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Abstract

Background: Several studies have focused on stratifying patients according to their level of readmission risk, fueled in part
by incentive programs in the U.S. that link readmission rates to the annual payment update by Medicare. Patient-specific
predictions about readmission have not seen widespread use because of their limited accuracy and questions about the
efficacy of using measures of risk to guide clinical decisions. We construct a predictive model for readmissions for
congestive heart failure (CHF) and study how its predictions can be used to perform patient-specific interventions. We
assess the cost-effectiveness of a methodology that combines prediction and decision making to allocate interventions. The
results highlight the importance of combining predictions with decision analysis.

Methods: We construct a statistical classifier from a retrospective database of 793 hospital visits for heart failure that
predicts the likelihood that patients will be rehospitalized within 30 days of discharge. We introduce a decision analysis that
uses the predictions to guide decisions about post-discharge interventions. We perform a cost-effectiveness analysis of 379
additional hospital visits that were not included in either the formulation of the classifiers or the decision analysis. We report
the performance of the methodology and show the overall expected value of employing a real-time decision system.

Findings: For the cohort studied, readmissions are associated with a mean cost of 13,679 with a standard error of 1,214.
Given a post-discharge plan that costs 1,300 and that reduces 30-day rehospitalizations by 35%, use of the proposed
methods would provide an 18.2% reduction in rehospitalizations and save 3.8% of costs.

Conclusions: Classifiers learned automatically from patient data can be joined with decision analysis to guide the allocation
of post-discharge support to CHF patients. Such analyses are especially valuable in the common situation where it is not
economically feasible to provide programs to all patients.

Citation: Bayati M, Braverman M, Gillam M, Mack KM, Ruiz G, et al. (2014) Data-Driven Decisions for Reducing Readmissions for Heart Failure: General
Methodology and Case Study. PLoS ONE 9(10): e109264. doi:10.1371/journal.pone.0109264

Editor: Harry Zhang, Old Dominion University, United States of America

Received April 17, 2014; Accepted September 5, 2014; Published October 8, 2014

Copyright: � 2014 Bayati et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. The data used for this
research is obtained from a large number of electronic medical records that are protected under The Health Insurance Portability and Accountability Act of 1996
("HIPAA"). Therefore, authors are not permitted to make the data publicly available. However, all data used for this study are available at MedStar Health (https://
www.medstarhealth.org/). Any party interested in accessing the data can send requests to MedStar Health Institutional Review Board (IRB) by calling 301-560-
2912 or emailing ORI.helpdesk@medstar.org. More information is available online at: https://www.medstarhealth.org/research/Pages/Administrative-Services/
Office-of-Research-Integrity/Institutional-Review-Board-IRB.aspx.

Funding: The research was supported as a project at Microsoft Research (http://research.microsoft.com/en-us/), a basic science research unit of Microsoft.
Microsoft Research is an open research laboratory (with no publication controls) exploring curiosity-driven research with multiple concentrations in basic and
applied computer science. MBa was also a postdoctoral researcher in Microsoft Research during 2007–2009 and received research support from Microsoft
Research during 2010–12. MBa also received support by National Science Foundation award number 1216011. MBr was a postdoctoral researcher in Microsoft
Research during 2008–2010 and received research support from Microsoft Research during 2010–11. MBr was also supported by a Natural Science and
Engineering Research Council of Canada through its Discovery Grant program. MBr was supported by Microsoft Research (http://research.microsoft.com/en-us/)
and also by the Natural Science and Engineering Research Council of Canada through its Discovery Grant program, by the Alfred P. Sloan Fellowship and by the
National Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. In
addition this does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Competing Interests: The authors declare that no competing interests exist. The authors know of no conflicts with the independent scholarship of the
collaborations of researchers at Microsoft Research, Stanford, Princeton, and MedStar Health on this study. In addition this does not alter their adherence to PLOS
ONE policies on sharing data and materials.

* Email: horvitz@microsoft.com

Introduction

The increasing availability of large quantities of clinical data

being captured by electronic health record systems frames

opportunities for generating predictive models from that data to

enhance healthcare. We first describe the construction of a

predictive model that forecasts the likelihood that heart failure

patients will be rehospitalized within 30 days of their discharge.

