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Abstract: The SLC25A20 transporter, also known as carnitine acyl-carnitine carrier (CAC), catalyzes
the transport of short, medium and long carbon chain acyl-carnitines across the mitochondrial
inner membrane in exchange for carnitine. The 30-year story of the protein responsible for this
function started with its purification from rat liver mitochondria. Even though its 3D structure
is not yet available, CAC is one of the most deeply characterized transport proteins of the inner
mitochondrial membrane. Other than functional, kinetic and mechanistic data, post-translational
modifications regulating the transport activity of CAC have been revealed. CAC interactions with
drugs or xenobiotics relevant to human health and toxicology and the response of the carrier function
to dietary compounds have been discovered. Exploiting combined approaches of site-directed
mutagenesis with chemical targeting and bioinformatics, a large set of data on structure/function
relationships have been obtained, giving novel information on the molecular mechanism of the
transport catalyzed by this protein.

Keywords: carnitine; carnitine acyl-carnitine carrier; carnitine acyl-carnitine translocase; membrane
transport; mitochondria; mitochondrial carrier; mitochondrial transporter; post-translational modifi-
cation; solute carrier family 25; SLC25A20

1. Introduction

The mitochondrial carnitine acyl-carnitine carrier (CAC) is the member A20 of the
SLC25 protein family, including 53 solute transporters in humans [1–3], the majority of
which are localized in the inner mitochondrial membrane. Until now, only one family
member has been found in the peroxisomal membrane [4]. Furthermore, approximately
one-third of them are still orphans, i.e., their transported substrates are unknown. This
family members share a peculiar structural fold of six transmembrane segments charac-
terized by 3-fold repeated couples of hydrophobic α-helices. Each couple is connected
by a hydrophilic loop and contains the SLC25 sequence motif PX[D/E]XX[K/R] at about
the boundary of the odd α-helix and the loop. The structural information on the SLC25
proteins derives mainly from the ADP/ATP carrier, which has been crystallized in both the
outwards and inward open conformations [5,6]. All the other carrier structures have been
predicted by homology modeling, including CAC, whose structure has been corroborated
by site-directed mutagenesis and chemical targeting approaches. CAC is a key component
of the carnitine shuttle [7], which is crucial for the mitochondrial β-oxidation pathway.
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In this shuttle (Figure 1), fatty acids are activated by the cytosolic acyl-CoA synthetase
(ACSL) to fatty acyl-CoAs thioesters [8,9]. Since the mitochondrial inner membrane is not
permeable to acyl-CoAs, acyl groups are transferred from CoA to carnitine by the action of
“carnitine palmitoyltransferase-1a and b” (CPT-1a; CPT-1b), an integral outer membrane
enzyme [10]. The acyl-carnitines cross the outer mitochondrial membrane through an
almost unspecific pore constituted by the voltage-dependent anion channel (VDAC) [11]
and, then, are specifically translocated across the inner mitochondrial membrane by the
action of CAC. In the mitochondrial matrix, the enzyme carnitine palmitoyltransferase
2 (CPT-2) catalyzes the trans-esterification of the acyl groups from carnitine to mitochon-
drial CoA with the release of free carnitine, thereby providing acyl-CoA substrates for
fatty acid β-oxidation. CAC and CPT-2 form a supramolecular complex in the inner mito-
chondrial membrane, devoted to acyl-carnitine channeling from the carrier to the enzyme
(Figure 1) [12]. The carnitine released in this reaction is translocated backward to the cy-
tosol by the same carrier via an acyl-carnitine/carnitine antiport reaction. The β-oxidation
pathway is active in many tissues, especially those characterized by higher metabolic ex-
penditure. It provides a large portion of the energy required by heart muscle, kidneys and
also skeletal muscle, when glycogen has been consumed [13,14]. This pathway is also active
in hepatocytes where fatty acid oxidation provides acetyl-CoA for ketone body synthesis
during prolonged fasting conditions, in which glycogen stores have been depleted [15].
Neurons also perform fatty acid oxidation even though at a very low rate. Indeed, CAC
also has been described in brain [16–18]. The crucial role of CAC in energy metabolism
was demonstrated by the discovery of inherited defects of its gene SLC25A20 causing
secondary carnitine deficiency [19–24], a syndrome that arises in the very first stage of life
as a life-threatening pathology. In this altered metabolic condition, acyl-carnitines fail to
reach the mitochondrial matrix with consequent strong impairment of the β-oxidation.
This syndrome is more severe than the primary carnitine deficiency caused by defects
of the plasma membrane transporter OCTN2 (SLC22A5) [25–27]. Recent findings have
correlated alterations of CAC expression or regulation with diabetes [28,29].

