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Previous studies have shown that a rate of temporal decline in visual working memory (vWM) highly depends on a number of memory
items. When people retain the information of many (≥ 4) stimuli simultaneously, their memory representations are fragile and rapidly
degrade within 2–3 s after an offset (called the “competition” among memory items). When a memory load is low (1 or 2 items), in
contrast, the fidelity of vWM is preserved for a longer time because focused attention to the small number of items prevents the
temporal degradation. In the present study, we explored neural correlates of this load-dependent decline of vWM in the human brain.
Using electroencephalography and a classical change-detection task, we recorded neural measures of vWM that have been reported
previously, such as the contralateral delay activity (CDA) and a suppression of alpha power (8–12 Hz). Results indicated that the load-
dependent decline of vWM was more clearly reflected in the change in power and speed of alpha/beta rhythm than CDA, suggesting
a close relationship of those signals to an attention-based preservation of WM fidelity.
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Introduction
Although visual working memory (vWM) plays a critical
role in a variety of cognitive tasks, its neural correlates
remain unclear and a matter of debate (Baddeley 2012;
Luck and Vogel 2013; Ma et al. 2014; D’Esposito and
Postle 2015; Eriksson et al. 2015; Stokes 2015; Kamin-
ski et al. 2017; Leavitt et al. 2017; Jacob et al. 2018).
Some researchers indicated an importance of persis-
tent neuronal activity in the frontoparietal region for
maintenance of WM (Constantinidis et al. 2018), whereas
others reported a close relationship of WM with oscil-
latory signals (Roux and Uhlhaas 2014; Johnson et al.
2017; van Ede 2018), such as theta (4–8 Hz) and gamma
(>30 Hz) rhythms (Lundqvist et al. 2018). In humans,
a representative neural measure of vWM is the con-
tralateral delay activity (CDA), an event-related potential
(ERP) observed in the parieto-occipital cortex (Vogel and
Machizawa 2004; Wang et al. 2019). More recent studies
reported a role of cross-frequency coupling (Canolty et al.
2006; Sauseng et al. 2009; Axmacher et al. 2010; Lisman
and Jensen 2013; Reinhart and Nguyen 2019), such as
phase-amplitude coupling between theta and gamma
bands. Other candidates include a change in power of
alpha (Jensen et al. 2002; Bonnefond and Jensen 2012;
Wianda and Ross 2019) and beta (Palva et al. 2011; Erick-
son et al. 2017; van Ede et al. 2017) rhythms, as well as
change in their oscillation frequency (Moran et al. 2010;
Cohen 2011; Babu Henry Samuel et al. 2018; Noguchi and
Kakigi 2020).

Most previous studies have investigated neural activity
during a retention interval (maintenance) of WM task. In
the present study, we approached this issue by focusing
on a decline (rather than the maintenance) of vWM.
Recent studies showed that a rate of temporal decline
in WM highly depends on a number of memory items
(Lewis-Peacock and Norman 2014; Pertzov et al. 2017;
Panichello et al. 2019). When people memorized 1 or 2
visual items simultaneously presented, they can repro-
duce the items in fine detail after a retention period of
2–3 s. When a number of memory items was large (≥ 4),
however, their memory representations rapidly degraded
within a few seconds. This decline in the high-load con-
ditions is thought to reflect a competition between items
that accelerated degradation of memory representations
(Pertzov et al. 2017).

In Experiment 1 of the present study, we repli-
cated this finding using a traditional paradigm of WM
in which participants memorized colors of multiple
visual items (Vogel and Machizawa 2004). We then
recorded human electroencephalography (EEG) signals
and tracked changes in vWM measures (e.g. CDA and
alpha amplitude) over time (Exp. 2). We hypothesized that
neural measures reflecting a fidelity of WM would show
the load-dependent decline described above. Specifically,
memory-related signal in those measures would show a
substantial decline from the early to late periods of a
retention interval in high-load conditions, while it would
be preserved in low-load conditions.
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Materials and methods
Participants
Fourteen healthy subjects (8 females, age: 20–23) partici-
pated in Experiment 1 (behavioral study), and 42 healthy
subjects participated in Experiment 2 (EEG study). In
Experiment 2, we excluded the data of 5 subjects from
analysis due to a technical problem (disconnection of
a trigger line, n = 3), excessive noise in EEG waveforms
(n = 1), and a poor behavioral performance (memory
capacity K < 0 in R6 trials, see below, n = 1), leaving 37
participants in the final dataset (20 females, age range
19–22). All participants had normal or corrected-to-
normal visual acuity and normal color vision. After the
nature of the study had been explained, we received
informed consent from each participant. All experiments
were conducted in accordance with regulations and
guidelines approved by the Ethics Committee of Kobe
University, Hyogo, Japan.

