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PRMT5 Promotes Human Lung Cancer
Cell Apoptosis via Akt/Gsk3β Signaling
Induced by Resveratrol

Yong Li1,*, Yanxia Yang2,*, Xiaoping Liu2, Yiwen Long3,
and Yonghua Zheng4

Abstract
Protein arginine methyltransferase 5 (PRMT5) is implicated in various types of human cancer and tumor development,
especially in lung cancer. Nevertheless, it is still unclear whether suppression of PRMT5 could promote lung cancer cell
apoptosis and chemosensitivity induced by resveratrol, and the underlying molecular mechanism remains completely
unknown. Here, we showed that PRMT5 was overexpressed in human lung cancer tissues and different types of lung cancer
cell lines. Moreover, we constructed PRMT5 stable knockdown cell lines (A549 and ASCT-a-1) and investigated the roles of
PRMT5 and the related signaling pathway in lung cancer cell apoptosis induced by resveratrol. Our results indicated that
inhibition or down-regulation of PRMT5 by GSK591, a PRMT5-specific inhibitor, or shRNAs markedly enhanced cell apoptosis
and chemosensitivity stimulated by resveratrol. Further investigation showed that inhibition or down-regulation of PRMT5
further reduced Akt/GSK3b phosphorylation and the downstream targets cyclin D1 and E1 expression upon resveratrol
treatment. Our findings suggest that PRMT5 is a pivotal mediator for human lung cancer cell death induced by resveratrol,
which also reveals that PRMT5 may serve as a new therapeutic target for the treatment of human lung cancer.
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Introduction

Lung cancer is the most deadly human cancer worldwide,

with a highly lethal and aggressive malignant tumor. Two

main subtypes of human lung cancer are identified: non-

small cell lung carcinoma (NSCLC) and small cell lung

carcinoma1. The most common type of lung cancer is

adenocarcinoma, which constitutes around 40% of all lung

cancer cases. NSCLC is the most frequently diagnosed

cancer and the primary cause of human death in China. So

far, the primary therapeutic methods for lung cancer include

surgery, radiotherapy, chemotherapy, immunotherapy, and

combination treatment. Although these methods have their

advantages and disadvantages for the treatment of NSCLC,

the therapeutic effects are still poor, and the mortality rate of

patients with NSCLC remains high. Based on the currently

available therapeutic technologies, most patients with

NSCLC cannot be cured. Therefore, identification of new

therapeutic targets for NSCLC is urgently needed.

It has been shown that protein arginine methyltransferase

5 (PRMT5) was crucially involved in the regulation of chro-

matin remodeling, gene expression, cell cycle progression,
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cell proliferation, protein functions, and metabolism2,3.

PRMT5 belongs to the type II arginine methyltransferases,

and it catalyzes the formation of symmetric dimethylargi-

nine of protein substrates at the arginine residues. PRMT5

was found to directly methylate arginine residues and led to

symmetric dimethylation of histone H3 and H4, which in

turn remodeled chromatin structure and regulated gene tran-

scription4,5. Recently, increasing evidence has shown that

PRMT5 is ectopically expressed in many human cancers,

such as breast cancer, lymphoma, leukemia, and lung cancer,

and PRMT5 also plays a vital role in the regulation of tumor

cell proliferation and transformation6–9. In addition, PRMT5

was found to methylate the promoters of forkhead box O

transcription (FOXO) factors and epidermal growth factor

receptors (EGFR) to protect cancer cells against apoptosis

and promote cell growth10,11. Previous research has reported

that knockdown of PRMT5 suppressed tumor cell growth

and cell cycle progression via regulation of the PI3-K/Akt

signaling axis12. Nevertheless, it is still unclear whether

PRMT5 could promote lung cancer cell apoptosis and che-

mosensitivity induced by resveratrol, and the underlying

molecular mechanism remains completely unknown.