Then, we show how the predictive model can be coupled with an

automated decision analysis, which uses patient-specific predic-
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tions about readmissions within a cost-benefit model, to provide

guidance on the patient-specific allocation of readmission reduc-

tion programs. We discuss how such a coupling creates a valuable

data to prediction to action pipeline that can be implemented

within a decision-support system to guide interventions. We

describe methods for employing a cohort of test patients, held out

from the development of the predictive models, to characterize the

overall value of using a real-time decision system given uncertainty

in costs and efficacies. This approach provides a foundation for

understanding the relationship between interventions that promise

to reduce readmission rates at some cost and predictive models

that provide forecasts about individual patients’ readmission risk.

High rates of rehospitalization within 30 days of discharge

reported at multiple health centers have motivated studies of the

use of predictive models to identify patients at the highest risk for

readmission and the feasibility of using these inferred likelihoods to

guide clinical decision making. In a 2007 report to the U.S.

Congress, the Medicare Payment Advisory Commission (Med-

PAC) indicated that as much as 12B is spent annually by

Medicare on potentially preventable readmissions within 30 days

of patient discharge [1]. Beyond monetary costs, readmission

within a short time horizon may be an indicator of poor quality of

care with implications for the quality and length of patient lives.

Incentives that would encourage hospitals to reduce the rates of

unnecessary readmissions have been proposed and are being

implemented [2].

Numerous programs for reducing readmissions have been

implemented and tested over the past twenty years [3–11]. These

programs have sought reductions in readmissions via investments

in post-discharge care coordination, patient education and self-

management support, scheduled outpatient visits, and telemedi-

cine. A recent survey of readmission reduction programs can be

found in [12].

Post-discharge intervention studies described in the literature

often report some reduction in readmission rates associated with

the intervention being studied. Reported reductions in rates of

readmission vary from a few percentage points to 50% or more.

Reported per-patient intervention costs vary from a low of 180

[13–14] to 1,200 [15]. Results span savings of thousands of

dollars per patient to reported net losses. [16].

Even when an intensive post-discharge program is found

effective in preventing readmissions, it may be prohibitively

expensive to provide such an intervention to an entire patient

cohort. However, net savings may be achieved when the same

interventions are applied in a selective manner to patients

identified as being at high risk for readmission.

Some readmission reduction programs have been implemented

as patient-specific, with enrollment of patients into the prevention

program determined by risk scores [17–20]. Detailed surveys of

such scores are provided in [21–22]. A notable example is LACE

[17]. LACE and related scores are designed to be simple enough

to be calculated manually at time of discharge.

We give an end-to-end demonstration of the methodology of

per-patient cost-benefit analysis based on a risk score that is

automatically inferred from EHR data. We perform a sensitivity

analysis of the overall effectiveness of readmission reduction

programs over reported ranges of efficacies and costs of

interventions and probe the expected value of embedding a real-

time system providing these automated inferences in the clinical

workflow. Finally, we compare the utility of our score for the end-

to-end process to that of LACE and show that even relatively

modest improvements in prediction quality can make a substantial

difference in the utility of an intervention.

The advances introduced include: (1) a means for harnessing

data available in the local EHR to build the best possible

predictive model based on the locally available data; (2) the ability

to embed computational guidance on risk rather than relying on

heuristic policies or manual calculations of risk scores; (3) the

ability to use local financial data to perform a calibrated cost-

benefit analysis that recommends an intervention based on the

optimal expected payoff; and (4) the ability to perform offline

analyses to probe the value of embedding real-time guidance on

interventions in a clinical setting via exploring implications of

different combinations of costs and benefits of the interventions.

The results highlight the importance of combining predictions

with decision analysis.

Materials and Methods

We performed the studies on de-identified patient data drawn

from the EHR system for a large tertiary urban hospital serving

the Metropolitan Washington DC area. Approval for data access

and analysis was granted by hospital’s institutional review board.

The patient cohort consists of all Medicare patients who were

admitted as inpatients to the hospital during July 1, 2007–June 30,

2010 and were discharged alive with heart failure as their primary

diagnosis (ICD9 codes 402.01, 402.11, 402.91, 404.01, 404.03,

404.11, 404.13, 404.91, 404.93, and 428.x).

