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Abstract

Different network models have been suggested for the topology underlying complex interactions in natural systems. These
models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely
considered to which degree the results obtained for one particular network class can be extrapolated to real-world
networks. We address this issue by comparing different classical and more recently developed network models with respect
to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints
which the respective construction scheme imposes on the generated networks. After having identified the most variable
networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for
being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between
different network characteristics do exist. This makes it possible to infer global features from local ones using regression
models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the
synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult
to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with
the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good
approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic
network, and a network of synonyms extracted from Roget’s Thesaurus) that real-world networks have statistical relations
compatible with those obtained using regression models.
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Introduction

The development of models for the topology underlying

complex interactions in natural systems has attracted much

attention in recent research [1–3]. The structure of such systems

exerts strong influence on their dynamics [4–6]. To characterize

the network structure quantitatively, usually statistical measures

are introduced. Indeed, in many cases parametric families of

network models exist that can replicate specific statistics observed

in real networks and also explain how these statistics arise.

Classical examples are the emergence of a giant connected

component in percolation phenomena [7], and the power-law

degree distributions observed in real-world networks [8]. Dynam-

ical systems on networks have recently received much attention.

The influence of certain structural features on dynamical

properties, like synchronizability [9,10] and controllability

[11,12] has been analyzed with the help of particular network

models. This fact calls for an evaluation of the efficiency of existing

network models in sampling the space of real-world networks. In

fact, it is unlikely that a small number of standard models can

reproduce the variability of networks observed in nature, but this

problem is rarely addressed in the literature. To circumvent this

problem we base our analysis on several different network models

to avoid singular relations that hold only for specific cases.

Remaining relations among different structural network features

can then with much greater certainty be assumed to hold

generally. In particular, we take advantage of two recently

developed advanced network models, multifractal networks

[13,14] and equilibrium random networks [15]. These new classes

encompass networks of greater structural diversity in the statistical

ensemble than for example Erdös-Rényi graphs or small-world

networks and might therefore be more suitable to assess the

influence different network properties have on each other.

For instance, let us assume that a dependence between two

features can be expressed in terms of an explicit mathematical

relation. An example is the correspondence between node degrees

and Laplacian eigenvalues [16]. Such a relation would, of course,

manifest itself in a correlation between these features across

different network realizations for any network ensemble. However,

such analytical results are hard to find in general. It is easier to

identify suitable candidates from correlations that are present for

certain network ensembles. In this way also less general relations,

which hold only for a subset of networks, can be detected. Such

relations are useful if they apply to certain classes of empirical

networks. In order to search for non-trivial relations that are also

general, an ensemble of networks is needed that does not introduce

relations which hold only in this specific ensemble. For example

the study of ring networks together with random networks suggests
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that high clustering coefficients are associated with large charac-

teristic path lengths. The analysis of small world networks [9],

however, demonstrates that this relation is not valid in general.

At the same time, the ensemble should produce very variable

networks, in the sense that the values of the interesting features

should have a broad distribution, such that relations can be

observed with high significance. As an empirical quantity to judge

the quality of network ensembles with respect to these two

demands, we introduce an entropy measure based on the

distribution of features.

As a first main result, we conclude that multifractal networks

and equilibrium random networks are the most variable ones with

respect to the generated feature entropy. They present a good

sampling basis, as only weak correlations between different graph

properties are imposed by their construction principle.

The issue of whether global, in particular spectral, properties of

networks are predictable from local statistical properties has been

debated in the scientific community with both negative [17] and

positive [16] results. Our second main result is that global network

properties, also of spectral nature, are indeed statistically linked to

network properties on a local level, and that these relations are also

relevant for real-world networks. This is achieved using multivar-

iate linear regression on an appropriate set of regressors among the

local features.

In particular, we study three different networks: a synonym

network extracted from Roget’s Thesaurus [18], the metabolic

network of the bacterium R. prowazekii [19], and the neuronal

network of the nematode C. elegans [20]. We find that the

dependencies between certain features follow the same law for

network models and for real data, thus justifying our approach.