In the current study, we found that PRMT5 was highly

expressed in human lung cancer tissues and different types of

human lung cancer cell lines. Moreover, inhibition or silen-

cing of PRMT5 by a specific inhibitor (GSK591) distinctly

and further reduced cell viability and promoted cell apopto-

sis induced by resveratrol. Furthermore, inhibition or down-

regulation of PRMT5 promoted lung cancer cell death and

chemosensitivity through regulation of the Akt/GSK3b sig-

naling axis upon resveratrol stimulation. Our findings pro-

vide new insight into the role of PRMT5 in lung cancer cell

death induced by resveratrol. Our results also indicate that

PRMT5 may serve as a novel therapeutic target for the treat-

ment of human lung cancer.

Material and Methods

Chemicals

Trans-resveratrol was purchased from Sigma-Aldrich

(Cat#R5010, St. Louis, MO, USA). GSK591, a specific inhi-

bitor of PRMT5, was purchased from Sigma-Aldrich (Cat#

SML1751, St Louis, MO, USA). The study was approved by

the Ethical Committee of Ruijin Hospital Affiliated to

Shanghai Jiao Tong University School of Medicine

(LWEC201603).

Cell Culture

The following cell lines were used in our study: ASTC-a-1

and A549 cells were cultured in Dulbecco’s Modified

Eagle’s Medium (1:1) (DMEM, Gibco, Thermo Fisher Sci-

entific, Inc., Waltham, MA, USA) supplemented with 10%
(v/v) FBS (GIBCO, Co. Ltd., Grand Island, NY, USA),

50 units/ml penicillin, and 50mg/ml streptomycin. PC14,

H69, and IMR90 (primary human fetal lung fibroblast cells)

cells were cultured in RPMI 1640 medium (Gibco, Thermo

Fisher Scientific, Inc., Waltham, MA, USA), containing

10% FBS, 50 units/ml penicillin and 50mg/ml streptomycin.

Cells were maintained in a humidified atmosphere incubator

at 37�C containing 5% CO2 and 95% air.

Constructs and Generation of Lentivirus

Human PRMT5 shRNA knockdown lentiviral plasmids were

described previously and generated using pLVTHM vector9.

PRMT5 knockdown targeting sequences are: shRNA-1,

5’GGATAAAGCTGTATGCTGT3’; shRNA2: 5’ GCCATC-

TATAAATGTCTGCTA 3’. In order to generate the lenti-

virus containing PRMT5 shRNAs, the PRMT5-shRNA

plasmids and helper plasmids MD2G (Addgene, Cambridge,

MA, USA) and helper plasmid PAX2 (Addgene, Cambridge,

MA, USA) were co-transfected into HEK293 T cells. After 24

h, the medium was replaced with fresh medium, and then the

medium was harvested after 48 h post-transfection. The viral

titers were predetermined before experiments. In our studies,

the same number of viral particles was used.

Generation of PRMT5 Stable Knockdown Cell Lines

In order to generate PRMT5 stable knockdown cell lines,

ASTC-a-1 and A549 cells were seeded into 60 mm dishes

for 24 h before transduction. The lentivirus containing

human PRMT5-shRNAs or scramble-shRNA was added into

the indicated cells and cultured for 48 h. The cells were then

selected with puromycin (1ug/ml, Sigma, St Louis, MO,

USA), and the non-infected cells were killed. The stable

down-regulation of PRMT5 cell lines was subjected to the

next experiments.

Gene Expression Analysis

Total RNA was extracted from human lung cancer tissues and

adjacent normal tissues and ASTC-a-1, A549, PC14, H69, and

IMR90 cells using TRIzol reagent (Invitrogen, Carlsbad, CA,

USA) according to the manufacturer’s protocol. An equal

amount of RNA was reverse transcribed, and gene expression

was measured by quantitative real-time PCR (qRT-PCR) using

SYBR green fluorescent Dye (Bio-Rad, Hercules, CA, USA)

with an ABI7300 real-time PCR instrument (Applied Biosys-

tems, Foster City, CA, USA). The following primers were used:

human PRMT5 forward: 5’ CCTGTGGAGGTGAACACAGT

3’ and reverse: 5’AGAGGATGGGAAACCATGAG3’;

GAPDH, forward: 5’ GAAGGTGAAGGTCGGAGT-

CAACG3’ and reverse: 5’ TGCCATGGGTGGAATCA-

TATTGG 3’. GAPGH served as control. Finally, the relative

mRNA expression level was calculated by DD-Ct method.