For each visit we defined a target binary variable to describe the

patient’s 30-day bounce-back status (bb30). We defined all-cause

rehospitalizations occurring within 30 days as bb30~1 and no

rehospitalization as bb30~0. The correct value of bb30 was

obtained using data files provided by the U.S. Centers for

Medicare & Medicaid Services (CMS) to the hospital in April

2011. Our goal was to estimate the probability of bb30~1 for

patients where the value of bb30 is unknown.

We divided the cohort into a derivation cohort, consisting of all

visits that started between July 1, 2007–June 30, 2009, and a

validation set of all visits that started between August 1, 2009–June

30, 2010. In order to build a predictive model, the following

information was extracted from the EHR database for each

patient:

N Patient information: age, gender, marital status, family

support.

N Visit information: date, time, duration, type (inpatient,

emergency, or outpatient), source (emergency, transfer,

etc.).

N Medical information: history of diagnoses, lab results,

medications, medical history, chief complaint, attending

and admitting doctors.

For the analysis of costs, we gathered cost information for these

visits from the hospital’s administrative database. To be consistent

with CMS definitions, we excluded the following visits that did not

meet criteria for calculation of hospital readmission rates

according to CMS 30-day mortality and readmission patient-level

data files sent to the hospital.

N Patient was not enrolled in fee for service (FFS) Parts A and

B (the standard U.S. Federal-funded health coverage for

those over 65) during the 12 consecutive months prior to the

index admission or in the 30 days after discharge.

N Patient died during the index hospitalizations.

N Patent left against medical advice (AMA).

N Patient was transferred to another acute care facility.

Data-Driven Decisions for Reducing Readmissions
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N Additional admission within 30 days of discharge from an

index admission (an admission cannot be considered both

an index admission and a readmission).

Our eligible cohort was reduced to 1,172 hospital visits

including 793 visits in the derivation cohort and 379 visits in the

validation group. Further refinement of the cohort to account for

readmissions of patients to other medical facilities is presented in

accompanied Text S1.

Model-building and variable selection
We encoded the information about each visit as a vector of

binary variables of size 3,388. The variables were extracted

automatically from the patient visit data. We used logistic

regression to compute probabilities of rehospitalization for cases

in the validation set. Since our model contains a large set of

variables relative to the cohort size, we use the LASSO technique

to select the most predictive variables and avoid overfitting [23–

24]. Overfitting is a challenge in statistics and machine learning

that can specialize the predictive model to the training cases and

provide predictors that do not ideally generalize to future,

previously unseen cases. The optimal parameters of LASSO were

selected based on a cross-validation analysis. The details of this

analysis are described in the accompanied Text S1.

We also implemented LACE [17] in our cohort and compared

its predictive accuracy with the statistical classifier using area

under receiver-operator characteristic (ROC) curve and reclassi-

fication analysis. Details of this implementation and calibration of

both LACE and the classifier is provided in the accompanied Text

S1.

From Predictions to Decisions
We coupled the predictive classifier for readmission with a

decision model to perform patient-specific decision analyses for

guiding post-discharge interventions. The decision model takes

into account the predicted probability of readmission, cost and

efficacy of applying the intervention, and average cost of

readmission and allocates the interventions. We made the

following simplifying assumptions:

N The cost of applying an intervention is on a per-patient

basis and is the same for all patients. Most prior studies

make this assumption. Interventions include assuring an

outpatient visit within a specified time frame, rendering

additional patient education, performing follow-up phone

calls, and providing a fixed number of home visits.

N The expected cost Creadmit of readmission is a priori the

same for all patients. Creadmit may include not just the

monetary cost of a readmission, but also a penalty for the

reduced quality of care associated with presentations

warranting avoidable hospital readmissions. Creadmit may

be set by the hospital using a variety of considerations or just

be calculated from past financial data. We obtained Creadmit

using the latter option by calculating the empirical average

readmission costs for patients in the derivation cohort.

N The efficacy of the intervention is a priori the same Psuccess

for the entire cohort of patients. For example, an

intervention that reduces the readmission rate by 25%

reduces the readmission risk of each patient to whom it is

applied by 25%.