Stimuli and task (Exp. 1)
In Experiment 1, we aimed to replicate the load-
dependent decline of vWM (Lewis-Peacock and Norman
2014; Pertzov et al. 2017; Panichello et al. 2019) with a
classical paradigm in which participants retained color-
position associations of stimuli (squares) in a left or right
visual field. All stimuli were presented using the Matlab
Psychophysics Toolbox (Brainard 1997; Pelli 1997) and a
CRT monitor at a refresh rate of 60 Hz. Each trial was
preceded by a black fixation point (0.18 × 0.18 deg.) over
a gray background for 800 ms. Next, a cue stimulus (an
arrow pointing leftward or rightward, 1.34 deg.) appeared
over the central field for 33 ms (Fig. 1A) to direct attention
of participants. After another fixation period of 467 ms,
participants viewed a bilateral array of colored squares
for 150 ms (memory array). The array had an equal
number of squares in left and right visual fields (1, 2,
4, or 6 per hemifield, variable across trials). For each
of basic 9 colors (black, white, red, green, blue, yellow,
magenta, cyan, and orange) used in a previous study
(Vogel and Machizawa 2004), we generated 2 variants
with different hues; for example, 2 equi-luminant colors,
greenish blue and reddish blue, were generated as
variants of blue. The color of each memory item in
Experiment 1 was randomly chosen from those 18
colors (9 basic colors × 2 variants). Their locations
were also randomly selected over 2 invisible rectangular
regions of 3.89 deg (horizontal) × 6.81 deg (vertical)
in both hemifields (eccentricity: 3.4 deg.), with the
constraint that a minimum distance between squares
was 1.94 deg.

After a retention period of 0, 750, 1,350, or 2,350 ms
(variable across trials), another array consisting of a
blank circle and squares (test array) was displayed until
participants pressed any key. Positions of the blank items
were identical to those in memory-array items, with
the blank circle always located in the cued hemifield.
Participants were asked to move their attention following

the cue and to report a color of a memory item that
had been presented at the position of the blank circle.
Specifically, we showed a pair of color variants (e.g.
greenish blue and reddish blue) in the test array, one
just above and the other below a fixation point (options).
Participants answered the color of the memory item at
the circle position by choosing 1 of the 2 options (chance
level: 50%). They were also informed that the blank circle
always appeared in the cued hemifield. Because an exact
position of the blank circle had been unknown till the
test array in load-2, load-4 and load-6 trials, participants
had to memorize all items in the cued hemifield during
the retention period.

A combination of memory loads (1/2/4/6) and reten-
tion intervals (0, 750, 1,350, 2,350 ms) produced 16 types
of trials. Each experiment consisted of 432 trials (72 trials
× 6 sessions) in which those 16 conditions were randomly
intermixed. A rate of memory decline was measured
by estimating a slope of changes in task accuracy as a
function of retention period.

Stimuli and task (Exp. 2)
In Experiment 2, we investigated two representative
EEG measures of vWM (CDA and alpha amplitude) and
tracked their changes over time. A sequence of 1 trial
is shown in Fig. 2A. After a cue of 33 ms, memory
array was presented for 150 ms containing an equal
number of items in left and right visual fields (1–6).
Participants were asked to memorize the squares in
a hemifield (left or right) indicated by the cue. After
a retention period of 2350 ms (fixation screen), we
tested their memory by presenting the second array (test
array) that either was identical to the memory array
(no-change trials) or differed by 1 color (change trials).
Participants judged whether memory items (squares)
in the cued hemifield were the same (“no-change”
response) or not (“change” response) between the two
arrays, ignoring all items in uncued hemifield (cued
change-detection task).