Our third main result concerns one specific relation that was

detected with our new method: we demonstrate that the

synchronization index, a quantity introduced to assess the inertia

to synchronization of complex networks [17], depends very

strongly on the variance of the in-degree, a fact that may be of

special interest for scientists studying network synchronization

[10].

Methods

Models
Each of the network models (for a list of the models considered

here see Table 1) is defined by a set of parameters; the rationale of

the comparison is to first draw a random set of graph parameters,

then draw a specific realization using these parameters, and finally

analyze the structural properties of the graph. The parameters of

most network models we analyze have to be chosen in a bounded

set. It is therefore a natural choice to randomize the parameters

using uniform (real or integer-valued) distributions. We will refer

to this algorithm as to the doubly stochastic generation process.

We kept the average connectivity (i.e. the expected fraction of

realized edges out of all possible edges) fixed for all network

models. In our study we used the value 0.1 throughout. This value

generally resulted in relatively sparse networks with a large

connected component. We concentrated our attention on directed

networks, and, if necessary, we extended the original definitions to

directed versions. For each realization of a network, we extract a

feature vector f cn

i of commonly used statistical descriptors, see

Table 2. The apex cn indicates the nth instance of the network

classc, the index i indicates the feature.

The descriptors were chosen such that many important aspects

of complex networks are sufficiently covered, while keeping

computational effort manageable. They can be subdivided in

three categories:

N degree statistics: we consider average of in- and out-statistics,

their fluctuations and several type of correlations;

N spectral statistics: we consider the spectral radius, average and

fluctuations of the eigenvalue spectrum and two different

synchronization measures;

N community structure: we consider average and fluctuations of

the k-shell statistics and of the clustering coefficient, as well as

Newman’s modularity.

We distinguish between ‘‘local’’ descriptors, which can be

estimated by sampling small parts of the network, and ‘‘global’’

descriptors, for which knowledge of the full network is necessary.

For example, to estimate the mean degree of the nodes in a

network, it suffices to pick a number of nodes one after an other

and count their neighbors. However, the spectral radius of the

connectivity matrix is not the sum of spectral radii of small parts of

the network, but depends on the structure of the whole network

and therefore cannot be estimated in this way.

We use the same symbol (mean or var) for both the theoretical

value and its unbiased estimation. Since the network parameters

are independently chosen in every network realization, for fixed c,

the numbers f cn

i form a multivariate random variable whose

realizations are independent over the instances n. As a conse-

quence, dependencies between the f cn

i originate from statistical

links across features.

Feature Extraction
For computing the statistics in Figures 1, 2 in we used 10 000

networks with 100, 333 or 1000 nodes, respectively, and with an

overall connectivity of p = 0.1. For Figure 3 we used 4000

networks, where overall connectivity and node number were

matched with the corresponding statistics of the real networks. We

extracted the largest strongly connected component (LSCC) of

each network using a classical algorithm [22]. All features were

computed from the LSCC of the network. Typically, the LSCC

equaled the whole network for classical network models or a large

part of it in the case of MFs. Networks with a largest connected

component of a size smaller than 0.1 times the number of nodes

were discarded. Real data sets displayed different LSCC sizes: 274

(for 279 nodes, 2990 connections) for the C. elegans neural network,

413 (456 nodes, 1014 connections) for the R. prowazekii metabolic

network and 904 (1022 nodes, 5075 connections) for the Roget

synonym network. After the calculation of network features,

networks with undefined features were discarded. A typical case

occurred for Watts-Strogatz networks with low rewiring: if the

degree sequence is constant, its variance is 0 and many correlation

measures are undefined. Nevertheless, this occurred only rarely

(less than 5 networks in 1000 generated ones).

Erdös-Rényi Networks
These are the classical random networks [7]. Each connection is

realized with probability p. Random networks of this type are, in

fact, MF(1,1) networks. It must be noted that Erdös-Rényi

networks do not have any free parameter in our study, since the

connection probability is fixed. The only variability present in

the Erdös-Rényi networks is due to the random realization of the

edges and not to the parameter choice.