Without the intervention, the expected cost of readmission for a

patient whose probability of being readmitted within 30 days is p is

C0(p)~p|Creadmit,

which is the full cost of a readmission, weighted by the likelihood

of the readmission. The intervention adds Cintervene to the cost of

treatment but promises to reduce the readmission probability to

p(1{Psuccess), thus bringing the total expected cost to

C1(p)~Cintervenezp(1{Psuccess)Creadmit:

The expected cost of the outcomes associated with the cases of

intervention and nonintervention as functions of p are plotted in

Figure 1. The expected utility of the intervention is the difference

of these expected values, U(p)~C0(p){C1(p). For low values of

p, the intervention is not warranted, as C0(p)vC1(p) and

U(p)v0. For high values of p, U(p) becomes positive and the

intervention becomes beneficial. Note that the expected utilities

associated with the intervention and default post-discharge

programs cross at a threshold probability, which we denote by

p�. At this probability of readmission, the expected utility for the

intervention and default programs are equal. We seek to maximize

the overall benefit of the program for all patients by taking patient-

specific actions that maximize the net expected benefit for each

patient. The ideal policy for maximizing utility is to apply the

intervention to patients for whom U(p)w0, or equivalently

p§p�~
Cintervene

Psuccess|Creadmit

The predictive model provides patient-specific estimates of the

readmission probability p based on the available data, and we use

the model to predict for each patient whether p§p�.
Finally, to explore the importance of the accuracy of the

classifier in this analysis, we repeated the study using the LACE

score instead of the output of the learned classifier and compared

the results of the two analyses.

Software packages
All statistical analysis including construction of the classifier,

cross-validation analysis, model calibration, and decision optimi-

zation was performed using R and Matlab.

Results

Model validation
The optimal classifier achieved an overall area under the curve

(AUC) of 0.66 on the validation cohort. This is 10% improvement

over the predictive model presented in [20], which obtained an

AUC equal to 0.60, and an 11% improvement over LACE [17],

which had an AUC of 0.59 in the validation cohort. The cross-

validation AUC for the classifier and LACE for the derivation

cohort is 0.6960.0198 (pvalue ,0.05) and 0.5960.0093 (pvalue ,

0.05), respectively. The difference is statistically significant (pvalue

,0.001). The fractions of readmissions to outside hospitals in the

derivation and validation cohorts are 35.2% and 47.9%,

respectively. This significant increase in outside readmissions

highlights a major challenge of predicting readmissions in our data

as the patient population and patterns of engagements with the

hospital has significantly changed. If we remove from the

Data-Driven Decisions for Reducing Readmissions
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validation cohort all patients who were readmitted to outside

hospitals, the AUC of the classifier on the validation cohort is 0.71.

The observed and predicted probabilities of rehospitalization

provided by the predictive model for both derivation and

validation cohorts are shown in Figure 2. The reclassification

of patients from the three risk groups obtained by LACE to the

three risk groups obtained by the learned classifier is shown in

Table 1.

Predictive variables
The optimal model automatically selects a subset of 253

variables from 3,388 available variables to avoid overfitting to the

derivation data. Tables 2 and 3 show lists of the variables

identified as most influential in predicting rehospitalization within

30 days. The variables are separated into lists of findings that

provide the most evidential support for (Table 2) and against

(Table 3) a patient being rehospitalized and are clustered within

each list into diagnosed diseases, medications, lab results, and

patterns of engagement with the healthcare system. Observations

on engagement include such statistics as time since the last

hospitalization and the number of hospitalizations in the last year.

Exploring the value of a real-time decision system
The patient-specific decision analyses applied to each of the

CHF patients in the validation cohort using the utility model

described in the Materials and Methods section identifies patients

in the validation cohort who would have received the post-

discharge intervention according to a policy of minimizing

expected care costs. We compared the efficacy of using such

patient-specific decision analyses to the use of a simpler uniform

policy, where interventions are allocated homogeneously to either

all or none of the patients, based on an analysis of which of the two

possible uniform policies (apply to all versus apply to none) has the

highest net expected value.

Table 4 compares the percentage of total readmission costs

( 1,291,300) that would be saved, as predicted by the model,

through using a patient-specific decision analysis as opposed to

offering interventions to all patients in a uniform manner for

efficacies (reduction in readmission rate) assumed to be 25%, 35%

and for costs of intervention set to 800, 1,300, and 1,800.