Immunoblotting Analysis

For immunoblotting analysis, proteins were extracted from

human lung cancer tissues, adjacent normal tissues, A549,

ASTC-a-1, PC14, H69, and IMR90 cells with lysis buffer
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(20 mM Tris, PH 7.4, 150 mM NaCl, 2 mM EDTA, 2 mM

EGTA, 1 mM sodium orthovanadate, 50 mM sodium fluor-

ide, 1% Triton X-100, 0.1% SDS and 100 mM phenyl-

methylsulfonyl fluoride). Cell lysates were mixed with 5�
Laemmli sample buffer (2% SDS) and placed in a heat block

(100�C) for 10 min. Proteins were separated in 8–15% SDS-

polyacrylamide gels and transferred to PVDF membranes.

The membranes were washed three times for 10 min with

TBST and blocked for 1 h at room temperature with 5%
non-fat milk. The membranes were incubated with PRMT5

(cat#sc-376937, Santa Cruz Biotechnology, Santa Cruz,

CA, USA), cyclin D1 (cat#2978, Cell Signaling Technol-

ogy, Danvers, MA, USA), cyclin E1 (cat#20808, Cell Sig-

naling Technology, Danvers, MA, USA), Akt (cat#4691,

Cell Signaling Technology, Danvers, MA, USA), p-

Thr308-Akt (cat#13038, Cell Signaling Technology, Dan-

vers, MA, USA), p-Ser473-Akt (cat#4060, Cell Signaling

Technology, Danvers, MA, USA), GSK3b (cat#12456, Cell

Signaling Technology, Danvers, MA, USA), p-Ser9-

GSK3b (cat#5558, Cell Signaling Technology, Danvers,

MA, USA), cleaved caspase-3 (cat#9661, Cell Signaling

Technology, Danvers, MA, USA), cleaved PARP

(cat#5625, Cell Signaling Technology, Danvers, MA,

USA), and Actin (cat#sc-47778, Santa Cruz Biotechnol-

ogy, Santa Cruz, CA, USA) antibodies at 4�C overnight.

The membranes were labeled with goat anti-mouse conju-

gated to horseradish peroxidase (HRP) or goat anti-rabbit

conjugated to HRP secondary antibodies (Santa Cruz Bio-

technology, cat#sc-2004 and sc-2005). Data were analyzed

using LI-COR Image Studio Software (LI-COR, Bios-

ciences, Lincoln, NE, USA).

Cell Viability Assay

For cell viability assay, ASTC-a-1 and A549 cells were

seeded into 96-well plates (3000 cells/well). Cell counting

kit-8 (CCK-8; Dojindo Molecular Technologies, Rockville,

MD, USA) was used for measuring cell viability under dif-

ferent conditions according to the manufacturer’s protocol.

Cell viability was determined by absorbance at 450 nm using

an Infinite 200 plate reader (TECAN, Mönnedorf, Switzer-

land). To determine the effect of PRMT5 inhibitor GSK591

on cell viability induced by resveratrol, ASTC-a-1 and A549

cells were seeded into 96-well plates (3000 cells/well) and

treated with or without vehicle, GSK591, and resveratrol at

the indicated concentration and the cell viability was

detected by CCK-8.

Statistical Analysis

All assays were repeated independently three times. Data are

represented as mean+SEM. Statistical analysis was per-

formed with unpaired two-tailed Student’s t-test. Differences

were considered statistically significant at p < 0.05.

