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Upscaling 
the porosity–permeability 
relationship of a microporous 
carbonate for Darcy‑scale flow 
with machine learning
H. P. Menke*, J. Maes & S. Geiger

The permeability of a pore structure is typically described by stochastic representations of its 
geometrical attributes (e.g. pore‑size distribution, porosity, coordination number). Database‑driven 
numerical solvers for large model domains can only accurately predict large‑scale flow behavior when 
they incorporate upscaled descriptions of that structure. The upscaling is particularly challenging 
for rocks with multimodal porosity structures such as carbonates, where several different type 
of structures (e.g. micro‑porosity, cavities, fractures) are interacting. It is the connectivity both 
within and between these fundamentally different structures that ultimately controls the porosity–
permeability relationship at the larger length scales. Recent advances in machine learning techniques 
combined with both numerical modelling and informed structural analysis have allowed us to probe 
the relationship between structure and permeability much more deeply. We have used this integrated 
approach to tackle the challenge of upscaling multimodal and multiscale porous media. We present a 
novel method for upscaling multimodal porosity–permeability relationships using machine learning 
based multivariate structural regression. A micro‑CT image of Estaillades limestone was divided into 
small  603 and  1203 sub‑volumes and permeability was computed using the Darcy–Brinkman–Stokes 
(DBS) model. The microporosity–porosity–permeability relationship from Menke et al. (Earth Arxiv, 
https ://doi.org/10.31223 /osf.io/ubg6p , 2019) was used to assign permeability values to the cells 
containing microporosity. Structural attributes (porosity, phase connectivity, volume fraction, etc.) 
of each sub‑volume were extracted using image analysis tools and then regressed against the solved 
DBS permeability using an Extra‑Trees regression model to derive an upscaled porosity–permeability 
relationship. Ten test cases of  3603 voxels were then modeled using Darcy‑scale flow with this 
machine learning predicted upscaled porosity–permeability relationship and benchmarked against 
full DBS simulations, a numerically upscaled Darcy flow model, and a Kozeny–Carman model. All 
numerical simulations were performed using GeoChemFoam, our in‑house open source pore‑scale 
simulator based on OpenFOAM. We found good agreement between the full DBS simulations and 
both the numerical and machine learning upscaled models, with the machine learning model being 80 
times less computationally expensive. The Kozeny–Carman model was a poor predictor of upscaled 
permeability in all cases.

Predicting flow through porous media is pivotal for a broad range of scientific and engineering endeavors includ-
ing fuel  cells1–3, oil and gas  recovery4–6, geologic carbon  storage7,8, geothermal  energy9–11, material  composites12, 
and nuclear waste  disposal13,14. The internal structure of a porous media defines its ability to transmit fluid and 
therefore it’s permeability. These porous structures are often heterogenous and range several orders of magni-
tude in scale, particularly in carbonate rocks which are an abundant geological material for both oil and gas 
 reservoirs15 and carbon storage  sites16–19, making prediction of permeability in these cases especially difficult.

Traditionally, permeability has been measured in core flood experiments using Darcy’s  law20, which is based 
on bulk porosity measurements and the pressure drop across the core during flow. This method can be expensive 
and time consuming. Furthermore, it provides little insight into the local multi-scale structural influences on 
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permeability, which is a well-recognized and significant challenge for upscaling  carbonates21–25 because bulk 
measurements do not provide enough information to accurately extrapolate flow properties to other samples 
based on structural information. Moreover, flow measurements at the core scale are often not representative of 
flow at the reservoir scale due to large-scale heterogeneities present in the reservoir that are not captured in a 
small cm-scale core sample (e.g. vugs, fractures, or facies changes).

Recently, X-ray imaging has allowed us to image the physical heterogeneity of carbonate rocks at different 
scales: at the core (cm) scale using medical-CT  imaging26,27, at the pore (mm) scale using micro-CT  imaging28–31, 
and at the nano (μm) scale using nano-CT  imaging32–35. These studies have given great insight into the types of 
structural heterogeneity seen at these distinctive scales. A choice few studies have attempted to bridge the gap 
between these  scales4,36. Menke et al.32 applied correlative microscopy to incorporate nano-structural information 
of Estaillades microporosity imaging using nano-CT into pore-scale flow predictions using the Stokes–Brinkman 
equation. However, as of yet, no studies have integrated these structures into a single model to achieve accurate 
upscaling parameters that would allow information about the interactions between structures at multiple scales 
to inform Darcy-scale simulations.

