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Abstract

Identification of novel virulence factors is essential for understanding bacterial pathogenesis and designing antibacterial
strategies. In this study, we uncover such a factor, termed KerV, in Proteobacteria. Experiments carried out in a variety of
eukaryotic host infection models revealed that the virulence of a Pseudomonas aeruginosa kerV null mutant was
compromised when it interacted with amoebae, plants, flies, and mice. Bioinformatics analyses indicated that KerV is a
hypothetical methyltransferase and is well-conserved across numerous Proteobacteria, including both well-known and
emerging pathogens (e.g., virulent Burkholderia, Escherichia, Shigella, Vibrio, Salmonella, Yersinia and Brucella species).
Furthermore, among the 197 kerV orthologs analyzed in this study, about 89% reside in a defined genomic neighborhood,
which also possesses essential DNA replication and repair genes and detoxification gene. Finally, infection of Drosophila
melanogaster with null mutants demonstrated that KerV orthologs are also crucial in Vibrio cholerae and Yersinia
pseudotuberculosis pathogenesis. Our findings suggested that KerV has a novel and broad significance as a virulence factor
in pathogenic Proteobacteria and it might serve as a new target for antibiotic drug design.
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graduate fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rahme@molbio.mgh.harvard.edu.

Introduction

Important infection mechanisms are often shared across diverse

bacterial pathogens [1,2,3,4,5,6]. Identification and understanding

of these conserved themes will not only expand our knowledge of

specific virulence mechanisms, but will also provide information

about the evolution of microbial pathogenesis. A convergence of

such findings is also needed to inform new strategies against

bacterial infections with wide clinical applications, and to provide

new solutions to the ever-growing problem of antibiotic resistance.

However, discovering broadly conserved virulence factors faces

great challenges caused by the practical limitation mammalian

hosts pose in high-throughput approaches [7]. This limitation has

been considerably circumvented following the discovery that

important virulence factors and corresponding pathways are

conserved across a spectrum of hosts ranging from amoebae to

mice [2,8,9,10,11]. This conservation made non-vertebrates

amenable surrogate hosts for studying mammalian pathogenesis

and added the benefit of enabling broadly conserved virulence

factors to be identified. Indeed yeasts [12], plants [13], nematodes

[14], fruit flies [15], and zebrafish [16] have all been successfully

applied in pathogenesis experiments.

P. aeruginosa is used as a model for bacterial pathogenesis study

because of its potency as a multi-host pathogen and the abundance

of tools that are compatible with it [13,17,18]. The present report

describes the discovery of a conserved P. aeruginosa virulence

determinant, KerV. We further report experiments examining the

breadth of KerV as a conserved virulence factor, not only against

multiple hosts but also in several pathogens.

Results

P. aeruginosa KerV-mediated virulence is conserved
against a spectrum of eukaryotic hosts

In a screen for novel evolutionarily conserved P. aeruginosa

virulence factors using an Arabidopsis infiltration model [13,19], we

identified a mutant with a TnphoA transposon insertion at gene

PA14_41070 that exhibited decreased virulence compared to the

parental strain PA14. This gene, annotated here as kerV, encodes a

hypothetical protein with 253 amino acids in length.

To study the function of KerV in pathogenesis, we constructed

and applied a clean in-frame deletion mutant (P.a.-kerV) and a

gene-replacement complementation strain (P.a.-kerV-C) in further

analyses. The mutant did not exhibit growth defects compared to

the parental strain PA14 in either rich (Luria Bertani broth (LB))

or minimal medium (M9 supplemented with 0.4% glucose) (Figure

S1). The ability of P.a.-kerV to proliferate within Arabidopsis leaves

and cause disease symptoms was assessed in the P. aeruginosa

Arabidopsis infiltration model, which involves forced insertion of

suspended bacterial cells into the intercellular space of Arabidopsis

leaves. At 48 h and 96 h post-infection, the densities of P.a.-kerV

colony forming units (CFUs) in infected leaves were about two
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orders of magnitude less than those of PA14 (about 104.5 vs.

106.4 CFU/ml at 48 h; about 102.7 vs. 104.9 CFU/ml at 96 h;

P,0.02); meanwhile the densities of CFUs of the complemented

strain P.a.-kerV-C were similar to those of PA14 (P.0.1, Figure 1A).

Accordingly the intensity of observed infection symptoms was

reduced in leaves infected with the P.a.-kerV mutant, but restored

in leaves infected with P.a.-kerV-C (data not shown).