Biomolecules 2021, 11, x  2 of 21 
 

this shuttle (Figure 1), fatty acids are activated by the cytosolic acyl-CoA synthetase 
(ACSL) to fatty acyl-CoAs thioesters [8,9]. Since the mitochondrial inner membrane is not 
permeable to acyl-CoAs, acyl groups are transferred from CoA to carnitine by the action 
of “carnitine palmitoyltransferase-1a and b” (CPT-1a; CPT-1b), an integral outer mem-
brane enzyme [10]. The acyl-carnitines cross the outer mitochondrial membrane through 
an almost unspecific pore constituted by the voltage-dependent anion channel (VDAC) 
[11] and, then, are specifically translocated across the inner mitochondrial membrane by 
the action of CAC. In the mitochondrial matrix, the enzyme carnitine palmitoyltransferase 
2 (CPT-2) catalyzes the trans-esterification of the acyl groups from carnitine to mitochon-
drial CoA with the release of free carnitine, thereby providing acyl-CoA substrates for 
fatty acid β-oxidation. CAC and CPT-2 form a supramolecular complex in the inner mito-
chondrial membrane, devoted to acyl-carnitine channeling from the carrier to the enzyme 
(Figure 1) [12]. The carnitine released in this reaction is translocated backward to the cy-
tosol by the same carrier via an acyl-carnitine/carnitine antiport reaction. The β-oxidation 
pathway is active in many tissues, especially those characterized by higher metabolic ex-
penditure. It provides a large portion of the energy required by heart muscle, kidneys and 
also skeletal muscle, when glycogen has been consumed [13,14]. This pathway is also ac-
tive in hepatocytes where fatty acid oxidation provides acetyl-CoA for ketone body syn-
thesis during prolonged fasting conditions, in which glycogen stores have been depleted 
[15]. Neurons also perform fatty acid oxidation even though at a very low rate. Indeed, 
CAC also has been described in brain [16–18]. The crucial role of CAC in energy metabo-
lism was demonstrated by the discovery of inherited defects of its gene SLC25A20 causing 
secondary carnitine deficiency [19–24], a syndrome that arises in the very first stage of life 
as a life-threatening pathology. In this altered metabolic condition, acyl-carnitines fail to 
reach the mitochondrial matrix with consequent strong impairment of the β-oxidation. 
This syndrome is more severe than the primary carnitine deficiency caused by defects of 
the plasma membrane transporter OCTN2 (SLC22A5) [25–27]. Recent findings have corre-
lated alterations of CAC expression or regulation with diabetes [28,29]. 

. 
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converts acyl-carnitines back to acyl-CoAs and releases free carnitine, which is ready to be translo-
cated back to the cytosol by CAC. Once in the matrix, acyl-CoA undergoes β-oxidation with the 
production of acetyl-CoA that enters the tricarboxylic acid cycle (TCA). Other abbreviations: IMM, 
inner mitochondrial membrane; OMM, outer mitochondrial membrane; PM, plasma membrane. 

Unlike most mitochondrial carriers, which are obligatory antiporters [30], CAC can 
catalyze, besides the antiport reaction, also a unidirectional transport of substrates event 

Figure 1. Role of the carnitine shuttle in the mitochondrial β-oxidation pathway. The shuttle is
constituted by carnitine palmitoyltransferase 1 (CPT1) that converts acyl-CoAs into acyl-carnitines;
carnitine/acyl-carnitine carrier (CAC) that allows the uptake of acyl-carnitines in the mitochondrial
matrix in exchange with free carnitine, and carnitine palmitoyltransferase 2 (CPT2) that converts acyl-
carnitines back to acyl-CoAs and releases free carnitine, which is ready to be translocated back to the
cytosol by CAC. Once in the matrix, acyl-CoA undergoes β-oxidation with the production of acetyl-
CoA that enters the tricarboxylic acid cycle (TCA). Other abbreviations: IMM, inner mitochondrial
membrane; OMM, outer mitochondrial membrane; PM, plasma membrane.
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Unlike most mitochondrial carriers, which are obligatory antiporters [30], CAC can
catalyze, besides the antiport reaction, also a unidirectional transport of substrates event
though at a rate about one order of magnitude lower than the antiport [31,32]. Interestingly
CAC is not only operating in animals but also yeast and plants. The Saccharomyces cerevisiae
and the Aspergillus nidulans CACs share 29% and 42% identity with the human CAC, respec-
tively [33–36]. The main function of these transporters, in contrast to that of mammalian
CACs, is to transport acetylcarnitine rather than medium- and long-chain acyl-carnitines
into mitochondria [33,37]. The plant CAC ortholog, identified based on the 37% sequence
identity with the human counterpart, most probably plays a different role, that is, the
transport of glutamate [38,39]. It is still not clear if CAC also operates in peroxisomes,
where very long, branched-chain, and medium-chain fatty acids are imported [40,41].

The history of CAC started with the detection of an acyl-carnitine uptake into mitochondria,
which was saturable, stereospecific, inhibitable, and temperature-dependent [42–44]. Then, the
availability of methodologies capable of handling hydrophobic membrane proteins allowed
us to purify the protein responsible for the observed transport phenomena. In 1990, a clas-
sical approach based on chromatography fractionation of a rat liver mitochondrial extract
and on transport assay of the fractions by proteoliposome technology was adopted [45]. The
purified protein was used for the first functional characterization [31,32,46–48]. Later, CAC
was identified at a molecular level [19,49] and obtained on a large-scale by overexpression
in Escherichia coli [50] by a procedure introduced in our laboratory for the bacterial overex-
pression of the oxoglutarate carrier [51] and recently named the expression, purification,
reconstitution assay (EPRA) method [52]. The recombinant purified CAC was employed in
studies of structure/function relationships, interaction with drugs and xenobiotics, and
post-translational modifications that modulate its transport function [53–64].

This article, starting from some basic information on CAC, provides an up-to-date
comprehensive overview of the most recent discoveries about its molecular mechanism of
transport and the modulation/regulation of its transport function.