Part of the difficulty in achieving robust upscaling parameters in carbonate rocks is analyzing the wealth of 
imaging data required to characterize the inherent rock heterogeneities at multiple scales. Over the past decade 
numerous open-source computer vision tools have enabled in-depth analysis and vectorization of these immense 
datasets. Several recent studies have used convolutional neural networks to predict permeability from micro-CT 
images at a single  scale37,38. However, these deep learning models are highly computationally expensive and are 
black boxes, providing little insight into the underlying structural features that ultimately control the perme-
ability and making it difficult to apply them to other rock types or upscale effectively. Other machine learning 
frameworks have provided robust regression techniques that can facilitate variable prediction from multivariate 
statistics.  Andrew39 pioneered the combination of this data vectorization with the use of decision-tree based 
regression techniques to predict permeability from feature sets extracted from rock structures at a single scale. 
In this study we aim to expand on this technique both to: (1) predict the permeability of a multi-scale carbonate 
system using a combination of Darcy–Brinkman–Stokes (DBS) direct numerical simulation (DNS) approach 
and multivariate regression and then, (2) test those machines learning derived upscaled permeability predictions 
in Darcy-scale flow simulations and benchmark them against more computationally expensive DBS modeling 
methods, numerical upscaling, as well as the Kozeny–Carman (K–C) model, a popular simplistic upscaling 
technique that employs power-law trends in the porosity–permeability relationship.

First, a training set was created from a micro-CT image of Estaillades limestone that had been previously 
segmented into pore, solid grain, viton sleeve, and 12 phases of microporous grain based on their estimated 
voxel  porosity32. The top 10% of the segmented micro-CT image was divided into 30,000 overlapping sub-
volumes. 29,000 of the sub-volumes were solved for permeability using the DBS model  GeoChemFoam40 using 
the microporosity-porosity–permeability relationship from Menke et al.32 to assign permeability values to the 
Brinkman cells as a ground truth. Features of each sub-volume were extracted using image analysis tools (poros-
ity, cumulative phase connectivity, and phase volume fraction). Using an Extra-Trees regression  model41, the 
extracted features were then regressed against the solved Brinkman permeability to achieve an upscaled perme-
ability prediction model. 1000 sub-volumes not used in training were used to benchmark the regression model, 
finding a RMSE of 4.3% in permeability prediction. The remaining 90% of the micro-CT image not used in either 
the regression model or benchmarking was divided into ten  3603 voxel large-scale test volumes, which were then 
further subdivided into 6 × 6 × 6 and 3 × 3 × 3 matrices of sub-volumes of  603 and  1203 voxels respectively. Features 
were extracted from each sub-volume and input into the trained machine learning regression model where the 
permeability of the sub-volumes was predicted. Darcy-scale flow was then modelled on the test volumes using 
this regression-predicted upscaled permeability for each block and benchmarked against the full Stokes–Brink-
man flow simulation of that block, the Darcy-scale model using DBS numerical upscaling, as well as a Darcy-
scale Kozeny–Carman model fitted to the numerically predicted permeabilities. All numerical simulations were 
performed using GeoChemFoam, our open source in-house pore-scale simulator based on  OpenFOAM42,43.

Methods
Creating the training dataset. The porosity–permeability curve for the micro porosity is provided by the 
previous work in Menke et al.32. A core of Estaillades limestone was scanned in a micro-CT both dry and satu-
rated with a high contrast brine. The differential image was used to estimate the porosity of the connected micro 
porosity. Microporous subsections of the core were then scanned in a nano-CT and the grain size distribution of 
the micro porosity was modelled numerically and the results used to generate a synthetic porosity–permeability 
for the micro porosity. This curve was then used in a Stokes–Brinkman simulation of the whole core and bench-
marked against experimental permeability measurements of the core with high accuracy. A detailed discussion 
of this multi-scale imaging and benchmark modelling can be found in Menke et al.32. The image of Estaillades 
that is used in this study is the same as the image originally taken in Menke et al.32 and due to the extensive char-
acterization performed in this study for the purposes of this work we will thus assume the permeability results 
and porosity–permeability curve derived in Menke et al.32 to be ground truth. The raw and processed micro and 
nano CT images are all publicly available open access on the image archive of the British Geological  Survey44.