Table 4 also shows the percentage of total expected readmissions

prevented with the patient-specific analysis versus the best uniform

policy. Table 4 also displays the cost savings achieved by the

patient-specific decision analysis when LACE is used in place of

the statistical classifier. Using the poorer-performing LACE score

for identifying patients at risk for readmissions translates into lower

savings and narrower bands of usefulness across regimes defined

by the costs and efficacies of programs.

We note that information in Table 4, representing details

about the value and appropriateness of using patient-specific

versus uniform policies depends on the costs, efficacies, and the

predictive power of the classifier derived from data. Improvements

in the accuracy of classifiers lead to greater selectivity in the

application of programs and greater overall benefits to patients

and hospitals. For example, by using the patient-specific decision

analysis in the application of an intervention that costs 1,300 and

that is 35% effective, 3.8% of rehospitalization costs can be saved

and 18.2% of readmissions can be prevented. However, applying

the intervention to all patients does not save dollars. Rather,

providing the program to all patients adds 3.2% to the total costs.

Figure 1. Plots of utility of outcomes for the intervention and no-intervention cases, showing relationship of potential expected
utilities of outcomes achieved with a postdischarge program that reduces the rate of readmission versus the default of making no
special intervention. Darker lines highlight ideal policy for any predicted likelihood of rehospitalization.
doi:10.1371/journal.pone.0109264.g001

Data-Driven Decisions for Reducing Readmissions
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Figure 2. Study of calibration of likelihoods generated by predictive model. Figures show number of patients in each of three risk groups
of derivation cohort (top) and validation cohort (bottom) with observed and predicted readmission rates within a margin of error with pvalue,0.05.
doi:10.1371/journal.pone.0109264.g002

Table 1. Reclassification of patients from the three risk groups obtained by LACE to revised risk groups obtained by the classifier.

Reclassification matrix

Classifier

Low risk Moderate risk High risk Total reclassified (%)

LACE Low risk (%) 35.8 36.2 28.0 64.2

Moderate risk (%) 16.8 33.6 49.6 66.4

High risk (%) 0.0 23.5 76.5 23.5

doi:10.1371/journal.pone.0109264.t001

Data-Driven Decisions for Reducing Readmissions
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Intervention decisions obtained using LACE in lieu of the learned

classifier would achieve only 0.5% savings and prevented only

2.6% of readmissions.

Given the ranges of costs and efficacies of post-discharge

programs reported in the literature, the efficacy of a specific new

program may not be known at the time that a new program is

formulated. To build insights about the value of employing a real-

time decision system in light of such uncertainty, we introduce an

automated analysis of the net expected value of a decision system in

a clinical environment. For each of a large number of different

pairs of assumed efficacy and cost of intervention, we apply the

data to prediction to action pipeline for all patients in the

validation cohort, using the hospital-specific classifier that we have

generated from local data. This sensitivity analysis provides the

overall reduction in readmissions or savings for each pair of

independently varied cost and efficacy. We performed this analysis

and combined the multiple studies into a contour map visualiza-

tion of the expected savings across the spectrum of cost and

efficacy of the intervention. The contour map in Figure 3(a)

represents the expected reductions in costs achieved with the use of

a real-time decision system that performs guidance on patient-

specific enrollment versus performing no special intervention for

different combinations of cost and efficacies of programs.

Figure 3(b) considers the boost in savings achieved by using the

Table 2. Top variables selected by machine learning procedure that increase risk of readmission within 30 days.

Top supportive evidence

Variable class Variable description Log Odds Ratio
Log Odds Ratio
Standard Error1

Lab Results Lymphocyte % is low 0.0128 0.0027

Patterns of Engagement Patient was admitted in past 6 months 0.0112 0.0031

Lab Results BUN is high 0.0038 0.0012

Lab Results Glucose level random is elevated 0.003 0.0012

Lab Results Monocyte absolute is low 0.0028 0.0012

Other Diagnoses History of nondependent abuse of drugs (ICD9 305.x) 0.0018 0.001

Other Diagnoses History of chronic airway obstruction, not elsewhere
classified (ICD9 496.x)

0.0017 0.0008

Other Diagnoses History of gastrointestinal hemorrhage (ICD9 578.x) 0.0014 0.0007

Lab Results AST is elevated 0.0013 0.0006

Other Diagnoses History of cardiomyopathy (ICD9 425.x) 0.001 0.0006

Lab Results Magnesium is low 0.001 0.0006

Lab Results INR is elevated 0.0009 0.0004

Patterns of Engagement Patient has been in isolated room in hospital 0.0009 0.0006

Lab Results BNP is high 0.0007 0.0005

These are variables that receive positive log-odds ratio with the largest magnitude.
1. Obtained from sample standard error for cross-validation odds ratios
doi:10.1371/journal.pone.0109264.t002

Table 3. Top variables selected by machine learning procedure that decrease risk of readmission within 30 days.