2. The Functional Role of CAC

Studies performed with intact mitochondria concurred to propose that the function
of CAC in cells is that of catalyzing an antiport of acyl-carnitines with free carnitine
according to the core activity of the carnitine shuttle [7] (Figure 1). Physiologically, the
acyl-carnitines are transported from the cytosol to the mitochondrial matrix and the free
carnitine in the opposite direction to sustain the intramitochondrial reactions of the β-
oxidation pathway [42,65]. Later on, the studies in proteoliposomes confirmed this function.
In the in vitro system, CAC purified from rat liver or recombinant CAC was inserted into
the liposomal membrane with the same orientation as in the native membrane, thus
representing a mitochondrion mimic single-protein model [32,50] (Figure 2).
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The in vitro system allowed measurements of substrate affinity (Figure 2), giving
further support to the preferential direction of transport of acyl-carnitines towards the
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internal space of proteoliposomes corresponding to the mitochondrial matrix and carnitine
in the counter-direction. In vivo, this transport mode is driven by the higher acyl-carnitine
concentration (see Figure 1) in the cytosol than in the matrix space, where acyl-carnitines
are rapidly removed by the action of CPT2 that strictly interacts with the carrier [46,66].
Interestingly, the affinity profile of the carrier follows the specificity for acyl-carnitines of
the CPT1 [67,68]. The possibility to manage the single-protein experimental system led
to establishing that CAC catalyzes the transport of acetyl-carnitine too [54], suggesting
that shorter carbon chain esters of carnitine across the inner mitochondrial membrane via
CAC as the longer chain derivatives, in contrast to what previously hypothesized [69].
This indicates the role of CAC in participating in the scavenger action of acetyl-CoA
from mitochondria [50,70,71]. In this frame, the matrix enzyme carnitine acetyltransferase
converts acetyl-CoA to acetyl-carnitine, which can be exported from mitochondria in
antiport with extramitochondrial carnitine. In this pathway, CAC works in a reverse
mode mediating the efflux of carnitine derivatives from mitochondria [72]. However, a
definitive demonstration of the reverse mode of action in vivo is still missing. The affinity
of CAC for acetyl-carnitine is much lower than that for long-chain acyl-carnitines, at least
on the external face of the carrier (Figure 2). Using the in vitro experimental system, a
bisubstrate kinetic study carried out by varying both the internal and the external substrate
concentrations demonstrated that CAC catalyzes the antiport of substrates according to
a “ping-pong mechanism” [1,32,73]. This mechanism of transport involves only binary
carrier substrate complexes and implies that CAC possesses a single “reorienting” binding
site and two conformations, one with the substrate-binding site accessible from the cytosol
and the other with the substrate-binding site accessible from the matrix. Therefore, the ping-
pong mechanism, so named for the analogy with that of certain enzymes, is basically the same
mechanism as the early hypothesized “single binding center-gating pore mechanism” [74,75] and
as the recently described “alternating access mechanism” [5], which is based on numerous
molecular details. It is worth mentioning that, according to the ping-pong mechanism, the Km
for carnitine on the external or the internal side of CAC is influenced by the counter-substrate
concentration, thus being variable within a certain range (Figure 2).

CAC also catalyzes a uniport reaction with a lower rate compared to the antiport.
This almost unique feature among mitochondrial carriers was known since the 80s from
studies in intact mitochondria [76] and later was confirmed by studies performed with
proteoliposomes [31,32]. The rate of the unidirectional transport of carnitine is regulated by
the counter-substrate; the uniport progressively decreases by increasing the concentration
of the counter-substrate until the antiport mode is triggered. Physiologically, the net
flux of carnitine allows for providing the matrix with carnitine newly synthesized in the
cytosol or absorbed from the diet [31]. It must be stressed that (i) the last step of the
carnitine biosynthesis occurs in the cytosol where the enzyme γ-butyrobetaine dioxygenase
is located [77,78], (ii) the endogenous synthesis is not sufficient for the body’s needs, and
(iii) more than 50% of carnitine is absorbed from the diet [79–82]. Therefore, the entire
mitochondrial carnitine pool derives from extramitochondrial sources. As said before, CAC
provides the matrix with carnitine through the uniport function. This role is crucial during
mitochondrial biogenesis; however, no information is available on this issue. The uniport
function should also be important for net export of carnitine to allow carnitine excretion
and renewal. Very little information is available on the carnitine recycling. Indeed, even
though it is known that an aliquot of carnitine is excreted through the urine, the flux of the
molecule from the mitochondrial matrix to be excreted has never been dealt with.

Early studies showed the high sensitivity of CAC to sulfhydryl reagents [65,83]. Subse-
quent studies in proteoliposomes led to discrimination between two functional alterations
caused by the reaction of SH reagents with two different cysteine populations: class-I
cysteines are responsible for the induction of an “unphysiological” unspecific uniport;
class-II cysteines are responsible for the inactivation of the carrier (both antiport and uni-
port function). On the one hand, the reaction of class-I cysteines with HgCl2 or mercurial
derivatives, at relatively high concentration, converts the carrier to a “pore-like” trans-
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porter with reduced substrate specificity and uncoupling of the antiport function. This
unphysiological activity reveals an intrinsic property of the mitochondrial carrier protein
family members, i.e., a built-in channel normally hidden by appropriate gates [47,48] (and
see Section 3). Indeed, this phenomenon also has been observed with other mitochondrial
carrier proteins [84–86]. On the other hand, the reaction of class-II cysteines with HgCl2
and other mercurials at a low (nanomolar) concentration or with NEM and MTS leads to
the inactivation of the transporter. Later, class-II Cys residues and the molecular basis of
their inhibition were identified. This aspect will be dealt with in the following sections. In
contrast, class-I Cys residues responsible for pore-like activity have not yet been identified.

Overexpression of recombinant CAC in E. coli [50] boosted the characterization of this
transporter. Indeed, the recombinant protein showed the same properties as the native
one indicating that it is suitable for functional studies. This breakthrough opened the
perspective of studying the human CAC as well [34,87]. Novel functional information was
achieved in a rather short time. The absolute need for cardiolipin, suggested by studies with
the protein purified from rat liver, was clearly demonstrated with the recombinant CAC
that is cardiolipin free and is inactive if not supplemented with the phospholipid [50,88,89].
Therefore, CAC belongs to the mitochondrial molecular systems, which require cardiolipin
for an activity like many other mitochondrial carriers [4,90–93] or are modulated by car-
diolipin as the NADH dehydrogenase [94,95]. Other important achievements following
the involvement of recombinant CAC and site-directed mutagenesis strategy will be dealt
with in the next section.