We used the 15-phase (pore, solid grain, viton sleeve and 12 phases of microporosity) segmented micro-CT 
image of Estaillades which is 1200 × 1200 × 6000 voxels with a resolution of 3.9 μm. The top 10% of the image was 
split into two training datasets: one with 30,000 sub-volumes of  603 voxels with a 50% overlap between sequential 
sub-volumes to increase the number of training images and one with 30,000 sub-volumes of  1203 voxels with 
a 75% overlap between sequential sub-volumes. Overlapping the datasets allowed us to keep the two training 
datasets directly comparable.
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Structural features were then extracted from each of the sub-volumes using the image analysis toolbox in 
python’s  SciKitImage45. This analysis included the volume fractions of each phase in the sub-volume as well as 
the cumulative connectivity of the phases in each orthogonal direction expressed mathematically as the first 
connected phase. An example of the calculation of the connectivity of the primary porosity of a sub-volume is 
shown in Fig. 1. This image analysis created a robust feature vector set of 18 features: 15 volume fractions and 
3 connectivity features.

Calculation of permeability using GeoChemFoam. The training datasets (1) and (2) were solved for 
permeability in each direction using the DBS  approach40 in which one equation is used to model the flow within 
the fully resolved pores (i.e. voxel porosity equal to 1.0) and the micropores (i.e. voxel porosity lower than 1.0).

where u [m·s−1] is the fluid velocity, p [Pa] is the pressure, ϕ [−] is the porosity,  µ
[

kg m−1 s−1
]

 is the viscosity and 
K  [m2] is the permeability. Porosity and permeability of each microporous voxel is assigned using the segmented 
phases and values from Menke et al.32 (Table 1).

The model is implemented within GeoChemFoam (www.julie nmaes .com/geoch emfoa m v19).  OpenFOAM46 
(www.openf oam.com v19.06) solves Eqs. (1) and (2) on a collocated Eulerian grid. A pressure equation is 
obtained by injecting (1) into (2) and the system is solved using the semi-implicit method for pressure-linked 
equation (SIMPLE)  algorithm47.

For the upscaling models, Eq. (1) Can be simplified into the Darcy equations.

Here K  is an anisotropic diagonal tensor that represents the permeability of each sub-volume  (603 or  1203 
voxels). Each diagonal coefficient ( Kx , Ky and Kz ) has been computed using one of the three upscaling models 
presented in “Upscaling to the Darcy-scale” section. Each sub-volume is modelled using a 4× 4× 4 grid with 
constant coefficients, so that the total grid for the Darcy simulation is 24× 24× 24 when using the  603 sub-
volumes and 12× 12× 12 when using the  1203 sub-volumes.

Results and discussion
The results and discussion are organized into four parts. (1) In “Sub-volume permeability, Kozeny–Carman 
model, and multivariate regression” section we look at the relationship between porosity and permeability of 
the sub-volumes as solved by DBS and compare it to both, a power law fitted Kozeny–Carman model and the 
predicted permeabilities of our machine learning multivariate regression model. (2) In “Analysis of feature 
importance” section we examine the features used in the machine learning regression model and their impor-
tance relative to the number of features used in the regression as well as the error associated with the number 
of training images used to train the regression model. (3) In “Analysis of the size of the training data” section 
we compare the regression results from training the model with sub-volumes of different sizes. (4) Finally, in 
“Upscaling to the Darcy-scale” section we use the trained regression models to upscale to the Darcy-scale and 
compare this new machine learning based upscaling method with a brute force DBS simulation and both numeri-
cal and Kozeny–Carman upscaling models.

