disease condition
(Choi et al., 2015).

AHR activation results in upregulation of miR-132/212 cluster
under Th17 inducing conditions (Nakahama et al., 2013).
However, overexpression of miR-132 in CD4 T cells from
EAE mice decreased IL-17 and IFNγ and T cell proliferation
(Hanieh and Alzahrani, 2013). Interestingly, miR-212 targeted
B-cell lymphoma 6, a negative regulator of Th17 differentiation
(Nakahama et al., 2013). These findings suggest that miRNA
regulation and correlation with IL-17 is dependent on disease
model.

Taken together, these studies indicate that IL-17 is regulated
by interplay of multiple transcription factors and miRNAs and
vary with different disease condition and cell type studied. It
is recognized that in addition to miRNAs, other epigenetic
mechanisms such as histone modifications and DNAmethylation
also contribute to autoimmune diseases. However, this topic is
beyond the scope of this concise focused review.

Concluding Comments

Overall, IL-17 is regarded as a potent proinflammatory cytokine
that is essential for defense against pathogens. However,
dysregulated IL-17 production or response has been associated
with tissue damage in various inflammatory diseases. Given that
IL-17 has now been associated with many inflammatory and
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autoimmune diseases, a better understanding of IL-17 induction
and regulation is imperative to institute novel effective targeted
therapeutic strategies. While RORγt, is considered as a IL-17-
specific transcription factor, recent collective data clearly show
that induction of IL-17 is regulated by multiple transcription
factors. Transcription factors that positively and negatively
regulate IL-17 have now been identified. In addition, post-
transcriptional regulation of IL-17 by specific miRNAs is now
increasingly appreciated. Aberrant miRNA expression is reported
in several human autoimmune diseases (Dai and Ahmed, 2011;
Dai et al., 2013; Khan et al., 2015). Dysregulated miRNA
expression profiles have the potential to serve as good diagnostic
and prognostic marker and/or therapeutic targets. Signature
miRNA profile can be potentially used as novel biomarkers for
Th17-mediated immune reactions. However, more in-depth and
mechanistic studies are required to further define the role of
miRNAs in IL-17 induction and interplay of miRNA with IL-
17-related transcription factors and signaling pathways. Since
blocking a major cytokine such as IL-17 may have unintended
consequences, more refined (tissue-dependent) manipulation of

select IL-17-regulating-miRNAs may be a viable therapeutic
option in some diseases.
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