Top disconfirming evidence

Variable class Variable description Log Odds Ratio Log Odds Ratio Standard Error1

Patterns of Engagement Number of emergency room visits during past 6 months ,2 20.0607 0.0035

Lab results Hematocrit % is normal 20.0442 0.0043

Lab results BNP is normal 20.044 0.0049

Lab results Alkaline phosphatase is normal 20.0428 0.0033

Lab results Chloride is normal 20.0428 0.0042

Cardiac medications Patient is not on digoxin therapy 20.0396 0.0039

Lab results MCHC % is low 20.0387 0.0039

Changes in lab results TSH variation during current visit is low 20.0343 0.003

Changes in lab results CO2 variation during current visit is low 20.0318 0.0039

Changes in lab results RDW variation during current visit is low 20.0308 0.0038

Changes in lab results MCV variation during current visit is low 20.0306 0.0036

These are variables that receive negative log-odds ratio with largest magnitude.
1. Obtained from sample standard error for cross-validation odds ratios
doi:10.1371/journal.pone.0109264.t003
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patient-specific decision guidance over the best uniform policy.

The best uniform policy refers to the intervention being performed

for all patients or none of the patients, depending on which

outcome is better. The contour map demonstrates that the use of a

real-time decision-analytic system for guidance would not yield net

savings when the intervention is inexpensive and efficient, as it is

best in that situation to apply the intervention to the entire

population. Likewise, decision-analytic guidance would not be

useful when the intervention is very expensive and inefficient, as

such a program would not be cost-effective for any patients.

However, for interventions with more intermediate costs and

efficacies, relative savings of nearly 10% can be realized for the

population we have studied, given predictions available from the

classifier. Figure 3(c) considers the same boost in cost savings

achieved by the patient-specific decision analysis over the use of

the LACE score. The use of the poorer-performing LACE score

for identifying patients at risk for readmissions translates to

significantly lower savings and narrower regimes of applicability

across regimes defined by the costs and efficacies of programs.

Discussion and Conclusions

Implications for readmission reduction
As demonstrated by the results displayed in Table 4 and

Figure 3, selective patient enrollment based on automatic risk

stratification, could be applied effectively to take advantage of

interventional programs that are too expensive to be applied to the

entire population of heart failure patients.

The value of performing patient-specific decision analyses will

generally increase with increases in classification accuracy, which

can be achieved with larger training sets as well as more complete

medical information about individual patients. A readmission

prediction study [25] conducted in a Veterans Health Adminis-

tration (VA) Hospital considered a heart failure patient cohort of

n = 198,460, including data from a cross-hospital EHR containing

the long-term medical histories of patients. Using this more

extensive data, a statistical classifier was created with an AUC of

0.82. We found that 47% of the readmission patients in our cohort

were readmitted to outside medical facilities within 30 days of their

initial hospitalization for heart failure. We found that we had

sparse EHR data on this substantial proportion of patients and

that this may have detracted from the predictive power of our

model. The results of the VA study highlight the value of

implementing a shared patient database among the different

hospitals that patients visit over time.

Analysis and insights enabled by the electronic capture
of clinical data

We see the construction and use of predictive models that are

custom tailored to populations as having the ability to deliver

predictions of higher accuracy than those produced by simpler

clinical rules designed for application across all hospitals. We

envision that the data to prediction to action pipeline will become

more widely used as EHR systems become more prevalent. We

now outline several benefits of using local patient data to construct

classifiers to predict outcomes, as compared to relying on simpler

rules such as LACE.