Watts-Strogatz Networks
The Watt-Strogatz random network model [9] is constructed by

connecting nodes on a ring up to a certain geodesic distance. Then

a rewiring parameter pr is chosen and every edge is randomly

rewired with a probability pr. We started with a ring network with

General Relations between Network Characteristics
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a given number of nodes. We then realized in-and out connections

to k~pN nearest neighbors such that the expected average degree

is correct. Each connection is rewired to a randomly chosen target

with a fixed rewiring probability pr, randomly chosen for every

network as a uniform random real between 0 and 1.

Extended Barabási-Albert Networks
Preferential attachment models like the Barabási-Albert models

prescribe that, as nodes are added to the network, their

connections are drawn randomly with a probability proportional

to the degree of the target node.

For this study, we extend the classical preferential attachment model

[8] in order to achieve a suitable randomization of statistics across

networks. We also need to turn the graph into an oriented graph in

such a way that the variances of the local features (across nodes) do not

vanish. As a first step, we drew a uniform random integer of nodes

between the mean degree D~pN and the desired number of nodes N.

Then, one node at the time was added, and bidirectional connections

to existing nodes were established. Connection probability was

proportional to the target degree, as in classical preferential attachment

models. This procedure continued until the number of nodes reached

N. Finally, we randomly break the network symmetry by deleting every

edge independently with a certain probability which was chosen in

order to obtain the final desired mean degree.

Equilibrium Random Networks
Equilibrium random networks are characterized by a prescribed

expected degree sequence. Nodes are then connected to each

other with a probability proportional to the product of their

expected degrees. This model has been introduced recently by

Chung and Lu [15]. It differs slightly from the well known

configuration model, where a network is constructed from a given

degree sequence. A power-law degree sequence was generated

with an exponent drawn uniformly between 0 and 4.

Multifractal Networks
The multifractal network generator has been introduced recently

by Palla et al. [13,14]. The basic idea is that networks are created

from a generating measure P on the unit square with a complex and

variable structure, leading to very variable networks. The generating

measure is constructed in the following way: Initially, the interval (0,1)

is divided randomly and uniformly into n parts. Using divisions of the

x and y-axes, the unit square is divided into n2 rectangles. The value

of P in each rectangle is drawn uniformly at random from the interval

(0,1). In the next step, each rectangle is subdivided according to the

initial division lengths, and the value of P in each new rectangle is

assigned from the initial probabilities, multiplied by the value of P of

the current rectangle. Thus, each rectangle is replaced by a shrunk

version of the initial generating measure, times the value of P in the

current rectangle. This procedure is repeated for k iterations, leading

to an increasingly rough landscape, which for large k approximates a

singular defining measure [23].

Once the generating measure P has been produced, to obtain a

network with N nodes and a desired mean degree k, we replace P

byfPf̂f0gg~ k

N

P(x,y)Ð 1

0

Ð 1

0
P(x,y)dxdy

.

Each node i is then given a position xi[(0,1) and a connection

from node i to j is made with a probability given by P(xi,xj).

Deviating from the original proposal in [13], we do not impose a

symmetry condition on P and draw each connection indepen-

dently to obtain directed networks. Parameters are randomized by

choosing random tuples of divisions lengths and probabilities.

Results

Variability of Networks Generated by Different Models
Feature variability and dependencies between features vary

significantly between different network models. In fact, across our

network samples, there are quite strong dependencies, as can be

Table 1. Symbols and concepts.

Symbol Description

mean(M) Complex number: mean of the set M

var(M) Positive real number: variance of the set M

std(M) Positive real number: standard deviation of the set M

corr(P) Real number in [21,1]: Pearson correlation coefficient of pairs P

clust(v) Real number in [0,1]: Fraction of undirected triangles between neighbors of v

shell+(v) Positive integer: In or out-shell of node v

A~(aij ) Matrix: adjacency matrix of a graph: aij = 1 iff link j?i exists, otherwise 0