Results

PRMT5 is Overexpressed in Lung Cancer Cells and
Tissues

In order to explore the functions of PRMT5 in human lung

cancer death induced by chemotherapy agents, we firstly

evaluated the expression level of PRMT5 in human lung

cancer cell lines and tumors from patients. Previous studies

showed that PRMT5 was highly expressed in many human

cancer cells and human cancer tissues9. To validate whether

PRMT5 is overexpressed in human lung cancer cells and

tissues, we measured the mRNA expression level of PRTM5

in various lung cancer cell lines. As seen in Fig. 1A, ectopic

expression of PRMT5 mRNA was seen in the lung cancer

cell lines compared with normal lung fibroblast cells

(IMR90 cells). To further confirm this result, the protein

expression level of PRMT5 was detected in these cell lines.

As seen in Figs. 1B and 1C, PRMT5 protein expression level

was highly expressed in the lung cancer cell lines compared

with IMR90 cells. These findings suggest that PRTM5 plays

an essential role in human lung tumorigenesis. Subsequently,

PRMT5 mRNA and protein expression levels were analyzed

in human lung cancer tissues and adjacent normal tissues

from patients. As seen in Figs. 1D–1F, we found that

PRMT5 mRNA and protein expression levels were distinctly

elevated in tumor tissues compared with the adjacent normal

tissues. All these results indicate that PRMT5 is a critical

regulator in human lung cancer development. Next, the func-

tion of PRMT5 was evaluated in lung cancer cell apoptosis

induced by resveratrol.

Inhibition of PRMT5 Promotes Lung Cancer Cell
Apoptosis Induced by Resveratrol

It has been shown that PRMT5 was involved in human can-

cer development and regulated cancer cell proliferation and

growth12. Nevertheless, it is still unclear whether PRMT5

participates in lung cancer cell apoptosis induced by che-

motherapy agents. To this end, A549 and ASTC-a-1 cells

were treated with GSK591, a PRMT5-specific inhibitor, and

then these cells were stimulated with or without resveratrol,

and the cell viability was assessed. As seen in Figs. 2A and

2B, we found that cell viability was markedly reduced by

resveratrol stimulation compared with the control group.

Surprisingly, this effect was further augmented when cells

were treated with GSK591 compared with resveratrol treat-

ment only, indicating that blocking PRMT5 promotes lung

cancer cell death induced by resveratrol. Next, the apoptotic

effectors cleaved caspase-3, and its downstream target

PARP was detected in A549 and ASTC-a-1 cells upon treat-

ment of GSK591 and resveratrol. As seen in Figs. 2C–2F, we

found that cleaved caspase-3 and the downstream target

cleaved PARP was significantly increased in A549 and

ASTC-a-1 cells induced by resveratrol compared with the

control group. When cells were treated with GSK591 and
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resveratrol, the cleaved caspase-3 and cleaved PARP was

further enhanced compared with resveratrol only. Alto-

gether, these findings indicate that PRMT5 is implicated in

lung cancer cell apoptosis induced by resveratrol and that

blocking PRMT5 promotes chemosensitivity induced by

resveratrol.

Silencing PRMT5 Promotes Lung Cancer Cell Death
Induced by Resveratrol

To further confirm our results obtained above, we generated

the PRMT5 stable knockdown cell lines using lentivirus

containing PRMT5-shRNAs or scramble-shRNA, and the

apoptotic markers were detected upon resveratrol treatment.

Firstly, PRTM5 knockdown efficiency was determined in

A549 and ASTC-a-1 cells. As seen in Figs. 3A–3F, PRMT5

mRNA and the protein expression level were dramatically

reduced both in A549 and ASTC-a-1 cells compared with

scramble control, indicating that PRMT5 was successfully

down-regulated, and these cells were used in the next experi-

ments. In order to validate whether silencing of PRMT5

could promote cell apoptosis induced by resveratrol, A549

and ASTC-a-1 cells containing PRMT5-shRNA2 or

scramble-shRNA were stimulated with or without

resveratrol, and the apoptotic markers cleaved caspase 3 and

downstream target cleaved PARP were detected by immu-

noblotting. As seen in Figs. 3G and 3H, cleaved caspase 3

and cleaved PARP were significantly increased upon

resveratrol treatment both in A549 and ASTC-a-1 cells

compared with scramble control. Strikingly, when PRMT5

was down-regulated by shRNA, cleaved caspase 3 and

cleaved PARP were further enhanced induced by resvera-

trol compared with resveratrol treatment only. Collectively,

these findings indicate that down-regulation of PRMT5

promotes lung cancer cells apoptosis and chemosensitivity

induced by resveratrol.