There were 8 types of trials produced by a combination
of cued hemifield (left/right) and memory array size (WM
load, 1/2/4/6). Trials with leftward cue and 1 memory
item were named as L1, whereas trials with rightward
cue and 6 memory items were called as R6. The 9th con-
dition (catch trials) was also included to check whether
participants moved their attention to the cued hemifield.
The memory and test arrays in those catch trials had
2 squares in each hemifield. While the color change
usually occurred in the cued hemifield, it took place in
the uncued hemifield in the catch trials (hence, partic-
ipants should press “no-change” button). A high rate of
reporting “change” in the catch trials would indicate that
a participant did not allocate his/her attention following
the cue.

An experimental session consisted of 100 trials in
which 4 catch trials were randomly intermixed with the
96 trials of the 8 conditions (L1–R6, 12 trials for each). A



Yaju Li and Yasuki Noguchi | 3

Fig. 1. Experiment 1 (behavioral study). A) Sequence of 1 trial. Participants memorized items in a hemifield (left or right) indicated by a cue (arrow).
After a random delay of 0–2,350 ms, they reported a color of an item that had been presented at a location indicated by a blank circle. Specifically, they
chose one of 2 colors (options) in the central field of the test array (chance level: 50%). B) Task accuracy as a function of a retention interval. Dots and
error bars in each color (black: load 1, blue: load 2, green: load 4, red: load 6) show mean ± SE across 14 participants with a solid line indicating a linear
regression of those data. C) Slopes of the regression line. Negative slopes observed in load 4 and load 6 showed a temporal decay of vWM in those
conditions. ∗∗P < 0.01, 1-group t-test corrected with the Bonferroni method.

ratio of the change: no-change trials in L1–R6 was 1:1.
Each participant underwent 5 sessions.

We analyzed behavioral data by computing a hit
rate (percentage of reporting “change” in the change
trials) and false-alarm (FA) rate (percentage of reporting
“change” in the no-change trials) for each memory load.
Memory capacity K was also estimated using the hit
and FA rates based on the formula below (Pashler 1988;
Cowan 2001).

K = S × (
Hit − FA

)

where S indicate the size of memory array (1, 2, 4, or 6).

EEG measurements and preprocessing
Neural activity was recorded with the ActiveTwo system
by Biosemi (Amsterdam, Netherlands). We measured EEG
signals at 32 points over the scalp (FP1, FP2, AF3, AF4,
F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8,
CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, O1, Oz,
and O2, Fig. 2B) with a sampling rate of 2,048 Hz and an
analog low-pass filter of 417 Hz. The Brainstorm toolbox
for MATLAB (Tadel et al. 2011) was used to perform the

preprocessing of EEG data. We first applied a band-pass
filter of 0.5–200 Hz to eliminate low- and high-frequency
noises. All data were referenced with an average poten-
tial over the 32 electrodes. We then segmented EEG wave-
forms into each trial (epoch range: −1,300 to 3,100 ms
relative to an onset of the memory array) and classified
them into the 9 conditions. Waveforms with a max–
min amplitude larger than 150 μV at −700 to 2,500 ms
were excluded from analyses. Across-trial averaging was
performed to identify the CDA (Fig. 2C).

Analyses of speed and amplitude of oscillatory
signals
As a main oscillatory signal related to vWM, we analyzed
change in an amplitude of alpha rhythm (8–12 Hz) con-
tralateral to a cued hemifield (Jensen et al. 2002; Hakim
et al. 2020; Wang et al. 2021). First, we extracted the
alpha rhythm in EEG waveforms using a band-pass filter
of 8–12 Hz. An envelope of the filtered waveform was
identified with the Hilbert transformation. An across-
trial average of the envelope reflected changes in alpha
amplitude over time.
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Fig. 2. Experiment 2 (EEG study). A) the cued change-detection task. After a cue to direct attention of participants, memory and test arrays were
sequentially presented with a retention interval between them. The 2 arrays were identical (no-change trials) or differed by 1 color (change trials).
Participants moved their attention to a cued hemifield and answered whether the 2 arrays were the same (“no-change” response) or not (“change”
response). B) Two-dimensional array of 32 EEG electrodes. We chose 8 electrodes over the parieto-occipital regions (shown in red) as SOIs, based on
previous studies (see text). (C) ERP averaged across all participants. Waveforms at the left parieto-occipital sensor (PO3) showed a negative ERP
component (CDA) when participants memorized items (squares) in right visual field (R1 and R4 trials, blue lines) compared with when they
memorized items in left visual field (L1 and L4, red lines). This pattern was reversed in the right hemisphere (PO4). The CDA was more clearly seen
when a number of memory items (load) was 4 (L4 vs. R4, lower panels) than 1 (L1 vs. R1, upper panels).