Tr(A) Complex, number: trace of the matrix A

L~(‘ij ) Matrix: Laplace matrix of a graph

V Set: node set of a graph

E Set: edge set of a graph

C+(v) vSets of nodes: nodes targeting to or targeted by

deg+(v) C+(v)Integers: cardinality of

BA Extended Barabási-Albert network

ER Erdös-Rényi network

EQR Equilibrium random networks

MF(n,k) Multifractal network class:
ninitial squares, kiterations

WS Watts-Strogatz network

doi:10.1371/journal.pone.0037911.t001
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observed in Figure 1, Panel (a). For several of the network models,

scattered feature pairs for realizations of networks with random

parameters are concentrated in a small, specific area of the 2-

dimensional feature space. Because feature pairs are not confined

to these areas for alternative models, we conclude that these

ensembles impose specific constraints. Therefore feature relations

learned from these models cannot be generalized. We propose that

an ensemble that is used to obtain relations that hold for a large

number of networks should introduce as few dependencies as

possible.

The dependencies can be quantified by computing the matrix of

pairwise correlation coefficients between features, computed across

realizations of the same network model. ER and MF networks

have apparently the least correlated features, whereas EQR, BA

and WS networks have features with strong correlations.

However, not only the correlations between features determine

the intrinsic variability of a network model. The variability of the

marginal distributions must also be considered. To discover

relations between features that hold for a large set of networks, the

network model should sample the space of networks completely

and uniformly. However, the region of the feature space of a

network model covered by a finite sample is necessarily bounded.

The larger the variance of the features, the wider is the sampling of

the model, and the larger is the set of networks where the inferred

statistical relations are applicable.

We estimate the overall variability S of a given class of networks

generated by our doubly stochastic process by the logarithm of the

determinant of the covariance matrix C of the features,

S~
1

2
log ((2pe)k det (C)),

where k is the number of features. For an interpretation of this

measure, assume that we approximate the distribution of features

by a multivariate Gaussian distribution, where the covariances are

given by the measured values. The Shannon entropy of this

approximate distribution is given by S. In a geometrical

interpretation, det (C) represents a measure for the volume of

the feature space the network model is able to sample. It takes into

account both the variability of the individual features as well as the

loss in covered volume from correlated features. This measure is

different from the entropy used in [24,25], which depends on the

discrete number of networks belonging to an ensemble. Our

measure depends on the set of features, and the ability of a

construction principle to sample the space of networks.

In Figure 1, Panel (c) it is apparent that the multifractal network

generator (MF) by far outperforms all other network models with

regard to feature variability. It is interesting to note that the

variability of WS networks is considerably smaller than that of

preferential attachment networks and equilibrium random net-

works. This is an important issue to keep in mind, especially in

view of the large number of studies inspired by the Watts-Strogatz

network model [26,27]. The generated feature entropy reflects

only partially the number of degrees of freedom of the network

models. On the one hand, since the overall connectivity is fixed,

ER networks do not have a single degree of freedom and they are

the networks with the least generated feature entropy, whereas MF

networks generate the largest feature entropy, also thanks to their

larger number of degrees of freedom. However, on a finer scale,

the generated feature entropy also depends on other factors. For

example, the BA, EQR and WS network models all have one

single degree of freedom, but the latter performs considerably

worse. Furthermore, MF(3,3) have 10 degrees of freedom, but

generate a lower feature entropy than MF(2,5), which only have 4

degrees of freedom.

Predicting Global Features from Local Features
It has repeatedly been pointed out [5,28] that local features

of a network (e.g. degree distributions and degree correlations)

are, when considered in isolation, not necessarily informative

when it comes to predicting the dynamic properties of a

network. On the other hand, global features (e.g. spectral

properties and k-shell decomposition [5]) are difficult to obtain

for large networks and, in general, are not robust against under-

sampling of the network.

To overcome this problem, one could ask whether it is possible

in principle to predict global features from a large set of

simultaneously measured local ones. To test this idea, we trained

for every network class a least-squares linear regressor on the

vector of its local features to predict its global features. A distinct

linear regressor was trained for every single global feature. As a test

set we used the data set of networks of all classes with exception of

the one used for the training of the linear regressor. In Figure 2,

Panel (a) we compare the performance of the different network

models. To this end, a prediction for the global feature xi(a) of a

realization i of a certain network type a was calculated using the

Table 2. Statistical descriptors (thematic ordering as in
figures).