Fig. 1. Ectopic expression of PRMT5 in human lung cancer cell lines and tissues.
(A) mRNA expression of PRMT5 was detected by qRT-PCR in various lung cancer cell lines compared with fetal lung fibroblast cells (IMR90).
*p < 0.05 vs. IMR90 cells. (B) PRMT5 protein expression was detected by immunoblotting in the indicated cell lines. Representative pictures
are shown. (C) PRMT5 protein expression level was quantified in the indicated cell lines. *p < 0.05 vs. IMR90 cells. (D) mRNA expression of
PRMT5 was measured by qRT-PCR in human lung cancer tissues and adjacent normal tissues. *p< 0.05 vs. normal tissues. (E) PRMT5 protein
expression was measured by immunoblotting in human lung cancer tissues and adjacent normal tissues. Representative pictures are shown.
(F) PRMT5 protein expression level was quantified in cancer tissues and adjacent normal tissues. *p< 0.05 vs. normal tissues.
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Fig. 2. Blocking PRMT5 promotes lung cancer cell apoptosis induced by resveratrol.
A549 and ASTC-a-1 cells were treated with PRMT5 inhibitor GSK591 (100 nM) for 5 days, and then these cells were stimulated with or
without resveratrol (100 mM) for 24 h. Cell viability and apoptotic markers were assessed (A, B) Cell viability was measured by CCK-8 assay
in A549 and ASTC-a-1 cells under different treatments. *p< 0.05 vs. control group. (C, D) Cleaved caspase 3 and the downstream target
cleaved PARP was detected by immunoblotting in A549 and ASTC-a-1 cells upon different treatments. Representative pictures are shown.
(E, F) The protein expression level of cleaved caspase 3 and cleaved PARP was quantified in A549 and ASTC-a-1 cells. *p < 0.05 vs. control
group; #p < 0.05 vs. resveratrol group.
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PRMT5/Akt/GSK3b Signaling Axis Regulates Lung
Cancer Cell Apoptosis Upon Resveratrol Treatment

Our results showed that inhibition or silencing of PRMT5

not only enhances lung cancer cell apoptosis but also

promotes chemosensitivity induced by resveratrol. Subse-

quently, we investigated how PRMT5 contributed to those

effects. Previous studies have shown that Akt, also named

PKB, was involved in cancer cell growth and tumor

Fig. 3. Down-regulation of PRMT5 enhances lung cancer cell apoptosis induced by resveratrol.
A549 and ASCT-a-1cells were infected with lentivirus containing scramble-shRNA (Scr-shRNA), PRMT5-shRNA1 or shRNA2, and then the
cells were selected with puromycin. The stable knockdown cells were treated with or without resveratrol (100 mM) for 24 h, and the
indicated experiments were performed. (A) mRNA expression of PRMT5 was detected by qRT-PCR. *p < 0.05 vs. Scr. (B) PRMT5 protein
expression level was determined by immunoblotting. Representative pictures are shown. (C) PRMT5 protein expression level was quantified
in A549 cells. *p < 0.05 vs. Scr. (D–F). Similar results were observed from ASTC-a-1 cells. *p < 0.05 vs. Scr. (G) Cleaved caspase 3 and PARP
were detected by immunoblotting in A549 and ASTC-a-1 cells upon different treatments. Representative pictures are shown. *p < 0.05 vs.
Scr. (H) Quantitative analysis of cleaved caspase 3 and cleaved PARP in A549 and ASTC-a-1 cells. *p < 0.05 vs. Scr.
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progression. Recently, several studies reported that PRMT5