Statistical procedures
Neural responses related to vWM were identified by
the difference between Retain-Left trials (L1, L2, L4,
and L6) and Retain-Right trials (R1, R2, R4, and R6). For

example, ERP waveforms in the left hemisphere became
more negative when items in right visual field was
retained (Retain-Left > Retain-Right, Fig. 2C), whereas
this was reversed in the right hemisphere (Retain-Left <
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Retain-Right). Contrasting Retain-Left and Retain-Right
trials thus showed hemisphere-specific neural responses
related to WM maintenance (CDA, t-maps in Fig. 3A).
The memory-related responses should be larger in high-
load trials (L4 vs. R4 and L6 vs. R6) than low-load trials
(L1 vs. R1 and L2 vs. R2) at least at 300–900 ms (load
effect) (Vogel and Machizawa 2004). Because a paired
t-test (Retain-Left vs. Retain-Right, n = 37) was repeated
for 32 sensor positions, we resolved an issue of multiple
comparisons by false discovery rate approach, adjusting
a significance threshold with the Benjamini–Hochberg
correction (Benjamini and Hochberg 1995). Sensors
showing a significant difference after the correction are
shown by orange rectangles in Fig. 3A.

We then tracked a temporal decrease of vWM signals
by contrasting an early (300–900 ms) and late (1900–
2500 ms) periods of the retention interval. The definition
of the early period (300–900 ms) was based on previous
studies (Vogel and Machizawa 2004; Fukuda et al. 2015).
Data from 0–300 ms were not used, because they might
contain visually evoked responses to the cue and mem-
ory array (although it was hard to rule out those sensory
responses even in the time window of 300–900 ms). The
late period, on the other hand, was defined as an interval
of the same length (last 600 ms) of the retention period.
As sensors of interest (SOIs), we selected 8 channels
over the parieto-occipital region (P3/P4, P7/P8, O1/O2,
and PO3/PO4, shown as red in Fig. 2B) based on previous
studies (Vogel and Machizawa 2004; Mazaheri and Jensen
2008; Fukuda et al. 2015). Mean ERP amplitudes at 300–
900 ms were averaged across the 8 SOIs and shown in left
panels of Fig. 3B. Namely, mean ERPs at P3, P7, O1, and
PO3 in Retain-Right trials were averaged with those at P4,
P8, O2, and PO4 in Retain-Left trials (as the contralateral
condition). Differences between the contralateral and
ipsilateral conditions (CDA) were shown in Fig. 3C. The
same analyses were made for alpha amplitude (Fig. 4).

Finally, we performed a direct comparison of the
early and late periods in Fig. 5 (left panels), using a
2-way analysis of variance (ANOVA) of memory loads
(1/2/4/6) × retention periods (early/late). For each period,
a linear regression line was also computed to evaluate
the load effect (changes in vWM signals as an increase
in memory load, red, and blue lines). Slopes of those
regression lines are shown in the right panels of Fig. 5.