3. Structure-Function Relationships

The molecular basis of CAC substrate-binding and transport, as well as its regulation
by post-translational modifications, have been explored using the site-directed mutagen-
esis approach complemented with bioinformatics and chemical targeting, together with
parallel investigations in intact mitochondria to explore the physiological roles of these
modifications. Together with those regarding the oxoglutarate carrier [96–98], the struc-
ture/function relationship studies concerning CAC are the most advanced within the
mitochondrial carrier family members. These studies started with the construction of
the homology model of CAC in its cytosolic open conformation based on the ADP/ATP
carrier (AAC, SLC25A4) structure [99]. Later, the structural fold and dynamics have been
updated with the homology model of the matrix open conformation of CAC obtained by
using the recently solved AAC structure in its matrix open conformation as a template [5].
The molecular map of the amino acids involved in the catalytic process of CAC has been
defined together with the role of specific residues in the molecular mechanism of transport
and the regulation of the carrier function.

3.1. Substrate Binding Site and Translocation Events

The residues responsible for substrate-binding were first hypothesized by bioinfor-
matics in some yeast carriers, including the homolog of the human CAC [100,101]. Then,
the identification of the amino acid residues of the mammalian CAC involved in substrate-
binding and translocation has been conducted, exploiting site-directed mutagenesis, on the
rat and human CACs that are virtually coincident, being 92% identical. The impairment or
loss of function observed in conservative or non-conservative mutants, respectively, clearly
demonstrated the role of each crucial residue in terms of the importance of the chemi-
cal features of the amino acid side-chains. As reported below, the amino acids involved
in carnitine binding/translocation have been mapped. Asp-179, Arg-275, and Arg-178
(Figure 3a) undergo ionic and/or hydrogen bond interactions with carnitine, being in-
volved in binding the trimethylammonium and the carboxyl groups, respectively. These
charged residues that line the central water-filled cavity of the transport protein are con-
served along with the CAC orthologs [87] according to their important role. The electric
charges of the residues at positions 179 and 275 are more important than the side-chain
length since the Vmax and/or the Km values show the greatest changes upon substituting
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the charged residues with neutral ones. In line with the crucial role of Arg-275, the point
mutation Arg275Gln in the CAC of three patients was associated with severe carnitine
deficiency [102]. His-29 is also conserved throughout the CAC sub-family members. The
mutation of His-29 with Ala, Asp, Lys, Phe, Asn, or Tyr severely impairs the function. Only
if His-29 is substituted by Gln, the activity of the transporter is comparable to that of the
wild-type CAC. Indeed, the N amide of Gln structurally corresponds to the τ-N (distal) of
the His-29 imidazole, indicating that the main role of His-29 in the formation of an H-bond
with the substrate. This bond is established with the β-OH of carnitine or with the β-O- of
acyl-carnitines. Therefore, His-29 plays a role in facilitating the correct positioning of the
substrate preceding the translocation event towards the opposite side of the membrane
(Figure 3b) [103].

Biomolecules 2021, 11, x  6 of 21 
 

These charged residues that line the central water-filled cavity of the transport protein are 
conserved along with the CAC orthologs [87] according to their important role. The elec-
tric charges of the residues at positions 179 and 275 are more important than the side-
chain length since the Vmax and/or the Km values show the greatest changes upon sub-
stituting the charged residues with neutral ones. In line with the crucial role of Arg-275, 
the point mutation Arg275Gln in the CAC of three patients was associated with severe 
carnitine deficiency [102]. His-29 is also conserved throughout the CAC sub-family mem-
bers. The mutation of His-29 with Ala, Asp, Lys, Phe, Asn, or Tyr severely impairs the 
function. Only if His-29 is substituted by Gln, the activity of the transporter is comparable 
to that of the wild-type CAC. Indeed, the N amide of Gln structurally corresponds to the 
τ-N (distal) of the His-29 imidazole, indicating that the main role of His-29 in the for-
mation of an H-bond with the substrate. This bond is established with the β-OH of car-
nitine or with the β-O- of acyl-carnitines. Therefore, His-29 plays a role in facilitating the 
correct positioning of the substrate preceding the translocation event towards the opposite 
side of the membrane (Figure 3b) [103]. 

 
 

(a) (b) 

Figure 3. Ribbon diagrams of CAC showing the amino acids involved in carnitine binding. (a) Lateral 
view of the CAC structural model. The residues Arg-178, Asp-179, Arg-275, and His-29 are high-
lighted with a ball and stick representation. The transmembrane spanning α-helices are numbered. 
(b) Enlarged view of the residues interacting with carnitine. The dotted line indicates the following 
step in the translocation process in which carnitine will interact with His-29 before the matrix gate 
opens (see also Figure 5). Amino acid residues are dispayed with ball and stick rappresentation in 
which oxygen and nitrogen atoms are depicted in red and blu respectively. CAC model and carnitine 
position have been obtained as [87]. 

Besides carnitine, acyl-carnitines are transported by CAC. These carnitine derivatives 
contain hydrophobic chains, esterified to the hydroxyl group of carnitine, with a length 
ranging from 2 (acetyl) to 16 (palmitoyl) or more carbon atoms. Val-25, Pro-78, Val-82, 
Met-84, and Cys-89, all belonging to the first and second transmembrane α-helices of the 
protein (H1-H2), constitute the “hydrophobic pocket” of CAC that binds the carbon chain 
of the acyl-carnitines (Figure 4). The ability of this “hydrophobic pocket” to interact with 
hydrophobic molecules correlates well with the higher average hydrophobicity of trans-
membrane α-helices H1 and H2 of CAC concerning that of the corresponding α-helices of 
the other members of the SLC25 family [66,100]. 

Figure 3. Ribbon diagrams of CAC showing the amino acids involved in carnitine binding. (a) Lateral
view of the CAC structural model. The residues Arg-178, Asp-179, Arg-275, and His-29 are high-
lighted with a ball and stick representation. The transmembrane spanning α-helices are numbered.
(b) Enlarged view of the residues interacting with carnitine. The dotted line indicates the following
step in the translocation process in which carnitine will interact with His-29 before the matrix gate
opens (see also Figure 5). Amino acid residues are dispayed with ball and stick rappresentation in
which oxygen and nitrogen atoms are depicted in red and blu respectively. CAC model and carnitine
position have been obtained as [87].