Sub‑volume permeability, Kozeny–Carman model, and multivariate regression. The poros-
ity and DBS solved permeabilities for training dataset 1 are shown in Fig. 2A. A power law curve was used to 
estimate the Kozeny–Carman model parameters. The best model fit was K = 8.47× 10−14 ϕ

1−ϕ

3.4 . Overall, the 
Kozeny–Carman model was a poor fit for the training data as it does not capture the structural complexity inher-
ent to the Estaillades carbonate where a single porosity value can result in permeabilities ranging over several 
orders of magnitude.

The feature vectors obtained from 29,000 of the 30,000 sub-volumes in training dataset 1 were then used to 
train an extra randomized trees ensemble machine learning regression model using  SciKitLearn41. The remain-
ing 1000 sub-volumes were then used to test the regression model performance. To avoid model overfitting, 
bootstrapping was used during tree creation where a randomly selected subset of models was used to train each 
tree, and the number of trees was limited to 50. The average out-of-bag error calculated on each tree with unused 
training images was always within 10% of the average  R2 score of the model calculated with the images used in 
each tree, indicating that the models were not overfitted.

The porosity values from the training sub-volumes were then plugged into the Kozeny–Carman model 
(Fig. 2B). The machine learning regression model significantly outperformed the Kozeny–Carman model where 
the RMSE of the Kozeny–Carman permeability predictions was 29.7% while the machine learning regression 
model had a RMSE of 4.3%. Furthermore, the Kozeny–Carman model’s predicted values clustered towards the 
mean and the model was unable to predict the highest and lowest permeability values. This clustering indicates 
that the Kozeny–Carman model lacks enough complexity to incorporate the multiscale heterogeneities inherent 
in carbonate rocks with accuracy.

Analysis of feature importance. Three test cases of feature vectors, comprising 3, 15, and 18 features 
respectively, were assembled. In the ‘3 features’ test set, only the connectivity feature vectors were included. In 

µ

ϕ
∇

2u−∇p− µK−1
· u = 0,

∇u = 0,

−∇p− µK−1
· u = 0.

http://www.julienmaes.com/geochemfoam
http://www.openfoam.com
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the ‘15 features’ set, only the porosity volume fraction features vectors were considered, while in the ‘18 features’ 
set, both the connectivity information and the porosity volume fraction features were included in the model. 
Figure 3A shows the RMSE of the different feature sets with the number of training sub-volumes used to train 

Figure 1.  Labelling of the connected components of the primary porosity in a sub-volume of the Estaillades 
sample. (A) The raw micro-CT image, (B) the 15-phase segmentation of a sub volume extracted from the 
microCT image (red box), (C) the segmented primary porosity, and (D) the uniquely labelled connected 
primary porosity. Images in this figure were rendered using  SciKitImage45.
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the model. All models showed a sharp drop in RMSE when increasing the number of sub-volumes used in the 
regression followed by diminishing returns as the number of sub-volumes increased past 500. This trend indi-
cates that for this particular size of the sub-volume in this rock, very few sub-volumes are required to train an 
accurate model. However, this assertion is rock dependent, and we expect this number to change significantly 
with other rock types. Additionally, we found that the RMSE of the ‘18 features’ case was the best with a mini-
mum RMSE of 4.3%. However, this is only a slight improvement over the ‘3 features’ set with a minimum RMSE 
of 5.6%, but a large improvement over the ‘15 features’ set that has a minimum RMSE of 15.3%. This trend indi-
cates that, as expected, the connectivity features are more important in predicting permeability than porosity 
alone.

Figure 3B shows the relative model weighting of each feature. Here we see that the connectivity features 
are weighted an order of magnitude more highly than the porosity features in all cases, confirming that when 
predicting permeability, the connectivity is a better predictor than porosity. This observation also highlights the 
importance of extracting the most informative features during the image processing and analysis. It would be 
interesting to also see if the connectivity could be quantified more robustly in the primary porosity (phase 1) to 
increase the accuracy of prediction in highly connected porosity sub-volumes. However, this analysis is out of 
the scope of this study and is a target of future work.

Analysis of the size of the training data. As the ultimate goal of this work is to upscale to the Darcy-
scale, the choice of sub-volume size must be carefully considered. The sub-volumes must both be of a size rel-
evant to Darcy-scale imaging and modelling, but also be below the REV scale for porosity and permeability so 
that the spread of permeabilities is sufficient to capture structural heterogeneity while still containing enough 

Table 1.  Porosity and permeability values for micro-porosity used in the DBS simulations taken from Menke 
et al.32.