Results
Behavioral data (Exp. 1)
Fig. 1B shows changes in task accuracy as a function of
a retention interval. Clear decreases in accuracy were
observed in load-4 (green line) and load-6 trials (red
line). Slopes of linear regression (Fig. 1C) were signifi-
cantly negative in load 4 (t(13) = 4.75, corrected P = 0.002,
1-group t-tests with the Bonferroni correction) and load
6 (t(13) = 4.22, P = 0.004) but not in load 1 (t(13) = 1.48,
uncorrected P = 0.16) and load 2 (t(13) = 0.81, uncorrected
P = 0.43). These data successfully replicated the previous

Fig. 3. Temporal decline of the CDA. A) The t-map between Retain-Left
trials (L1, L2, L4, and L6) and Retain-Right trials (R1, R2, R4, and R6). Top
panels show a comparison of L1 versus R1 (load 1), whereas L6 and R6
were compared in the bottom panels (load 6). Results in early
(300–900 ms) and late (1900–2500 ms) periods of retention interval are
displayed in left and right panels, respectively. Black dots and white
circles show sensor positions showing a significant (P < 0.05,
uncorrected) difference. Orange rectangles denote a significant
difference after a correction of multiple comparisons (see texts).
B) Mean ERP averaged across the 8 SOIs (Fig. 2B). Solid/dotted lines show
the data when participants memorized items in a visual field
contralateral/ipsilateral to a sensor position. C) Difference between
contralateral and ipsilateral conditions (CDA). ∗P < 0.05, ∗∗∗P < 0.001,
1-group t-test corrected with the Bonferroni method. All error bars
denote SE across participants.
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Fig. 4. Changes in amplitude of alpha rhythm (8–12 Hz). A) t-maps, B)
mean amplitude averaged across the 8 SOIs, C) difference between
contralateral and ipsilateral conditions. In the early period (300–900 ms,
left panels), memory-related responses (reduced amplitudes in the
contralateral than ipsilateral conditions) were clearly observed in
high-load rather than load–load conditions. In contrast, those signals
were more prominent in low-load conditions in the late period
(1900–2500 ms, right panels). ∗P < 0.05, ∗∗∗P < 0.001, 1-group t-test
corrected with the Bonferroni method. All error bars denote SE across
participants.

findings (e.g. Pertzov et al. 2017) that WM fidelity in high-
load conditions rapidly degraded within 2–3 s while that
in low-load condition was preserved.

Fig. 5. Direct comparisons of memory-related signals between the early
versus late periods. A) CDA. The data in the left panel are the same as
Fig. 3C. Significant reductions of CDA were seen in all loads (left panel),
showing the “load-independent” decline from the early to late periods. A
slope of linear regression (change in CDA as a function of memory load,
right panel) was significantly negative in the early period but not in the
late period. B) Differential alpha amplitude (contra–ipsi). A significant
reduction between the early and late period was selectively seen in load
6, showing the “load-dependent” decline. Slopes of linear regression
(right panel) were significantly negative in the early period but positive
in the late period. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, paired t-test (early vs.
late) in left panels and 1-group t-test in right panels. All error bars
denote SE across participants.

Behavioral data (Exp. 2)
Means and standard errors (SEs) of hit rates for the
change trial were 97.26 ± 0.82% (load 1, an average of L1
and R1), 95.64 ± 0.86% (load 2), 81.73 ± 2.02% (load 4), and
63.98 ± 2.05% (load 6). Mean FA rates for the no-change
trial were 1.22 ± 0.33% (load 1), 3.07 ± 0.49% (load 2),
20.34 ± 1.44% (load 4), and 29.53 ± 2.30% (load 6). Memory
capacity K estimated from those hit and FA rates were
0.96 ± 0.01 (load 1), 1.85 ± 0.02 (load 2), 2.46 ± 0.10 (load
4), and 2.07 ± 0.11 (load 6). These results were consistent
with previous studies using the change-detection task
(Vogel and Machizawa 2004; Fukuda et al. 2015). Finally,
percentage of “change” response in the catch trials was
3.65 ± 0.72%. This was far below the hit rate in load-2
trials (95.64%), showing that the participants correctly
moved their attention to a cued hemifield.