Symbol Complete Name Description

Local Descriptors

CCM Mean clustering mean fclust(v)gð Þ
CCV Clustering variance var fclust(v)gð Þ
IDV Variance of in-degrees var fdegz(v)gð Þ
IOD In-out correlation corr f½degz(v),deg{(v)�gð Þ
ODV Variance of out-degrees var fdeg{(v) : v[Vgð Þ
IPIC In-mean-in correlation:

corrf degz (v),mean fdegz (v’) : v’[C{(v)g
� �� �

g

IPOC In-mean-out-correlation:

corrf degz (v),mean fdeg{ (v’) : v’[C{(v)g½ �
� �

g

OPIC Out-mean-in-correlation:

corrf deg{ (v),mean fdegz (v’) : v’[C{(v)g
� �� �

g

OPOC Out-mean-out-correlation:

corrf deg{ (v),mean fdeg{ (v’) : v’[C{(v)g½ �ð Þg
FRC Fraction of recurrent connections

P
ij aijajiP

i,j aij

Global Descriptors

SR Spectral radius maxfDlD : l[s(A)g
NTR Normalized trace mean s(A)ð Þ
VEV Variance of eigenvalues var s(A)ð Þ
SI [17] Synchronization index maxfD1{lD : l[s(L)g
ST [10] Synchronization time

1=max s
LzLT

2

� �
\f0g

� 	

OSM Mean of out-shells mean fshell{(v)gð Þ
OSV Variance of out-shells var fshell{(v)gð Þ
ISM Mean of in-shells mean fshellz(v)g

� �
ISV Variance of in-shells var fshellz(v)g

� �
M Modularity See [21]

doi:10.1371/journal.pone.0037911.t002
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local features of the specific realization and the linear regression

coefficients obtained from networks of typeb. As a measure for the

deviations between these values and the predictions x̂xi(a,b) we

consider the residual error

�ss(x,b)~

½ 1
AM

PA
a~1,a=b

PM
i~1

(xi(a){x̂xi(a,b))2�1=2

½ 1
AM

PA
a~1,a=b

PM
i~1

(xi(a){�xx)2�1=2

where �xx denotes the average of the feature across realizations and

types, M indicates the total number of realizations of networks

from each type and A the number of network types. The

normalization factor was included to make the performances for

different features x comparable.

Although least-squares linear regression is a rather simple

approach to this complex problem, this procedure allows one to

compare how well results from different network models can be

generalized. Furthermore, interesting information can be extract-

Figure 1. Variability generated by various network models. (a) Scattered data of two global features for realizations of different types of
networks (size N = 1000), displayed in loglog scale. On the horizontal axis the synchronization index SI, on the vertical axis the mean out k-shell OSM
of the corresponding graph are shown. (b) Correlations between pairs of features, arranged in a matrix (size N = 1000). For BA and WS networks, a
clear structure is visible, due to the thematic ordering of the features. Strong correlations are, in fact, the major cause for the low feature entropy
generated by non-MF networks, quantified in Panel (c). Entropy of the multivariate distribution of features. The feature entropy generated by MF
networks is considerably higher, and it scales linearly with the number of nodes in the networks.
doi:10.1371/journal.pone.0037911.g001
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ed from an examination of the regression coefficients, see Figure 2,

Panel (b) and our discussion below.

Finally, we studied whether our approach can be applied to

real-world networks extracted from publicly available data sets.

We considered the connectome of the nematode C. elegans [20], a

synonym network based on the Roget’s Thesaurus retrieved from

the Pajek data sets collection [18], and the metabolic network of

the bacterium R. prowazekii [19]. Our selection was based on

several criteria: first, their size matched the size of the networks

used for the evaluation of variability. Furthermore, they represent

directed graphs and have a large strongly connected component.

Finally, their physical/biological nature is quite diverse. For each

of the data sets we generated a sample set of networks as described

above, with matched number of nodes and average connectivity.