Segmentation phase # Porosity (−) Permeability  (m2)

1 1.00 1 (Pore)

2 0.57 7.47 × 10–15

3 0.52 6.91 × 10–15

4 0.47 4.79 × 10–15

5 0.42 3.24 × 10–15

6 0.36 2.12 × 10–15

7 0.27 8.06 × 10–16

8 0.22 4.59 × 10–16

9 0.18 2.44 × 10–16

10 0.15 1.17 × 10–16

11 0.12 4.95 × 10–17

12 0.09 1.73 × 10–17

13 0.07 4.76 × 10–18

14 0.00 0 (Solid Grain)

15 0.00 0 (Viton Sleeve)

Figure 2.  (A) The porosity and numerically solved permeability for each of the 30,000 sub-volumes of  603 
voxels in training set 1 (blue) and the Kozeny–Carman fit (red) where K = 8.47× 10

−14 ϕ

1−ϕ

3.4 . (B) The 
machine learning regression model predicted permeability (blue) and the Kozeny–Carman permeability 
(red) plotted against the DBS solved permeability for 1000 sub-volumes of  603 voxels. Data in this figure was 
computed using  OPENFoam46 and  SciKitLearn41 and rendered using  MATLAB48.
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tractable information on both the nano and micron-scale porosity structures to make the feature selection in a 
multivariate regression representative of the characteristic properties influencing flow.

The image resolution of a medical CT scanner typically ranges between 250 and 500 microns, which corre-
sponds approximately to the sizes of our sub-volumes chosen for investigation, i.e.  603 voxels and  1203 voxels. To 
keep the total volume of rock in the training set constant (so as not to introduce any additional heterogeneity), 
the  1203 sub-volumes overlapped by 75% instead of the 50% in the  603 sub-volumes. The same feature vector 
extraction workflow was used for both training datasets with between 100 and 29,000 training images and a 
further 1,000 test sub-volumes.

Figure 4A shows the RMSE of the regression model predictions against the number of sub-volumes used in 
the training for both the  603 and  1203 cases. Both cases converge to approximately the same RMSE of ~ 4% with 
5000 training images. However, from Fig. 4B it is apparent that the spread of permeabilities is much greater for the 
 603 case, indicating that the  603 sub-volume size might be a better size to characterize the rock more accurately. 
This assertion is investigated further in “Upscaling to the Darcy-scale” section.

Upscaling to the Darcy‑scale. In this section we compare the ground truth DBS solution in ten  3603 test 
cases (Model 1) to the permeability predictions of three different upscaling models (Models 2, 3 & 4). First, we 
divided the remaining 90% of the micro-CT image not used in regression model training or benchmarking into 
ten  3603 voxel test cases which were solved with DBS (Model 1). The test cases were then further subdivided 
into 6 × 6 × 6 and 3 × 3 × 3 matrices of sub-volumes of  603 and  1203 voxels respectively for the Darcy upscaling 
tests (Fig. 5) These sub-volumes were then solved with DBS and the output permeability used in each block of 
the Darcy model (Model 2). Next, the feature vectors were extracted for each of the sub-volumes and the trained 
regression model was used to predict the permeability of each sub-volume using the feature set. Each sub-
volume was then assigned the permeability for the Darcy-scale flow model with its calculated total porosity from 
the feature vector set (Model 3). Finally, the porosity of each sub-volume was used to predict permeability using 
the Kozeny–Carman model fit described in “Sub-volume permeability, Kozeny–Carman model, and multivari-
ate regression” section and that was used for each grid block of the Darcy-scale model (Model 4).

Figure 3.  (A) The RMSE of the of the different feature sets plotted against the number of training sub-volumes 
used to train the model. (B) The relative feature importance for regression models of training set 1 using 3 
features (yellow), 15 feature (red), and 18 features (blue). Data in this figure was computed using  SciKitLearn41 
and rendered using  MATLAB48.