Contralateral delay activity
Fig. 3A shows t-maps (Retain Left vs. Retain Right) of
ERP for each memory load. In case of the top-left
panel, mean ERP amplitude at 300–900 ms in L1 was
compared with that in R1. We observed clear CDA
over the parieto-occipital cortex in the early (300–
900 ms, left panels) and late (1900–2500 ms, right
panels) periods of the retention interval. ERP amplitudes
averaged across the 8 SOIs are shown in Fig. 3B. Solid and
dotted lines denote ERP amplitudes when participants
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memorized items in a visual field contralateral and
ipsilateral to a sensor position, respectively. Differen-
tial amplitudes between contralateral and ipsilateral
conditions (CDA) are shown in Fig. 3C. One-group t-test
for each memory load (corrected with the Bonferroni
method) indicated significant CDAs at load 1 (t(36) = 4.14,
corrected P < 0.001, Cohen’s d = 0.96), load 2 (t(36) = 7.58,
P < 0.001, d = 1.76), load 4 (t(36) = 8.09, P < 0.001, d = 1.88),
and load 6 (t(36) = 9.84, P < 0.001, d = 2.29) in the early
retention period. Significant CDA was also detected in
the late period; load 1 (t(36) = 2.75, P = 0.037, d = 0.64),
load 2 (t(36) = 4.69, P < 0.001, d = 1.09), load 4 (t(36) = 4.41,
P < 0.001, d = 1.03), and load 6 (t(36) = 4.37, P < 0.001,
d = 1.02).

Oscillation amplitude
We next analyzed memory-related changes in alpha
amplitude. In the left parieto-occipital cortex, we
observed a decrease in oscillation amplitude when
participants memorized items in right than left visual
field (Retain Left > Retain Right). In the right hemisphere,
on the other hand, the decrease in amplitude was seen in
Retain Left trials (Retain Left < Retain Right). Differential
t-maps (Retain Left—Retain Right) thus showed positive
and negative t-values in the left and right parieto-
occipital cortex, respectively (Fig. 4A). In the early period,
this contrast between the 2 hemispheres became clearer
with an increase in memory load (Fig. 4A, left panels). Dif-
ferences between contralateral and ipsilateral conditions
(Fig. 4C) were significant in load 2 (t(36) = 2.90, P = 0.025,
d = 0.68), load 4 (t(36) = 4.21, P < 0.001, d = 0.98), and load
6 (t(36) = 3.25, P = 0.01, d = 0.76). Although those memory-
related changes were attenuated in the late period (right
panels), we observed a significant difference between
contralateral and ipsilateral conditions in load 1 (Fig. 4C,
t(36) = 3.21, corrected P = 0.011, d = 0.75), suggesting that
the memory-related signal was preserved in the late
period when a memory load was low.

As a secondary measure of oscillatory signal, we also
analyzed a speed of alpha/beta rhythm during the reten-
tion period (Babu Henry Samuel et al. 2018; Noguchi
and Kakigi 2020). This analysis provided results consis-
tent with alpha amplitude, showing the memory-related
acceleration of brain rhythm in high-load condition of
the early period but in low-load conditions of the late
period (Fig. S1 in Supplementary Material).

Direct comparison between the early and late
periods
Results of direct comparisons between the early and
late periods are shown in left panels of Fig. 5. Red
and blue points indicate hemisphere-specific memory
responses (contralateral—ipsilateral) in the early and
late periods (the same data as Figs. 3C and 4C). In the
CDA (upper panel), a 2-way ANOVA of memory load
(1/2/4/6) × retention period (early/late) with the Green-
house–Geisser correction indicated significant main
effects of load (F(2.33,83.84) = 10.91, P < 0.001, η2 = 0.233)

and period (F(1,36) = 89.29, P < 0.001, η2 = 0.713) as well
as their interaction (F(3,108) = 27.29, P < 0.001, η2 = 0.431).
A post hoc test between the early and late periods for
each memory load revealed a significant reduction of
CDA in load 1 (Bonferroni-corrected P < 0.001), load 2
(P < 0.001), load 4 (P < 0.001), and load 6 (P < 0.001). In the
oscillation amplitude (lower panel), the ANOVA yielded
no main effect of load (F(3,108) = 2.46, P = 0.067, η2 = 0.064)
or period (F(1,36) = 1.26, P = 0.27, η2 = 0.034) but showed
a significant interaction (F(1.8,64.62) = 9.50, P < 0.001,
η2 = 0.209). A post hoc test showed a significant difference
of early versus late in load 6 (corrected P = 0.025).