On each network data set, we trained a linear regression model

using an appropriate subset of local features. The subset was

chosen such that local features not represented well in the data set

are excluded. To this end, we fixed a threshold s and only used

those local features whose value did not deviate from the average

value of the corresponding training set by more than s standard

deviations. For each data set we studied how the regression

performance depends on the threshold. The performance was

quantified by the relative mean-squared error calculated across

global features and networks, see Figure 3. For this purpose, all of

the MF, EQR and BA networks resulted in regression models with

quite good predictive power. This is demonstrated in Figure 3 (a),

where predicted features are similar to the measured ones,

indicated by positions of the scattered symbols close to the

diagonal. Figure 3 (b) shows the dependency of the prediction

error on the subset of features used for prediction. As expected, a

larger number of local features increases the predictive power, as

long as the corresponding feature of the real data is well

represented in the model data set.

Furthermore, it is possible to use real networks as a cross-

validation for the statistical methods we are proposing. To this

aim, we first want to estimate the reliability of the correlation

between two features. This is done by computing a 2-dimensional

matrix with the entries

R(f1,f2) : ~ log
Dmeang CCg(f1,f2)

� �
D

varg(CCg(f1,f2))

� �
,

where CCg is the matrix of correlation coefficients between

features in network class g. This matrix, depicted in Figure 3, Panel

(c), assesses the reliability of a correlation between two features

across models. It takes into account both the absolute size of the

correlation as well as its consistency across different models. The

ten relations with the highest reliability index are listed in Table 3.

To decide whether the relations between features are a

peculiarity of the stochastic network models under consideration,

we compare the model statistics with the true data previously

introduced. In scatter plots of the feature pairs with the highest R
values, statistical relations between the two features impose

constraints on the area that is accessible for data points, if network

parameters like size and connectivity are fixed, Figure 3, Panel (d).

If a relation between two features is of the same type both in real-

world and model networks, then one would expect that the feature

pair for the real-world network lies on the corresponding manifold

for the model networks. Indeed, we verify in a scatter plot that the

true data lie on the same manifold as the model data. We can thus

conclude that a high R(f1,f2) value is a good predictor of the

reliability of the correlation between a feature pair f1,f2. This cross-

validation method allowed us to reveal statistical laws for networks

Figure 2. Prediction of global features from local ones. (a) Residual prediction errors. For the global features, we train a linear regression
model with the data generated by one particular network model with random parameters and we test data from the remaining models. The residual
prediction error is given by the mean-squared error normalized by the overall standard deviation of the corresponding feature. A value of 1 indicates
the result obtained if the true mean of the population was known and used as a predictor. Note that using the empirical population mean as a
predictor leads to a relative error larger than 1. MF network models perform consistently around 1, whereas other models have occasionally very large
errors. (b) The coefficients of the linear regressor from the MF(3,3) set, normalized by the standard deviation of the local features used for the
prediction. We excluded WS due to their very poor performance here. For some of the global features, the magnitude of the coefficients is consistent
over the network models. For example, the positive contribution of the variance of the in-degree to the synchronization index and negative
contribution to the synchronization time is consistent with the dynamic interpretation of these measures.
doi:10.1371/journal.pone.0037911.g002
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that would otherwise be quite difficult to discover. Three selected

examples are highlighted below and, in the following paragraph,

we discuss the synchronization properties of networks in greater

detail.

1. Mean and the variance of the clustering coefficient over the

network are consistently (positively) correlated across networks

(mean Pearson’s correlation 0.79, standard deviation 0.12). As

a consequence, properties attributed to the mean clustering

Figure 3. Prediction of global features in real-world networks. (a) Scattered data of the predicted global features for three data sets, using
the regression coefficients obtained from network models with matched network size. Colors encode the model used for prediction. (b) To study
whether the prediction is robust with respect to the chosen threshold, we depict the relative mean-squared error (defined as in Figure 2) averaged
over the whole data-set of real-world networks as it depends on the threshold. The inset shows the average number of selected features for a given
value of the threshold s. (c) Reliability index R(f1,f2) of the correlation coefficients between pairs of features, calculated across network models. High
values point toward a general statistical law for all networks. (d) Data scatters for some pairs of features with significant correlations. Different colors
encode different data sets: The number of nodes and the overall connectivity is extracted to generate a set of matched networks from various
models. The scattered data are extracted from surrogate networks. The large markers denote the positions of the true data set in the data cloud. The
statistics of the real-world networks lie in the data cloud, suggesting that those relations correspond to relevant statistical laws of complex networks.
In the upper left panel, the R. prowazekii metabolism network is missing because of degenerate statistics.
doi:10.1371/journal.pone.0037911.g003
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coefficient [29,30] could be as well attributed to the variance of

the clustering coefficient. In this type of studies, additional

considerations must be taken into account to disentangle the

contributions of these two measures.