The virulence of these strains was then examined in a Drosophila

pricking model at 21uC in which about 100 bacterial cells were

inoculated into the dorsal thorax of host flies. Flies infected with

P.a.-kerV survived longer (n = 43, median survival 70 h) than those

infected with PA14 (n = 47, 50 h) or P.a.-kerV-C (n = 42, 48 h)

(P,0.0001, Figure 1B). These results are in agreement with our

previous study [20], in which a kerV mutant (termed D12) was

unable to evade host defense mechanisms in flies and therefore was

deemed not proficient in infection.

Given the demonstrated involvement of KerV in both plant and

fly pathogenesis, we asked whether KerV is indeed a key P.

aeruginosa virulence factor important for infection of a broad range

of hosts. The mutant’s virulence was tested in two additional

eukaryotic hosts: amoeba and mouse. In the amoeba phagocytosis

assay [21], Dictyostelium discoideum with 2.5-fold sequential dilutions

starting with 2.06105 cells were spotted on different P. aeruginosa

lawns and the number of clear zones that D. discoideum made by

phagocytosing P. aeruginosa was recorded for each bacterial strain.

In this assay, greater virulence is associated with a smaller number

of clear zones and a bigger number of minimally required D.

discoideum cells. Indeed, there was only one clear zone on the

representative lawn of virulent PA14, indicating a minimum of

2.06105 D. discoideum cells were needed for phagocytosis of PA14

(Figure 1C and Table S1). In contrast, eight clear zones

(corresponding to about 3.36102 D. discoideum cells) were shown

on a representative lawn of the negative control lasR (a strain

deficient in producing the master virulence regulator LasR [10]).

Meanwhile, five clear zones (corresponding to about 5.16103 D.

discoideum cells) were shown on a representative P. a.-kerV lawn and

two clear zones (corresponding to about 8.06104 D. discoideum

cells) on a representative P.a.-kerV-C lawn. Therefore our findings

indicate that KerV plays an important role in P. aeruginosa

resistance to amoeba phagocytosis.

In an acute mouse pulmonary infection model [22] in which 107

bacteria were administered intranasally, P.a.-kerV failed to confer

any mortality at 96 h post-infection, while the median survival of

PA14 and P.a.-kerV-C infected mice were both 28 h (P,0.003,

Figure 1. KerV acts as a virulence determinant in P. aeruginosa against a range of eukaryotic hosts. (A) Bacteria quantities recovered from
infected plant leaves. (B) Fly survival kinetics in a pricking infection model. Dotted lines are color-coded and represent survival medians for
corresponding strains. (C) Amoeba phagocytosis of P. aeruginosa. The graphic was produced from representative experimental observations. For
detailed data see Table S1. Green square, bacterial lawn; green-filled circle, no phagocytosis of bacteria; white-filled circle, clear zone due to
phagocytosis of bacteria. From left to right the numbers of laid Dictyostelium were 2.06105, 8.06104, 3.26104, 1.36104, 5.16103, 2.06103, 8.26102,
3.36102 and 1.36102. (D) Mouse survival kinetics in an acute lung infection model. (E and F) Histology of the infected neonatal mice lungs by PA14 (E)
and P.a.-kerV (F) in the acute lung infection model. a-alveoli.
doi:10.1371/journal.pone.0007167.g001
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Figure 1D). Histopathology of neonatal mouse lung tissues at 24 h

post-infection showed that PA14 (Figure 1E) caused a typical lobar

pneumonia characterized by pulmonary consolidation and intra-

alveolar hemorrhage with massive inflammatory infiltrates. In

contrast, neither inflammatory response nor hemorrhage was

present inside the alveolar spaces of P.a.-kerV infected tissues

(Figure 1F). These observations demonstrated that the virulence of

the kerV mutant was attenuated in the mouse lung infection model

and thus aroused much less inflammation. Interestingly, in a burn-

mouse model [23], the mutant exhibited similar virulence

compared to that of the parental strain in a 5-day experiment

using 16105 bacteria/mouse (P.0.05, Figure S2).

KerV is a hypothetical methyltransferase and is conserved
in a defined genomic region in many Proteobacteria

A homology search in KEGG [24] revealed that KerV has

putative methyltransferase type_11 motifs (Figure S3) and is

annotated as a S-adenosylmethionine-depended methyltransferase

(SAM-MT). SAM-MTs usually have three conserved amino acid

motifs for SAM binding [25]. In KerV, the best match for motif I,

usually the most conserved and most critical for binding SAM

[26], is HAELPPSTG; however, the H and the first P are not

present in other known methyltransferases to our knowledge.