Besides carnitine, acyl-carnitines are transported by CAC. These carnitine derivatives
contain hydrophobic chains, esterified to the hydroxyl group of carnitine, with a length
ranging from 2 (acetyl) to 16 (palmitoyl) or more carbon atoms. Val-25, Pro-78, Val-82,
Met-84, and Cys-89, all belonging to the first and second transmembrane α-helices of
the protein (H1-H2), constitute the “hydrophobic pocket” of CAC that binds the carbon
chain of the acyl-carnitines (Figure 4). The ability of this “hydrophobic pocket” to interact
with hydrophobic molecules correlates well with the higher average hydrophobicity of
transmembrane α-helices H1 and H2 of CAC concerning that of the corresponding α-helices
of the other members of the SLC25 family [66,100].

Once the carnitine or the acyl-carnitine has interacted with the proper residues in
the c-state, a charged gate constituted by the amino acid side chains of Asp-32, Lys-35,
Glu-132, Lys-135, Asp-231, and Lys-234 (Figure 5a) located below the binding site, needs
to be unlocked for the translocation to occur [99,104–107]. The six residues form three ion
pairs resulting from the interactions between the couples: Asp-32 with Lys-135, Glu-132
with Lys-234, and Asp-231 with Lys-35. The role of these residues and their interactions
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have been validated using the mutagenesis approach [87]. Once the gate is opened by the
fast interaction of the substrate with at least one of the charged residues, i.e., Lys-35, the
carrier changes its conformation from the cytosolic state opened to the matrix opened state.
The protein is stabilized in the matrix opened conformation by a gate, similar to the matrix
one that is formed towards the cytosolic face and is composed of four charged residues,
namely, Lys-97, Glu-191, Lys-194, and Glu-288 (Figure 5b). The other two residues of the
cytosolic gate of CAC are uncharged in contrast to the corresponding residues of other
carriers [96,106]. The free energy of the cytosolic gate of CAC is, therefore, lower than that
of the matrix gate. This probably determines an imperfect coupling of the flux of substrates
in the outward and inward directions, conferring to CAC the capacity to mediate a uniport
reaction besides the antiport reaction [31,106].
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3.2. The Molecular Basis of the Antiport Mode

CAC shares with the other mitochondrial carriers the peculiar structure constituted by six
transmembrane segments arranged in three intramembrane domains, which rotate to allow the
conformational changes required for the transport reaction [5]. The antiport mode of transport
is determined by the coupling of substrate-binding with gate opening on one side and gate
closing on the other side. Indeed, given that the substrate considerably decreases the activation
free-energy barrier of the carrier transition, the rate of transition of the unbound carrier from an
outward open conformation (c-state) to the inward open one (m-state) or vice versa (Figure 6) is
much lower than that of the substrate-bound carrier [108].
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Figure 6. Sketch of the transport cycle of CAC. The states of the transporter during the antiport
reaction are displayed: (1) c-state in the absence of substrate, (2) c-state with the external substrate
entering the carrier, (3) occluded state or transition state with the external substrate bound to the
substrate-binding site, (4) m-state in the absence of substrate, (5) m-state with the internal substrate
entering the carrier, (6) occluded state or transition state with the internal substrate bound to the
substrate-binding site. The role of K35 and W224 during the transport cycle is highlighted with
dotted lines.

In the case of CAC, the identification of the residues, which are crucial for the coupling
of substrate-binding with gate opening, was achieved by mutations that specifically abolish
the antiport function without interfering with the uniport function. One of these residues
is Lys-35, whose substitution with an uncharged residue impairs the antiport reaction,
suggesting that Lys-35 interacts with the carboxyl group of carnitine favoring the gate
opening [109]. The companion amino acid residue involved in binding the ammonium
group of carnitine is Trp-224, whose substitution completely abolishes the antiport function
and converts the protein into a uniporter with a specific activity and substrate specificity
equal to those of the unidirectional transport activity of the wild-type CAC. The distance
between Lys-35 and Trp-224 in the cytosolic open conformation (Figure 7a) corresponds to
the distance between the ammonium and the carboxyl groups of carnitine, in line with the
interaction of carnitine with these residues, which triggers the gate opening and closing.
The distance between these residues increases in the matrix open conformation preceding
the substrate release (Figure 7b). In the absence of the interaction of carnitine with Lys-35
and Trp-224, the CAC gate could open as well, but at a much lower rate constant leading to
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the uniport function. Trp-224 is conserved in all CAC sub-family members. Indeed, the
substitution of this residue in the CAC of A. nidulans leads to the same alterations as in the
mammalian transporter, indicating that the molecular determinant of the antiport function
has been conserved during evolution [110]. Interestingly, a corresponding Trp residue is
not present in the other proteins of the SLC25 family except in the ornithine/citrulline
carrier, whose substrate, ornithine, harbors a positively charged amino group. In this
carrier, the substitution of the Trp unveils a low rate of uniport activity [110,111].
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Figure 7. Lateral views of the CAC structural model showing the residues involved in the coupling
of substrate-binding with gate opening and gate closing. (a) Ribbon diagram of the carrier in c-state
in which the residues Trp 224 and K35 are at a distance of 4 Å and are depicted with a ball and stick;
(b) ribbon diagram of the carrier in m-state in which the residues Trp 224 and K35 are at a distance of
12 Å and are depicted in ball and stick.