Automated risk calculation
The classifier for predictions is constructed entirely from data

available within the EHR. In real-time clinical use, findings on

specific patients can be drawn automatically from the EHR,

requiring no additional time from the practitioners. The computed

risk scores can in turn be used to recommend enrollment into
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prevention programs as part of the workflow. Currently, such

enrollment is performed typically using a pencil-and-paper form,

or an application specifically designed for this purpose, and

observations about patients and their health are manually entered

or checked, making it difficult to consider multiple influencing

factors. The risk estimation methods we describe do not place

additional demands on practitioners and enable large numbers of

patients to be screened for multiple intervention and prevention

programs. Such automation also enables valuable data on the

efficacy of interventions to be collected and harnessed. Moreover,

when data on outcomes associated with interventions is accrued in

the EHR, we can extend the methodology described in this paper

to estimate both the readmission risk and the likelihood of the

intervention succeeding at the level of an individual patient or

patient subpopulation, further amplifying the effect of the

intervention program.

Emphasis on local data
The predictive model is constructed entirely using local data. If

our aim is to make the best possible predictions, taking local

populations, data collection, and practice patterns into account

will almost always be important in achieving the highest predictive

performance. This raises the question of how a model trained

within one hospital would perform when validated at a different

hospital. As readmission patterns and prevalence vary by hospital

and by region [26], a risk-stratification model that is not

constructed locally will not be able to take into account the

location-specific trends, details of care activities, and patient

population. Unlike a generic risk rule, a locally trained classifier

will be able to adjust as changes in the hospital’s patterns of care

occur over time.

Clinical face validity of observations
In reviewing the most predictive variables found by the

classifier, we found that low lymphocyte percentage (top variable

in Table 2) has previously been linked to poor outcomes in early

postdischarge period of hospitalized HF patients [27] and low

hematocrit (second top variable in Table 3) has been related to

lower risk of heart failure [28]. However, a benefit of the data-

driven approach is that we make use of all available data in

constructing a predictive model. This means that we do not restrict

the analysis solely to variables that have been found valid in

previous studies. This characteristic is important because a

learning algorithm may derive significant predictive power from

variables that have poor face validity and appear arbitrary. This

predictive power can stem from correlations among seemingly

irrelevant variables available in the EHR and other, more

interpretable variables that are not captured in the patient record.

Variables identified as discriminatory may serve as proxies for

other variables that would be more understandable, but are not

available in the system. For example, in one of our studies on

predicting general readmissions to the hospital, we discovered that

‘‘cocaine test: negative’’ raises the likelihood that the patient will

be readmitted. A subsequent inquiry revealed that clinicians would

be unlikely to administer a cocaine screening unless they had

Figure 3. Contour maps capturing cost savings for ranges of
program costs and efficacies: (a) savings with decision analysis
over no intervention; (b) savings achieved with automated
decision analysis over that of applying best uniform policy; (c)
savings achieved with automated decision analysis over the
use of LACE score, highlighting value of using more accurate
predictive model. The labels on contour maps show percentage
savings.
doi:10.1371/journal.pone.0109264.g003
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reason to suspect that a patient may be a drug abuser. Thus, the

observation that the test was administered at all is linked to a

higher-level assessment by the physician that the patient belongs to

a vulnerable population—an assessment that is not recorded

directly in the health database. Classifiers derived from all of the

data available in the EHR will generally perform as well or better

than models restricted only to those variables that have widely

recognized clinical significance or that mesh with intuition as

understandable or obvious indicators of risk with respect to a

specific target ailment. We note that great care must be taken in

interpreting the clinical relevance of variables flagged by such

models as discriminating. Such observations are not necessarily

involved in a causal manner nor suggest new paths to intervention.

Observations identified as useful by the learning procedure may

reflect local care patterns and not necessarily correspond to a

generalizable risk factor. At the same time, variables identified as

discriminating for a given predictive task may unearth new clinical

insights and frame directions for study and intervention.

On limitations of local predictive tools
A potential drawback of the analytical pipeline that we have

presented versus traditional risk-stratification scores is that its

implementation would require some amount of computing

resources. As the approach is data driven and relies only on data

within the EHR, it can be implemented by the hospital, by the

EHR vendor, or by an independent third party, further lowering

the cost of implementing such a predictive system.

Another limitation of this study is the fact that it is based on

retrospective data. A more rigorous validation would entail

performing a randomized controlled experiment. However, the

results provide a first step to demonstrate the applicability of risk

stratification for guiding allocation of post-discharge interventions

in a cost-effective manner.
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