Secondary structure prediction by PROF algorithm [27] at

PredictProtein site (http://www.predictprotein.org/) suggests it

also lacks a classic seven-stranded b sheet [26]. Nevertheless, KerV

possesses a fine post-I motif (LPGVD), a motif II (ADVVL), and a

motif III (TVRPGGHLLL) with a commonly seen spacing of 11

residues between the putative motif I and post-I. In addition, the

expected b strand for motif III is also suggested by PROF

algorithm. These characteristics suggest that KerV encodes for

either a novel methyltransferase with unique features or a protein

with little familiarity.

A KerV ortholog search in KEGG returned 196 hits spanning

mostly b- and c-Proteobacteria (Smith-Waterman (SW)-score

.100 and best-best search, Figure 2 and Table S2), most of

which also possess the methyltransferase type_11 motif. These hits

include well-characterized and emerging pathogens of humans,

plants, insects and nematodes. Among the list are also bacterial

strains that are known to have non-pathogenic interactions with

hosts, including symbiotic and commensal associations (e.g.,

certain Vibrio, Enterobacter, Sinorhizobium strains), and environmental

species (e.g., Methylobacillus, Nitrosospira, Chromobacterium).

Examination of kerV and orthologs’ genomic context by KEGG

[28] revealed that they are typically located within a defined

neighborhood. In all 197 cases analyzed, 171 (87%) and 120 (61%)

of the KerV orthologs appear next to a putative hydroxyacylglu-

tathione hydrolase ortholog (gloB, PA14_41080) and a ribonucle-

ase H ortholog (rnhA, PA14_41060), respectively. Furthermore,

dnaQ (PA14_41050), which encodes the e subunit of DNA

polymerase III, often co-localizes with kerV. In fact, 100 (51%) of

the 197 genomes maintain the exact order of gene orthologs as

gloB-kerV-rnhA-dnaQ, referred to as the ‘‘typical configuration’’ in

this study (Figure 3A and 3B). In addition, 176 genomes (89%)

share this conserved region. In these genomes, at least one of the

gloB and rnhA orthologs is maintained in the typical configuration

with respect to the kerV ortholog and the remaining orthologs are

present, if not nearby. A broader less-conserved area was observed

beyond the immediate kerV-containing region discussed above, but

it is not the focus in this study.

GloB, also annotated as glyoxalase II, is a component of the

glyoxalase system. It is primarily involved in detoxification of

endogenously formed reactive 2-oxoaldehyde species in various

processes (e.g. glycolysis) in both prokaryotic and eukaryotic

Figure 2. KerV is conserved in Proteobacteria. Phylogenetic tree
generated based on selected KerV orthologs using MAFFT in KEGG. The
selection criteria were: 1) orthologs with a SW-score over 100; and 2) no
more than two representative isolates per genus. * indicates that strains
have known pathogenic interactions with eukaryotic hosts; + indicates
that strains are known to interact with eukaryotic hosts, but have no
known virulence properties. Strains without a label belong to
environmental species and do not have substantial known associations
with eukaryotes.
doi:10.1371/journal.pone.0007167.g002

Virulence Determinant KerV

PLoS ONE | www.plosone.org 3 September 2009 | Volume 4 | Issue 9 | e7167



organisms [29,30]. RnhA specifically degrades RNA in DNA-

RNA hybrids and is a key player in DNA replication [31,32].

Escherichia coli RnhA has been described as essential for growth

[33]. DnaQ has 39–59 exonuclease activity that fixes DNA

replication errors. Mutation of this gene can lead to a mutator

phenotype [34]. Nevertheless, the mutation frequency of P.a.-kerV

was verified to be similar to that of the wild-type (data not shown).

We tested a P. aeruginosa gloB mutant, retrieved from the PA14

transposon library [18], for virulence in a Drosophila pricking

model. This mutant exhibited the parental virulence phenotype

(data not shown). It is noteworthy that rnhA and dnaQ mutants are

not available in both the PA14 and the PAO1 (another commonly

used parental strain) transposon libraries [18,35], which strongly

suggests the indispensability of these two genes for P. aeruginosa

survival. Furthermore, although oriented in the same direction in

the chromosome, the dissimilar gene expression profiles of kerV,

rnhA and dnaQ during PA14 growth suggest that they may not be

components of a shared operon in the P. aeruginosa genome

(Figure 3C). The genes gloB, rnhA and dnaQ were relatively actively

transcribed during early log phase but this transcription subse-

quently subsided. On the contrary, kerV transcription was found to

be up-regulated as cells were approaching the late log phase and

entering the early stationary phase. Nonetheless, the close and

conserved physical association of kerV with these essential genes

hints that the virulence mechanism of KerV may be related to

fundamental bacterial physiology.