4. CAC as a Redox Sensor

The capacity of CAC of interacting with thiol-reactive compounds was demonstrated
initially in intact mitochondria [83], then confirmed and deepened in studies with the native
protein by transport assays in proteoliposomes (see Section 3). However, the molecular
determinants of the CAC redox sensitivity were identified only after the production of
the recombinant CAC that gave the possibility to perform site-directed mutagenesis. Out
of the six Cys residues of the protein, the sole Cys-136 and Cys-155 (Figure 8) are able to
sense thiol-reagents at sub-micromolar concentrations as well as physiological effectors
involved in cell redox sensing and control. Indeed, mutants in which one of the two Cys
residues was substituted with Ser or Ala were less sensitive to thiol-reagents, and the
mutant harboring the substitution of both Cys-136 and Cys-155 were mostly insensitive
to reagents. Moreover, the mutant containing only Cys-136 and Cys-155, but lacking the
other four Cys residues, exhibited the same reactivity as the wild-type protein. [88,112] The
high sensitivity of the two residues is linked to their location in the core of the transport
pathway, or in its vicinity, and to the local amino acid environment that confers peculiar
properties to the cysteine thiol groups in terms of reactivity (pKa of the thiol groups) and
propensity to undergo disulfide cross-linking. Indeed, some physiological or chemical
reactants act on the “molecular sensor” constituted by Cys-136 and Cys-155. This cysteine
couple, according to the oxidation state, behaves as an on–off switch of the protein. Indeed,
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if these two cysteines are oxidized to a disulfide, CAC is inactive due to a block of the
conformational changes needed for the transition from the outward to the inward open
conformation and vice versa. On the other way round, if the disulfide is converted to the
thiol form of the Cys residues by a chemical or a physiological reactant, the CAC function
is rescued [89]. Most likely, in vivo, the transporter exists as a mixture of the two states.
Therefore, the actual transport capacity (specific activity) in vivo depends on the fraction of
the protein, which is in the active (reduced) state. This is in line with the observation that
the protein after extraction and isolation from the native membrane is not fully active. The
maximal activity can only be observed after treating CAC with a strong reducing agent,
such as DTE. The fraction of reduced (or oxidized) protein is variable and depends on
incubation conditions of the mitochondria or on other factors, which cannot be precisely
controlled in experiments. The redox sensing property of CAC allows its modulation
by physiological effectors and, in turn, modulation of the β-oxidation pathway flux. The
studies that will be resumed below uncover the molecular basis of the redox sensing feature
of CAC.
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Figure 8. CAC structural model showing the two redox-sensitive cysteines. Lateral view of a ribbon
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Cys-136 and Cys-155 are highlighted in green.

4.1. Regulation of CAC by H2O2

CAC senses strong redox cellular changes through H2O2, an endogenous compound
whose concentration can increase under oxidizing conditions, reaching millimolar levels
locally, especially in mitochondria [113–116]. H2O2 inhibits CAC transport activity to an
extent depending on both its concentration and time of reaction. H2O2 interacts with
the thiol groups of Cys136 and Cys155, inducing the formation of a disulfide leading to
inhibition. After shorter interaction times (0–2 min) with H2O2, sulfenic acid derivatives are
formed, which evolve to disulfide (S-S) or to sulfinic (SO2

−) and sulphonic (SO3
−) species

after longer reaction times (30 min). The reactions leading to sulfenic acid and disulfides
can be reverted by reducing agents (glutathione), while those generating sulfinic and
sulphonic acid are irreversible, thus abolishing the ability of the carrier to be switched-on
by reducing agents [63]. Translating these data to cellular metabolism, it appears that low
H2O2 levels regulate the activity of CAC, thus tuning the mitochondrial oxidation of fatty
acids. At higher H2O2 concentrations, maintained for a longer time, which may occur under
pathological conditions, the transporter is blocked, and fatty acid oxidation is arrested.
Therefore, under conditions of strong oxidative stress, H2O2, acting on CAC as a signal
molecule, may contribute to switching energy production from aerobic lipid metabolism
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to anaerobic glycolytic metabolism [117], causing a reduced oxygen consumption and a
reduced formation of ROS. These effects can be interpreted as a protective mechanism
against oxidative stress.

4.2. Regulation of CAC by Glutathione

Differently from oxidant species, such as H2O2 that “switch off” the CAC, reduced
glutathione “switch on” the transporter acting on the disulfide between Cys-136 and
Cys-155 [118]. Indeed, the physiological GSH/GSSG couple is, normally, present at a
ratio of over 100/1, thus prevailing the reducing power. However, the ratio GSH/GSSG
can change depending on the redox state of the cell. Thus, the CAC activity can also be
modulated by the GSH/GSSG couple. Experimental data obtained by the EPRA method
using the Cys mutants of CAC demonstrate that (i) GSH and GSSG cause activation or
inhibition, respectively, acting on the SH/S-S exchange between Cys136 and Cys155 and
(ii) the thiol group of Cys136 is the residue reacting first with GSSG. The action mechanism
of these effectors implies the reversible glutathionylation of the transporter. In cells,
the degree and the rate of conversion between the two forms may, in turn, depend on
the activity of the enzyme Glutaredoxin-1 (Grx1) located in the intermembrane space of
mitochondria [119,120] even though no direct evidence is provided so far of the contribution
of this enzyme to the regulation of CAC by GSH/GSSG. CAC is the first mitochondrial
carrier known to be responsive to the redox state of mitochondria and undergoes a full
redox cycle from a reduced/activated state to an oxidized/inactivated state and vice versa.
This responsiveness, again, relapses on the rate of fatty acid oxidation and hence on the
production of ATP [118]

4.3. Modulation of CAC by NO

Nitrosylation processes modulate a huge number of cell pathways [121,122]. Row
proteomic data indicated that CAC is targeted by NO among many other proteins [123].
When treating the native or the recombinant CAC with NO inhibitory effects can be ob-
served [62]. The effects strictly depend on the presence of Cys-136, and the inhibition of
transport is based on the steric hindrance caused by the NO-Cys bond close to the active
site of CAC, where Cys-136 is located. CAC S-nitrosylation may occur under specific
conditions in which mitochondrial oxidation of fatty acids must be slowed down, for
example, to avoid CoA trapping by acetyl-CoA. Such conditions may intervene during
impairment of the respiratory chain activity, which can be caused, among other motives, by
increased intramitochondrial NO level and inhibition of complex I [124]. This phenomenon
may control/regulate the fatty acyl flux into β-oxidation during altered mitochondrial
metabolism, such as in ischemia and reperfusion. The NO-mediated inhibition of CAC
may act in preventing the accumulation of reducing equivalents and decreasing ROS for-
mation following re-oxygenation. Furthermore, the inhibition of CAC and the consequent
impairment of β-oxidation may also contribute to the metabolic switch towards glycolytic
metabolism [48,49] that has an important role in ischemic conditions [50].