Results of the linear regression analysis (changes in
vWM signals regressed by memory load) are shown in
right panels of Fig. 5. In CDA, the slope of a regression
line was significantly negative in the early period
(t(36) = −4.51, P < 0.001, d = −1.05) but not in the late
period(t(36) = −1.07, P = 0.29, d = −0.25), indicating a
decline of the load effect over time. In alpha amplitude,
the slope was significantly negative in the early period
(t(36) = −2.10, P = 0.043, d = −0.49) but significantly pos-
itive in the late period (t(36) = 3.50, P = 0.0012, d = 0.81),
indicating a reversal of the load effect. These differences
between CDA and alpha amplitude were also seen in
time courses in Fig. 6.

Discussion
In the present study, we investigated changes in neural
signatures of vWM over time. In the early period of a
retention interval (300–900 ms), both CDA and alpha
amplitude showed a similar pattern of WM activity that
strengthened with a memory load (low loads < high
loads). In the late period, the CDA showed a significant
temporal decline in all memory loads (Fig. 5A, left). As
shown by the significant interaction of memory load
(1/2/4/6) × retention period (early/late), this decline was
more evident in high-load than low-load trials, which
partly resembled the load-dependent decline in behav-
ioral data (Fig. 1C). On the other hand, the direct compari-
son of alpha amplitude between early versus late (Fig. 5B,
left) indicated a selective decline of memory-related sig-
nals in load 6. Moreover, the alpha amplitude showed a
reversed load effect in the late period; vWM signal was
stronger in low-load than high-load conditions (Fig. 5B,
right). Taken together, the load-dependent decline (long-
term preservation of low-load memory) was more clearly
observed in the oscillation amplitude than CDA. These
results indicate different roles of CDA and alpha ampli-
tude in a maintenance of vWM contents, consistent with
several EEG studies recently published (Hakim et al. 2019;
Jin et al. 2020).

Behavioral data have shown that a fidelity of WM
was preserved longer as a number of memory item was
smaller (Pertzov et al. 2017; Panichello et al. 2019). In
contrast, neural underpinnings of this load-dependent
decline have remained to be investigated, because
most EEG studies on vWM have set a short retention

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgac015#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgac015#supplementary-data
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Fig. 6. Full-time courses of ERP and alpha amplitude averaged across the
8 SOIs. A) Comparisons between contralateral (orange) and ipsilateral
(black) conditions in each memory load. Background shadings denote SE
across 37 participants. B) Differential waveforms (mean ± SE across
participants). Note that alpha amplitude (right panel) in the late period
showed a reversed load effect in which memory-related responses
(decrease in amplitude) was more evident in low-load trials (black and
blue) than high-load conditions (green and red).

period around 1 s. Although some studies set a longer
retention period of > 1 s, they reported a general (load-
independent) decrease of memory-related signals over
time (Fukuda et al. 2015; Diaz et al. 2021; Li et al. 2021).
In this sense, our data of alpha amplitude filled a gap
between behavioral and EEG data in previous studies,
proposing a neural correlate of a long-term preservation
of WM fidelity selective to low-load conditions.

Why was the long-term preservation of WM repre-
sented in oscillatory measures? We presume that a key

factor associating those 2 is attention. A classical model
of cognitive psychology proposed a critical role of atten-
tion in converting an iconic memory (which normally
degrades within 1 s; Sperling 1960) into a short-term
memory (Shiffrin et al. 1974). This role of attention in
preserving memory is also supported by recent evidence.
For example, Pertzov et al. (2017) showed that a pre-
sentation of a retro-cue protected vWM from temporal
decline. Participants in their experiment memorized 4
items (bars) with various orientations and reported an
orientation of one of the 4 bars randomly determined
after a delay (0.1–3 s). When a retro-cue was presented
just after the memory array that predicted a color of bar
to report later, a fidelity of that item was well preserved
even after the longest delay of 3 s. Focusing attention to
a subset of items therefore is an effective way to prevent
temporal decline. Consistent with this view, changes in
alpha amplitude was closely associated with a spatial
allocation of attention (Worden et al. 2000; Bauer et al.
2014). The reversed load effect of alpha amplitude in the
late period (Fig. 5) thus would reflect attentive processing
of 1 or 2 memory item(s), which prevented a temporal
degradation and achieved a long-term preservation of
WM fidelity.

Supplementary material
Supplementary material can be found at Cerebral Cortex
Communications online.
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