KerV orthologs mediate pathogenesis in other
Proteobacteria

The presence of KerV orthologs in defined genomic context in

other important pathogens suggested that KerV might represent a

type of generic virulence determinant. We tested this hypothesis in

a Drosophila feeding infection model employing kerV ortholog

knockout mutants in two c-Proteobacteria pathogens: V. cholerae

and Y. pseudotuberculosis.

V. cholerae, the aetiological agent of cholera, generally carries two

major virulence factors encoded on a lysogenic filamentous

bacteriophage (CTXW): cholerae toxin (CT) and a toxin co-

regulated pilus (TCP) [36]. To test whether KerV ortholog is

important for virulence in V. cholerae, three unique insertion

mutants, labeled V.c.-kerV1, 2 and 3, and the wild-type V. cholerae

were retrieved from a V. cholerae transposon library [37] and fed to

Drosophila to mimic the human disease cholera [38]. This library

used a clinical isolate, C6706, which is a pandemic O1 El Tor

isolate, as the wild-type. The KerV ortholog in V. cholerae O1 is

encoded by VC2235 (Table S2). A ctxw mutant in the same

parental background was also retrieved and used as a control for

attenuated virulence. As expected, the flies infected with the ctxw
mutant had higher viability, with a median survival time of 64 h

(n = 87) compared to 51 h (n = 91, P,0.0001) for flies infected

with the parental strain (Figure 4A). Interestingly, all three kerV

mutants exhibited a defect comparable to that of the ctxw mutant,

yielding a median survival time of 60 h (n$65, P,0.005). Since

the kerV ortholog and its adjacent genes are transcribed in opposite

directions in V. cholerae (Figure 3B), the insertion of a transposon

should not cause a polarity effect. Hence the phenotype observed

for V.c.-kerV mutants can be attributed solely to disruption of the

kerV ortholog. We therefore conclude that the KerV ortholog is

important for V. cholerae infection.

Y. pseudotuberculosis is a gastrointestinal pathogen with several

essential virulence factors on a 70-kb plasmid (pYV) [39]. In the

virulent Y. pseudotuberculosis parental strain YPIII, KerV ortholog is

encoded by YPK_1107, which also does not form an operon with

adjacent genes (Figure 3B). The kerV deletion mutant, Y.p.-kerV,

was constructed and tested in an adapted Drosophila feeding assay.

The assay was a slow killing model in which flies infected with the

virulent YPIII had a median survival of 14 days (n = 45, Figure 4B).

Flies infected with a control mutant lacking the pYV virulence

plasmid, termed Y.p.-pYV in this study (YPIII pIB12 in [40]),

exhibited slower mortality kinetics with a median survival of 17

days (n = 45, P,0.0001). The Y.p.-kerV strain behaved essentially

the same as Y.p.-pYV with the same median survival time (n = 40,

P,0.0001). Our findings provide evidence that the KerV ortholog

is a new virulence factor for Y. pseudotuberculosis.

Discussion

In this study, we applied a combined approach of bench

experiments and bioinformatics analyses to identify novel virulence

Figure 3. KerV orthologs are located in a conserved genomic
neighborhood with typical configuration in many species. (A)
Conservation of the typical configuration. Data are based on the 197
bacterial strains that have a KerV ortholog with SW-score .100. (B) The
typical configuration in P. aeruginosa (P.a.), V. cholerae (V.c.) and Y.
pseudotuberculosis (Y.p.). Green boxes represent the methyltransferase
type_11 motif (Pfam08241) and are shown to scale with respective KerV
orthologs. E, expectation value for homology with Pfam08241. SW, SW-
score of ortholog if searched using PA14 KerV; I, identity of the ortholog.
Arrows indicate the predicted transcriptional direction of each gene. (C)
Transcriptional expression of kerV in PA14 is distinctive from that of gloB,
rnhA and dnaQ. Error bars show standard deviations in one experiment.
The illustrated trends are representative of multiple experiments.
doi:10.1371/journal.pone.0007167.g003
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determinants. We discovered such a factor KerV in P. aeruginosa, V.