4.4. Modulation of CAC by H2S

Beyond the previously described signals acting on CAC, it has been demonstrated
that CAC is an H2S sensor. H2S is one of the endogenous gas transmitters (NO,
CO and H2S), which is produced by several enzymatic pathways, two of them being
mitochondrial [125–129]. H2S exerts its action on CAC interacting with the “crucial” Cys-
136 and Cys-155 couple. Actually, it shows a higher affinity for Cys-155 compared to
Cys-136, in contrast with H2O2, NO, and GSSG, which “prefer” Cys-136. This difference is
related to the solubility, reactivity, and size of H2S (or HS−). H2S first reacts with Cys-155
forming –SSH; then the free -SH of Cys136 reacts with the –SSH producing the disulfide
Cys136-S-S-Cys155, which inactivates CAC [89]. Furthermore, H2S in the solution can
form polysulfides [130] which can reduce protein disulfides and, hence, convert the Cys-
136/Cys-155 disulfide to free thiol groups. Such a reaction well explains the reactivation



Biomolecules 2021, 11, 521 12 of 21

of the inhibited transporter observed after long time incubations. Thanks to its gaseous
nature and its affinity for CAC, H2S manages the rate/flow of fatty acid mitochondrial
β-oxidation, exerting a prompt and fine-tuned modulation of this pathway. Therefore,
under certain conditions, e.g., those of oxidative stress, the H2S-mediated regulation of
CAC activity can cause a switch of aerobic metabolism to glycolysis with consequent
cardio-protection upon ischemia/reperfusion [61].

5. Other Regulatory Mechanisms

CAC is also a target of non-enzymatic acetylation processes, which lead to inhibition
of its transport activity [60]. This mechanism, too, contributes to the regulation of the
mitochondrial β-oxidation pathway. The effect of acetylation on CAC is opposite to that
described for the citrate carrier (CIC, SLC25A1), which is activated by acetylation [131].
The different behavior of CAC and CIC versus acetylation correlates well with the roles
of the two transporters in the β-oxidation and biosynthesis of fatty acids, respectively,
because CAC is necessary for their β-oxidation and CIC is necessary for their biosynthesis.
The acetylation of CAC exerts a dynamic control on the protein as the non-enzymatic
process of acetylation can be followed by enzymatic deacetylation by the action of NAD+

dependent SIRT3. Notably, this process links the activity of CAC to the acetyl-CoA level in
the mitochondria [60,132].

CAC is also subjected to transcriptional control. Its gene is located on chromosome
3p21.31, spans about 42 kb, and is split into nine exons with the translation start site in
exon 1 [133,134]. This gene is differentially expressed in human tissues. High levels of
transcripts are found in the liver, heart, and skeletal muscle, where β-oxidation is greatly
exploited for energy production; much lower levels are observed in other tissues, such as the
brain, placenta, pancreas, and lung [135]. Research on the proximal promoter has revealed
the presence of binding sites for different transcription factors. For example, it has been
demonstrated that an active binding site for PPARα is present in the CAC gene promoter at
position −99/−80 bp and that PPARα is a strong activator of CAC gene expression [136].
CAC expression is also regulated by other transcription factors, such as PGC-1α and 1β,
the estrogen-related receptor (ERR), the general factor Sp1, the specific factors FOXA2 and
SRC-3, and possibly other factors not yet identified [137]. In addition, CAC gene expression
is upregulated by drugs, such as statins, fibrates, and 9-cis-retinoic acid [138].

Another regulatory mechanism of CAC is exerted by the Micro-RNAs (miRNAs) 132
and 212, which lead to CAC suppression, causing inhibition of β-oxidation and accumula-
tion of cellular long-chain fatty acyl-carnitine esters in pancreatic β-cells, ultimately leading
to stimulation of insulin secretion. Interestingly, miRNAs 132 and 212 are upregulated in
pancreatic β-cells in response to obesity in two mouse strains with different susceptibility
to obesity-induced diabetes. Therefore, the downregulation of CAC may be a mechanism
to enhance the insulin secretory response [28].

6. Interaction of CAC with Xenobiotics

An important aspect concerning the involvement of CAC in human health is its
capacity to interact with xenobiotics. In addition, this ability is mostly related to the high
reactivity of the Cys residues of the transporter. In some cases, the interaction occurs via the
substrate-binding site or with a mixed mechanism. In the following sections, the activation
or inhibition effects exerted by different xenobiotics are described and explained based on
the chemical properties of each compound. Most of the interacting compounds are largely
used or newly proposed drugs.

6.1. Polyphenols

The polyphenolic fraction extracted from several cherry cultivars is known for its
antioxidant properties. Polyphenols can prevent CAC oxidation by atmospheric O2 or
partially reverse protein oxidation by intracellularly-produced cell H2O2. The data ob-
tained with the EPRA method highlighted that the antioxidant effect on CAC is mainly
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exerted by the compound 8 trans-3-O-feruloyl-quinic acid (3FQA), which is the most
hydrosoluble/bioavailable and abundant in the cherry extracts. The last feature of this
compound favors its approach to the substrate-binding site for reducing the disulfide
between Cys136 and Cys155, which characterizes CAC under its oxidized state [139].
Therefore, the polyphenol action can improve mitochondrial functionality by acting on
the fatty acid β-oxidation pathway. This, in turn, improves several defects correlated to
elevated oxidative stress occurring in several diseases, such as Alzheimer’s disease, Down’s
syndrome, and heart diseases.