interacted and regulated Akt activation in mouse liver cells2,

lung cancer cells7, and lymphoma cells13. Nevertheless, it is

still unclear whether PRMT5 promotes lung cancer cell

death and chemosensitivity via regulation of Akt activity

upon resveratrol treatment. To test this hypothesis, A549

cells were treated with PRMT5 inhibitor GSK591, and then

the cells were stimulated with or without resveratrol. As seen

in Figs. 4A and B, we found that Akt phosphorylation level

at Thr308 and Ser473 was dramatically decreased upon

resveratrol treatment, which also reduced the critical down-

stream target GSK3b phosphorylation level (Ser9), and

cyclin D1 and cyclin E1 expression level. Interestingly, this

effect was further enhanced when PRMT5 was suppressed

by GSK591, indicating that inhibition of PRMT5 promoted

lung cancer cell death via regulation of the Akt/GSK3/cyclin

D/E signaling pathway induced by resveratrol. To further

confirm this result, the PRMT5 stable knockdown cells were

used. A549 cells that were depleted of PRMT5 were treated

with or without resveratrol. As seen in Figs. 4C and D, we

Fig. 4. PRMT5 regulates lung cancer cell death via Akt/GSK3b signaling axis stimulated by resveratrol.
A549 cells were stimulated with PRMT5 inhibitor GSK591 or infected with PRMT5-shRNA2, and then the cells were treated with or
without resveratrol (100 mM) for 24 h. (A, B) The indicated proteins were detected by immunoblotting. Representative pictures are shown.
(C, D) The indicated protein expression levels were quantified in A549 cells. *p < 0.05 vs. control group; # p < 0.05 vs. resveratrol group.
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found that the phosphorylation level at Thr308 and Ser473 of

Akt and the phosphorylation level at Ser9 of GSK3b were

distinctly reduced upon resveratrol treatment, which also

decreased the expression level of cyclin D1 and cyclin E1.

Similar to the above results, silencing of PRMT5 by shRNA

further lowered the phosphorylation level of Akt and

GSK3b, and the expression level of cyclin D1 and cyclin

E1 induced by resveratrol compared with resveratrol treat-

ment only. Altogether, these findings suggest that inhibition

or silencing of PRMT5 enhanced lung cancer cell apoptosis

and chemosensitivity via Akt/GSK3b signaling axis induced

by resveratrol.

Discussion

Previous studies have shown that NSCLC is a critical disease

involving multiple gradually accumulated epigenetic and

genetic alterations14. These changes cause suppression of

tumor repressor and activation of oncogenes, respectively,

finally leading to NSCLC. Accumulating evidence suggests

that PRMT5 is an oncoprotein and plays a crucial role in

many human cancers through mediating various signaling

pathways, which are often involved chromatin remodeling,

gene modification and transcription, and protein methyla-

tion15. To date, it has been clear that dysfunction of PRMT5

has played a part in carcinogenesis and tumor progression,

including in gastric cancer, breast cancer, prostate cancer,

and lung cancer, especially in NSCLC. Resveratrol is the

most widely used sensitizer agent to treat NSCLC. Several

studies have shown that resveratrol induced tumor cell death

and prevented cell proliferation and growth in breast cancer,

prostate cancer, colon cancer, and lung cancer16,17. Never-

theless, so far, it is still unclear whether PRMT5 is impli-

cated in lung cancer cell death and chemosensitivity induced

by resveratrol, and the related signaling pathways are also

completely unknown.

In the current study, we revealed that PRMT5 was not

only overexpressed in different human lung cancer cell lines

but also highly expressed in human lung cancer tissues (Fig.