cholera, and Y. pseudotuberculosis. Our results strongly suggest that

KerV orthologs may be universal virulence determinants since they

are conserved in many pathogenic Proteobacteria. The finding that

KerV is important for P. aeruginosa infection of a broad range of hosts

from amoebae to mice further strengthens this identity. The

conservation of KerV in non-pathogenic bacteria also proposes that

it is likely important in other ecological settings besides plant and

animal infections, such as beneficial bacteria-host interactions and

environmental processes. Interestingly, KerV orthologs are mostly

well-conserved in b- and c-Proteobacteria with a few exceptions in

a-Proteobacteria by our criteria. The exclusiveness of KerV

orthologs in Proteobacteria indicates that appearance of KerV is

a late event in evolution and is unique to the physiology of this

phylum. These analyses indicate that the natural reservoirs of most

of the species that have KerV orthologs are not extreme in terms of

temperature, pressure, oxygen and other nutrient levels, where

higher organisms are easily found. In fact, a lot of these species are

known to intimately associate with plants and animals symbiotically

or pathogenically, although some have no known associations with

eukaryotes. It is very likely that the essential function of KerV is for

bacteria to interact with their environments, especially with other

cohabitating organisms.

Co-localization of KerV with essential DNA replication and

repair genes and reactive species-detoxification gene implies that

its pro-virulence effect may not necessarily be related to a direct

toxic enzymatic activity, but rather be attributed to a more generic

role in fundamental bacterial physiology. Another hint may come

from the distinct phenotypes of P.a.-kerV mutant in an acute mouse

pulmonary infection model and a burn-mouse model, where the

mutant was defective in the former model while as fit as the wild-

type in the latter. Among the many dissimilarities between the two

mouse models, different local host immune efficiency [41] and

bacterial nutritional environments (rich environment with readily

abundant supplies of proteins, amino acids, polysaccharides etc. at

the burn site) are particularly notable. It is possible that KerV

function is important for the bacterium to first establish a niche in

the lung tissues, where nutrients are not as easily available and a

competent host response is equipped, before launching its various

known virulence attacks. Indeed, mechanisms involved in the

maintenance of normal cell physiology can have profound

pathogenic influences [42,43,44]. Irrespective of the details, KerV

likely represents a not-yet-described virulence pathway. To our

knowledge, KerV has never been linked to any known P. aeruginosa

virulence factors or their regulation systems, such as the las, rhl

and mvfR quorum sensing systems, the GacS/GacA/rsmZ

pathway, VfR, or the type III secretion system. A preliminary

search of published transcriptional and proteomic studies of these

systems did not reveal any associations with KerV. However,

KerV may be involved with these systems post-transcriptionally or

indirectly. Alternatively, KerV’s connection can be prominent in

settings other than those employed in these studies (e.g., in vivo

conditions).

KerV’s characteristics make it a promising anti-infective target

for novel drug development. The fact that the kerV null mutants did

not exhibit growth defects in any of the three pathogens examined

suggests that KerV is not specifically involved in bacterial

replication and division. Targeting KerV pharmacologically may

provide a strategy to impede virulence without directly interfering

with bacterial cell viability. This strategy is therefore critically

distinctive from traditional antibiotics as it should greatly reduce

selection for drug resistance. Given the significance and conserva-

tion of KerV, such an innovation would have broad applications.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and local animal

welfare bodies. All animal work was approved by the Massachu-

setts General Hospital Institutional Animal Care and Use

Committee.

Fly infection assays
A Drosophila melanogaster pricking assay using P. aeruginosa was

employed as described by Apidianakis et al. [20]. Each inoculum

included approximately 100 bacteria and the assay was carried

out at 21uC. The Drosophila feeding assay using V. cholerae was

adapted from a previous protocol [38] in which 5 ml of 1:50

water-diluted LB (Fisher Scientific) culture (original OD600nm = 3,

final CFU = 108/ml) supplemented with 1% sucrose was used for

each replicate. The Drosophila feeding assay used to test Y.

pseudotuberculosis virulence was developed specifically for this

study where 5 ml of 1:1.25 water-diluted LB culture (original

OD600nm = 2, final CFU = 109/ml) supplemented with 4%

sucrose was used. Five to nine day-old female flies were incubated

at 29uC in both feeding assays. Fly survival was monitored until

100% mortality was achieved.