6.2. Dantrolene

Dantrolene, a drug that possesses antioxidant properties [28] and is specifically used
in the management of malignant hyperthermia, activates the oxidized (disulfide) fraction of
CAC with a half-maximal effective concentration (EC50) of 9.3 µM. The effect of dantrolene
on CAC activity also has been characterized with the EPRA method [58].

6.3. β-Lactam Antibiotics

The first report concerning the action of drugs on mitochondrial transport of carni-
tine dates back to 1994 [140]. The authors of this paper hypothesized that the toxicity
of some β-lactam antibiotics was due to the inhibition of mitochondrial carnitine trans-
port. However, it was only in 2008 when the molecular interaction of β-lactams with
CAC was demonstrated [57] in liposomes reconstituted with the rat liver CAC. β-lactam
antibiotics, which are among the most commonly used antibiotics in human therapy, are
competitive inhibitors of CAC, probably due to their structural similarity with carnitine.
In addition, they irreversibly bind CAC after longer incubation times and knock off car-
nitine transport [57]. In vivo, inactivation of CAC could impair fatty acid β-oxidation at
a variable extent depending on the type of antibiotic and the therapy duration, leading
to metabolic consequences of tissues, such as the liver or muscles, that greatly rely on
fatty acid oxidation for energy production. Finally, the molecular interaction between
β-lactam antibiotics and CAC, described above, may contribute to determining some mild
side-effects of β-lactams [57].

6.4. Proton Pump Inhibitors

Omeprazole, a known K+/H+-ATPase inhibitor that is largely used to treat gastric
acid-related disorders, also interacts with CAC. The molecular mechanism of interaction of
omeprazole with CAC relies on forming S-S mixed disulfide(s) with Cys-136 or Cys-155,
just as it does with the K+/H+-ATPase. Interestingly, omeprazole interacts with Cys-136,
as other previously characterized sulfhydryl reagents, but also with Cys-283, which is not
targeted by other reagents of the same type. The reaction with both Cys residues leads
to the complete inactivation of the transporter. According to computational analysis, two
omeprazole molecules are involved in this interaction, one for each Cys residue. In vivo,
these implications deserve attention for their impact on the process of fatty acid β-oxidation
leading to a mild carnitine deficiency-like syndrome [56,141].

6.5. Mildronate

Mildronate, an anti-ischemic drug also used as performance-enhancing, is a competi-
tive inhibitor of CAC. It not only interacts with the substrate-binding site of CAC, but it is
also transported by this carrier due to the high similarity with carnitine. The administered
mildronate is taken up by the cells via OCTN2 and then inhibits acyl-carnitine transport
into the mitochondrial matrix. Moreover, the matrix taken up mildronate acts on intrami-
tochondrial metabolism enzymes. Therefore, CAC has a crucial role in the molecular
mechanisms underlying the effects of mildronate [142].
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6.6. Ingenols

Among several protein targets of ingenols, a class of drugs used for actinic keratosis,
there is CAC. The carrier is inhibited by ingenol mebutate (IngMeb), which thus blocks acyl-
carnitine uptake into the mitochondria and, hence, the mitochondrial fatty acid oxidation.
The discovery that IngMeb and its more stable analog ingenol disoxate (IngDsx) inhibit
CAC contributes to explain, at the molecular level, some of the mitochondrial defects
observed in cells treated with high concentrations of these drugs [55].

6.7. Heavy Metals

CAC plays a major role in mercury toxicology, being one of the most crucial targets of
mercury. Indeed, the mercury compounds mercury chloride and methylmercury inactivate
CAC in vitro and in vivo at submicromolar concentrations [59], which are at concentrations
lower than those, which inactivate thioredoxin [143]. Using zebrafish as an animal model
and HeLa cells as a human cell model, it has been demonstrated that mercury impairs the
viability of zebrafish and human cells, respectively, at concentrations corresponding to
those present in the environment after pollution. By parallel experiments performed using
the EPRA method, the molecular mechanism of action has been disclosed. The compounds
act by targeting the transporter via mercury-thiol bonds with Cys-136 and Cys-155. The
data correlate well with the previous findings on CAC purified from rat liver [47]. From
a physiological point of view, this is relevant since the average concentration of mercury
in human tissues (about 0.15 µM) can increase to more than 5 µM upon acute or chronic
exposure to pollutants [144]. Overexposure to mercury causes mitochondrial toxicity by
the chemical CAC knocking off [59]. As mercury, also copper exerts a strong inhibition
on CAC, even though at higher concentrations [64]. The effect and the mechanism of
interaction between copper and CAC have been defined by site-directed mutagenesis and
computational chemistry approaches. The oxidation state of the cation does not influence
its effectiveness as an inhibitor since Cu2+ and Cu+ show the same IC50. The mechanism
of interaction with CAC consists of the formation of a cross-link among the copper ion and
the two Cys-136 and Cys-155 residues. This cross-link, similarly to the disulfide between
the two Cys residues, “switches off” the transporter [64]

7. Conclusions

The carnitine acyl-carnitine carrier (CAC) has a long history being one of those mem-
brane transporters whose study started with its functional characterization in intact mito-
chondria and continued with its biochemical description and investigation at the molecular
level using the native purified protein or the bacterially expressed recombinant purified
protein. The more recent studies of CAC, performed by joining up-to-date methodological
approaches, such as in vitro transport assay, site-directed mutagenesis, and bioinformatics,
confirmed and extended previous findings as well as discovered molecular mechanisms
of its transport activation and inhibition. Thus, several regulatory properties of CAC,
which are based on post-translational modifications of Cys or Lys residues of the trans-
porter, emerged from these studies. In particular, two specific Cys residues behave like
an on–off switch of the carrier, responding to signals of physiological effectors, such as
GSH, hydrogen sulfide, and nitric oxide. Altogether, the summarized studies highlight the
transporter’s involvement in fatty acid metabolism, suggesting a central role of CAC in
controlling the β-oxidation pathway in response to the redox state of the cell. Therefore,
CAC represents an exciting drug target.
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