2. The variance of the distribution of the eigenvalues (seen as a

complex-valued random variable) is consistently (positively)

correlated with both the mean of the in- (0:65+0:21) and the

out-k-shell decomposition (0:64+0:23). The mean in- and out

k-shells encode, roughly speaking, how well-connected the

network is. Local k-shell values are, as an example, predictive

for epidemic spreading efficiency [5]. We thus speculate about

a role for eigenvalue variance in determining the connectedness

of a complex network. Although this observation is purely

heuristic, it could be of help for scientists who use k-shell

decompositions as a tool to understand the dynamics of

complex networks.

3. The spectral radius is consistently (positively) correlated with

the mean clustering coefficient (0:63+0:25), with the variance

of the in-degree and the variance of the out-degree (0:65+0:25
in both cases), and with the in-out degree correlation

(0:72+0:2). The latter has an intuitive interpretation: the

spectral radius is related to the stability properties of an

associated linear system. The spectral radius r(A) determines

the asymptotic behavior of the linear dynamical system defined

by the recurrence equation xn+1 = Axn. A high in-out degree

correlation means that nodes receiving input from many inputs

project to many other nodes, thus destabilizing the system.

Finally, the spectral radius is, as expected, consistently

(positively) correlated with the eigenvalue variance

(0:70+0:27).

Synchronizability and In-degree Variance
The two features ‘‘synchronization index’’ and ‘‘in-degree

variance’’ are a very interesting case that deserves special

attention. The synchronization index has been introduced for

directed graphs to quantify the degree to which a network is prone

to synchronization [17]. Low values of this index indicate that the

networks synchronize easily.

For MF, EQR and BA networks multivariate linear regression is

most efficient, and for these models the synchronization index and

the in-degree variance have a correlation coefficient of 0.8560.04.

This is in marked contrast to the fact that these networks are of

very different character: MF and EQR are locally of Erdös-Rényi

type, whereas BA is not; MF and BA networks typically have

narrow unimodal SI distributions, whereas EQR networks exhibit

a peculiar uniform SI distribution. EQR and BA have a degree

distribution with power-law tails, a property not shared by MF

networks.

Our observations are in contrast to the conclusions previously

drawn [17] regarding the difficulty of predicting synchronizability

by statistical network properties. Our results imply that, for real-

world networks, statistical properties can indeed be informative

about spectral properties. We also have shown that local statistical

properties, as the variance of the in-degree, can be used to infer

spectral properties. It must be mentioned that related results have

been analytically obtained for the case of undirected networks

[16]. These results extend the observation by Grabow et al. [10]

that networks in the small-world regime with fixed in-degrees

synchronize slowly.

In the framework of small world networks it has further been

suggested [9] that networks with a high clustering coefficient

(CCM) have a small synchronization index (SI). As our analysis

shows, this relation is not conserved across network models: In

fact, all network models apart from WS that we consider here

show the inverse of the proposed relation, namely a positive

correlation of CCM and SI. Apparently only in WS networks

clustering is beneficial for synchronization.

Furthermore, our results are consistent with recent results

obtained in the theory of neuronal networks [31]. There, it has

been shown that in a network model similar to our EQR setting,

decreasing the variance of the in-degree distribution leads to fast

oscillations.