Figure 4.  (A) The RMSE of the model predictions with size of subvolume for both  603 and  1203 subvolumes 
vs the number of subvolumes in the training dataset. (B) The PDF of ground truth (DBS) permeabilities for 
both  603 and  1203 voxel sized sub-volume datasets. Data in this figure was computed using  OPENFoam46 and 
 SciKitLearn41 and rendered using  MATLAB48.
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The models are outlined as follows:

Model 1 Numerically solved  3603 volume with DBS (ground truth).
Model 2 Numerically solved both the  603 and  1203 sub-volumes with DBS and used the output permeability 
to solve a Darcy simulation (numerical upscaling).
Model 3 Used the features of the  603 and  1203 sub-volumes as input into the ML regression and then used the 
output permeability to solve a Darcy simulation (Machine Learning upscaling).
Model 4 Used the porosity of the  603 and  1203 sub-volumes as input into the Kozeny–Carman model and then 
used the output permeability to solve a Darcy simulation (Kozeny–Carman upscaling).

The permeability results of all these simulations are shown in Fig. 6 and Table 2. We found that in the case 
of the  603 sub-volumes the numerical upscaling and the machine learning upscaling both did equally well in 
predicting permeability with RMSE errors of 0.10 and 0.14, respectively, while the Kozeny–Carman did very 
poorly with a RMSE of 0.44. This poor performance is especially apparent in the case of test volume 2 which 
has the lowest porosity but the highest overall permeability in the ground truth, which is not something the 
Kozeny–Carman fit can predict. The upscaling results were not as accurate for the  1203 sub-volume cases with 
the machine learning upscaling slightly outperforming the numerical upscaling with a RMSE of 0.16 over the 
numerical upscaling’s 0.11. The Kozeny–Carman predictions were the worst, with a RMSE of 0.58. The overall 
increase in error for the  1203 volumes can be explained by the smaller spread of sub-volume permeabilities shown 
in Fig. 4B as compared to the  603 sub-volumes. The  1203 sub-volumes are too big to characterize the range of 
flow heterogeneities in the rock at this resolution and thus the output permeabilities all trend towards the mean 
permeability. It is also important to note that in all cases the total CPU time for the machine learning model 
after model training was as low as the Kozeny–Carman model but had similar prediction performance to both, 
the full DBS case and numerical upscaling.

Conclusion
In this study we have used the DBS model in GeoChemFoam in combination with decision tree based multi-
variate regression to upscale a microporous carbonate from the pore scale to the Darcy-scale. We found that 
multivariate regression can be used to upscale and predict permeability with very few training images and per-
formed equally well to numerical upscaling with a fraction of the computational cost. Additionally, increased 
sub-volume size had little effect on model predictions. However, a bigger sub-volume meant increased model 
CPU cost and decreased the accuracy of the upscaling models. Furthermore, we found that appropriate choice 
of feature vectors for extraction is important for regression model performance and connectivity information 

Figure 5.  The upscaling workflow: A  3603 voxel block (A) is cut into  603 sub-volumes (B). The permeability for 
each sub-volume is then solved using DBS for numerical upscaling, the features extracted for machine learning 
upscaling, and the porosity calculated for Kozeny–Carman upscaling. The upscaled permeability for each model 
is then assigned to each upscaling Darcy block (C), and then the Darcy permeability is solved on the upscaled 
volume (D). Images in this figure were rendered using  Paraview49.
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Figure 6.  The DBS calculated permeability of the  3603 voxel volumes plotted against the upscaled permeability 
results of Models 2, 3, and 4 using both,  603 (red) and  1203 (blue) sub-volumes. Data in this figure was computed 
using  OPENFoam46 and  SciKitLearn41 and rendered using  MATLAB48.

Table 2.  Results for  3603 Darcy blocks. *All model run times are for a 24 CPU workstation and summed 
across all volumes.