Plant infection assay
About 105 bacterial cells/leaf were forced into the intercellular

space of 5-week old Arabidopsis thaliana ecotype Llagostera (Ll-O)

leaves [13]. Throughout the course of the infection experiment,

the plants were kept in a growth chamber at 30uC with a high

relative humidity 80–90%. For each bacterial strain, cells were

Figure 4. KerV is a conserved virulence determinant in various
Proteobacteria. Survival of flies in Drosophila feeding infection assays
using wild-type and kerV mutants in V. cholerae (A) and Y.
pseudotuberculosis (B) background. Known virulence-compromised
strain was used in each assay as negative control and the data are
presented in red. Dotted lines represent survival medians for the color-
corresponding strains. All mutants were tested for growth in LB broth
and none had any notable differences from the parental strain.
doi:10.1371/journal.pone.0007167.g004
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recovered from 4 different leaves; two samples were collected from

each specimen leaf. CFUs were counted at days 0, 2 and 4 post-

infection by selecting on rifampicin (100 mg/ml) LB agar plates.

Amoeba phagocytosis assay
In the D. discoideum phagocytosis model [21], nine dilutions of

Dictyostelium cells with 2.5-fold interval, starting from 2.06105 cells,

were spotted onto bacterial lawns formed by the tested P. aeruginosa

strains. After 5 days of incubation at 25uC, the numbers of clear

zones in the lawns were recorded.

Mouse acute lung infection assay
An acute lung infection model was used as described previously

[22]. Briefly, P. aeruginosa cells were grown to OD600nm = 3,

harvested, and washed in saline. Twenty-microliter aliquots of

bacterial solution containing 107 bacteria were administered

intranasally to each mouse (N = 8 mice/experimental group).

Mouse survival was monitored for 4 days.

Burn-mouse infection model
The assay followed a previously published protocol with modifica-

tions [23]. Briefly, after mouse anesthetization, a full-thickness thermal

burn injury was produced, which involved 5%–8% of the body

surface area, on the dermis of the shaved abdomen. Subsequently an

inoculum of 16105 P. aeruginosa cells was injected intradermally into

the burn eschar. Mice survival was monitored for 5 days. Experiments

were repeated twice with 8 mice/bacterial group for each set.

Infection assay statistical analysis
All of the infection assays were carried out at least 3 times unless

otherwise noted. Each figure shows one representative dataset for

each assay except Figure 1B, Figure 4 and Figure S2, which

present compilations of multiple datasets. Survival curves were

analyzed by Kaplan-Meier logrank test using MedCalc; CFUs

were analyzed by student’s t-tests and error bars represent

standard deviation in one dataset. A P-value below 0.05 was

considered significant in all cases.

Bacterial mutant construction
The P.a.-kerV mutant was made in PA14 background with the

first 2 and last 7 codons intact, separated by a 6-nucleotide KpnI

sequence, using a modified SOE-PCR protocol [45] and

pEX18Ap [46]. Complementation of the P.a.-kerV mutants was

achieved by replacing the mutated locus with the wild-type locus

[46]. V.c.-kerV mutants were derived from a transposon library

using a clinical isolate belonging to the O1 El Tor biotype as the

wild-type [37]. The three V. cholerae kerV mutants, V.c.-kerV1

(EC1860), V.c.-kerV2 (EC14225) and V.c.-kerV3 (EC5287), had the

transposon inserted into the gene ortholog at position 17.6%,

32.8% and 16.9%, respectively. The transposon and the gene were

in the same orientation in all cases. Y.p.-kerV was constructed to

have a kanamycin cassette flanked by the first 21 and last 5 amino

acids of YPK_1107 in virulent YPIII (pIB1+) background [47].

PA14 gene expression profiling
PA14 was grown in LB broth at 37uC to OD600nm = 1, 2, 3 and

4. At each time point, cell aliquots were collected and processed

for mRNA extraction, cDNA synthesis, and hybridization as

described by Déziel et al. [48]. Data presented were from one

experiment where three replicates from cultures at OD600nm = 1, 2

and 3 and two replicates from cultures at OD600nm = 4 were

collected. The data were normalized using GeneSpring software

(Agilent Technologies).

Bacterial growth curves
Growth curves were performed using SunriseTM microplate

absorbance reader (Tecan) in triplicates at 37uC with shaking

mode set at ‘‘Normal’’. Each curve was started by diluting

overnight culture 1:100 in 200 ml media. LB broth was used as rich

medium; M9 minimal salts (Sigma) supplemented with 0.4%

glucose was used as minimal medium.
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