Discussion

A significant amount of recent research has focused on non-

random aspects of real biological networks, especially in studies of

metabolic interactions [19], of neuronal networks [20,32,33], and

of epidemic spreading [5]. In neuroscience, in particular, the

question has arisen of how various network features influence

network performance with respect to different computational

aspects [34,35]. In this type of works, different approaches have

been used. The first approach is to use data from related real-

world data sets [5,36,37]. One difficulty presented by this

approach the generate surrogate data. Degree preserving ran-

domization has been suggested as a method for assessing statistical

significance of observed features in this approach [38–40].

Alternatively, ad hoc network models have been developed for

studying the effect of specific network features on the model

dynamics [11,30,41,42]. In this work, we assessed the generaliza-

tion power offered by commonly used network models. According

to our analysis, a crucial limitation of most of the currently used

network models is their low statistical variability in the network

features exhibited by the generated networks. This makes it

unlikely that results obtained for a specific network model can be

extrapolated to other contexts.

In particular, the often employed WS (‘‘small-world’’) model has

quite singular statistical properties; on the one hand, the feature

entropy generated by WS networks with randomized wiring

parameter is, at least for small networks, only slightly larger than

the entropy generated by ER graphs, which have no free

parameter when the mean connectivity is fixed. In fact, ER

networks are a special case of WS networks where the rewiring

parameter is 1. On the other hand, WS graphs are outperformed

by EQR networks with a randomized exponent of the degree

distribution, which also have one degree of freedom, increasing the

feature entropy of the ensemble. It finally should be mentioned

that the EQR model has some points in common with the degree

Table 3. Correlated feature pairs with highest reliability
index.

Feature 1 Feature 2

CCV CCM

SI IDV

SR IOD

OSM VEV

ISM VEV

VEV SR

SR IDV

SR ODV

SR CCM

doi:10.1371/journal.pone.0037911.t003
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preserving randomization algorithm proposed by Milo and

coauthors [38].

We found that the MF network generator [13,14] offers the

possibility to generate quite variable random networks with high

predictive power. The feature entropy of the graph ensemble

defined by these models is higher than the one generated by BA,

EQR, WS and ER models. This property is due to the efficient use

of a larger number of degrees of freedom in the network

generating algorithm. Moreover, in contrast to other types of

networks, the feature entropy of the ensemble seems to scale

linearly with the size of the networks in this case. This property

allows one to reliably learn relations between local and global

network features. We demonstrated that these relations indeed

encompass predictive power also for real world networks up to the

point that global properties can be predicted from local ones. This,

however, is only possible if the local features of the real world

networks are well represented in the ensemble defined by the

network model. This fact once again highlights the importance of

networks with broad distributions of many features.

Finally, and most importantly, we collected specific pieces of

information regarding network properties by numerical experi-

mentation. A striking example concerns the negative correlation of

the variance of in-degrees with network synchronizability. Results

in this direction have already been obtained [31,43], although on

specific topologies obtained with an algorithm similar to EQR.

Our results indicate that this may be a rather general property of

dynamical systems on networks. This finding could have important

consequences, especially in view of the increasing evidence for a

link between structural heterogeneity and stability in complex

networks. Our method can be applied to include additional

network features, like motif distributions, or characteristics of

dynamical systems on networks, and we would expect that further

dependencies can be discovered between that have escaped our

attention so far.

Acknowledgments

We thank Sadra Sadeh, Arvind Kumar and Jannis Vlachos for discussions

and valuable suggestions. Support by Bernd Wiebelt in setting up the

cluster computation is gratefully acknowledged.

Author Contributions

Conceived and designed the experiments: SC VP MD SR. Performed the

experiments: SC VP MD. Analyzed the data: SC VP. Contributed

reagents/materials/analysis tools: SC VP MD. Wrote the paper: SC MD

VP SR.

References

1. Newman ME (2003) The structure and function of complex networks. SIAM

Rev 45: 167.
2. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s

functional organization. Nat Rev Genet 5: 101–13.
3. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, et al. (2004) Superfamilies

of evolved and designed networks. Science 303: 1538–42.
4. Arenas A, Diáz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization

in complex networks. Phys Rep 469: 93–153.

5. Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, et al. (2010)
Identification of inuential spreaders in complex networks. Nat Phys 6.

6. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity:
Uses and interpretations. NeuroImage 52: 1059–1069.
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