Size 
 [voxels3] Volume 1 Volume 2 Volume 3 Volume 4 Volume 5 Volume 6 Volume 7 Volume 8 Volume 9 Volume 10 RMSE

Total 
run time 
[min]*

Porosity 0.36 0.43 0.35 0.40 0.38 0.34 0.40 0.36 0.34 0.34 – –

360

Darcy Stokes 
Brinkman 
(ground 
truth) 
permeability 
 [m2]

6.59 × 10–14 9.47 × 10–15 7.67 × 10–14 3.10 × 10–14 3.69 × 10–14 6.50 × 10–15 8.19 × 10–14 9.05 × 10–15 2.45 × 10–14 4.11 × 10–13 – 1500

60

Numeri-
cal DBS 
upscaled 
permeability 
 [m2]

5.85 × 10–14 1.01 × 10–14 1.50 × 10–14 1.70 × 10–14 3.40 × 10–14 5.76 × 10–15 7.93 × 10–14 9.63 × 10–14 3.71 × 10–14 4.00 × 10–13 0.11 240

Machine 
learning 
upscaled 
permeability 
 [m2]

7.36 × 10–14 1.07 × 10–14 1.48 × 10–14 1.68 × 10–14 2.61 × 10–14 5.91 × 10–15 5.91 × 10–14 1.01 × 10–14 2.74 × 10–14 2.26 × 10–13 0.14 3

KC upscaled 
permeability 
 [m2]

3.40 × 10–14 4.60 × 10–14 2.26 × 10–14 4.22 × 10–14 3.30 × 10–14 1.20 × 10–14 3.97 × 10–14 2.27 × 10–14 1.74 × 10–14 4.30 × 10–14 0.44 3

120

Numeri-
cal DBS 
upscaled 
permeability 
 [m2]

7.46 × 10–14 8.79 × 10–15 1.39 × 10–14 2.08 × 10–14 3.90 × 10–14 6.83 × 10–15 9.89 × 10–14 8.39 × 10–15 3.74 × 10–14 5.89 × 10–13 0.10 240

Machine 
learning 
upscaled 
permeability 
 [m2]

6.98 × 10–14 1.02 × 10–14 1.76 × 10–14 1.76 × 10–14 2.43 × 10–14 7.50 × 10–15 3.99 × 10–14 9.65 × 10–15 2.80 × 10–14 2.64 × 10–13 0.16 3

Kozeny–
Carman 
upscaled 
permeability 
 [m2]

1.49 × 10–14 3.43 × 10–14 1.83 × 10–14 3.20 × 10–14 2.37 × 10–14 1.03 × 10–14 3.84 × 10–14 1.61 × 10–14 1.12 × 10–14 1.24 × 10–14 0.58 3



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2625  | https://doi.org/10.1038/s41598-021-82029-2

www.nature.com/scientificreports/

is the most important feature to include in the models. Machine learning based multivariate regression is thus 
an effective way of increasing prediction speed and accuracy during upscaling, but this method requires both 
precise multiscale imaging and an in depth understanding of connectivity in multiscale porosity structures.

It is important to note that for the purposes of this study, we have defined the Darcy-scale to be any scale 
where the porosity–permeability relationship is explicitly defined for every grid block in the model. However, 
all samples are derived from a single core plug that is reasonably homogenous for a carbonate, and thus do 
not include larger features such as vugs and fractures that would likely be present in core plugs from a highly-
heterogenous carbonate reservoir. It would be relatively straightforward to train a model on a different rock 
sample of similar size and complexity using the same imaging and modelling procedures. However, larger poros-
ity structures would require an additional step in the workflow. They could be incorporated into the modelling 
framework using another upscaling step with the same D-B-S approach, where Darcy flow is computed in the 
porous matrix and Stokes in the fractures and vugs.

Reservoir characterization and modelling as well as history matching and uncertainty quantification at scales 
larger than a core plug require many core samples, which are expensive to drill and image. One advantage of this 
upscaling technique is that realistic synthetic geometries could be created using already established machine 
learning  tools50 with a small number of samples to ultimately create a large image library with accurate poros-
ity–permeability relationships for use in uncertainty quantification without the need for large numbers of drilled 
samples or laboratory experiments. The addition of these larger structural scales is out of the scope of this work, 
but is a target of future research.

Furthermore, using this workflow to calculate permeability is just a steppingstone toward investigating more 
complex physics, in particular multiphase and reactive transport. Future work will also include investigation 
into using features that do not require high resolution imaging such as Darcy-scale porosity and tracer transport 
curves.
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