1). In addition, our results uncovered that prevention or

silencing of PRMT5 by a specific inhibitor (GSK591) or

shRNAs significantly promoted lung cancer cell apoptosis

induced by resveratrol (Figs. 2 and 3). Further investigation

showed that blocking or down-regulation of PRMT5 mark-

edly decreased Akt/GSK3b phosphorylation at Thr308/

Ser473 and Ser9, respectively, and also dramatically reduced

downstream targets cyclin D1/E1 expression upon resvera-

trol treatment (Fig. 4). Taken together, our findings suggest

the possibility that targeting the PRMT5/Akt/GSK3b signal-

ing axis promotes human lung cancer cell death and chemo-

sensitivity induced by resveratrol, which strongly indicates

that blocking PRMT5 activity or down-regulation of PRMT5

expression level could be a useful therapeutic strategy for

human lung cancer.

The PI3-K/Akt signaling pathway plays a pivotal role in

the regulation of many cellular processes, including cell

cycle, cell proliferation, growth, survival, metabolism, and

gene transcription18. Dysfunction of this signaling axis will

lead to metabolic, cardiovascular, and neurological diseases,

and cause different types of human cancer as well19. Recent

studies have shown that PRMT5 interacted with Akt and

regulated Akt activation, which controlled cancer cell repli-

cation and growth7. Moreover, Akt is activated by PRMT5

through hyperphosphorylation of PI3-K and hypophosphor-

ylation of PTEN12 and co-localization of Akt7. These

investigations mainly focused on the relationship between

PRMT5 and Akt and related mechanisms. Although

PRMT5 regulation of Akt activity is evident and validated

by many studies, it remains unknown whether blocking or

silencing of PRMT5 could promote lung cancer cell death

and enhance chemosensitivity induced by resveratrol. In

the present study, we found that inhibition of PRMT5 activ-

ity or down-regulation of PRMT5 not only further pro-

moted lung cancer cell apoptosis (elevated cleaved

caspase 3 and PARP) but also prevented the Akt/GSK3b
signaling axis (decreased phosphorylation of Akt/GSK3b),

which enhanced chemosensitivity upon resveratrol treat-

ment. Our findings indicate that PRMT5 promotes the

death of lung cancer cells via the Akt/GSK3b signaling

pathway induced by resveratrol.

Once Akt is activated, numerous downstream targets can

be phosphorylated. Among them, GSK3b is the most crucial

target of Akt, which can be phosphorylated by Akt at Ser 9

and its activity inhibited. The previous study showed that

GSK3b regulated Mcl-1 stability and promoted cell apopto-

sis by reactive oxygen species burst via the mitochondrial

apoptotic pathway20. Also, GSK3b negatively regulated cell

cycle progression by direct phosphorylation of cyclin D1 and

controlled cyclin E1degradation21,22. In our study, we

showed that inhibition or down-regulation of PRMT5 mark-

edly reduced cyclin D1 and E1 expression levels induced by

resveratrol. That is the reason why blocking PRMT5 can

further prevent cell cycle progression under resveratrol sti-

mulation. All those observations indicated that targeting the

PRMT5/Akt/GSK3b signaling axis promotes human lung

cancer cell death, which further leads to increase chemosen-

sitivity induced by resveratrol. Collectively, our findings not

only confirm that the PRMT5/Akt/GSK3b signaling path-

way regulates apoptosis of lung cancer cells and cell cycle

progression, but also indicate that PRMT5 is an essential

upstream mediator for human lung cancer cell proliferation.

In conclusion, our results revealed that PRMT5 was

highly expressed in human lung cancer cells and tumor tis-

sues. Inhibition or down-regulation of PRMT5 further pro-

moted lung cancer cell death upon resveratrol stimulation.

Moreover, our data also showed that inhibition or silencing

of PRMT5 further reduced Akt/GSK3b phosphorylation and

downstream targets cyclin D1/E1 expression induced by

resveratrol, which demonstrated a novel molecular signaling

axis (PRMT5/Akt/GSK3b) mediating lung cancer cell apop-

tosis and chemosensitivity induced by resveratrol (Fig. 5).

All these findings strongly suggest that PRMT5 is an
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important therapeutic target for the treatment of human lung

cancer. More importantly, the new insights into the inhibi-

tion of PRMT5 provide some new evidence for the enhance-

ment of therapeutic effect by chemotherapy agents in human

lung cancer.
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