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Simple Summary: Progress in the field of in situ proteomics allows for the simultaneous detection of
multiple biomarkers within one cancer tissue specimen. As a result, biological hypotheses previously
only assessable ex vivo can now be studied in human cancer tissue. However, methods for objective
analysis have so far been lacking behind. In this study, we established a free, objective, and entirely
open-source-based method for the analysis of multiplexed immunofluorescence specimens. This will
gain further importance with the availability of more advanced multiplexing methods in the future.

Abstract: (1) Background: The immune system has physiological antitumor activity, which is partially
mediated by cytotoxic T lymphocytes (CTL). Tumor hypoxia, which is highly prevalent in cancers
of the head and neck region, has been hypothesized to inhibit the infiltration of tumors by CTL.
In situ data validating this concept have so far been based solely upon the visual assessment of the
distribution of CTL. Here, we have established a set of spatial statistical tools to address this problem
mathematically and tested their performance. (2) Patients and Methods: We have analyzed regions of
interest (ROI) of 22 specimens of cancers of the head and neck region after 4-plex immunofluorescence
staining and whole-slide scanning. Single cell-based segmentation was carried out in QuPath.
Specimens were analyzed with the endpoints clustering and interactions between CTL, normoxic,
and hypoxic tumor areas, both visually and using spatial statistical tools implemented in the R
package Spatstat. (3) Results: Visual assessment suggested clustering of CTL in all instances. The
visual analysis also suggested an inhibitory effect between hypoxic tumor areas and CTL in a minority
of the whole-slide scans (9 of 22, 41%). Conversely, the objective mathematical analysis in Spatstat
demonstrated statistically significant inhibitory interactions between hypoxia and CTL accumulation
in a substantially higher number of specimens (16 of 22, 73%). It showed a similar trend in all but
one of the remaining samples. (4) Conclusion: Our findings provide non-obvious but statistically
rigorous evidence of inhibition of CTL infiltration into hypoxic tumor subregions of cancers of the
head and neck. Importantly, these shielded sites may be the origin of tumor recurrences. We provide
the methodology for the transfer of our statistical approach to similar questions. We discuss why
versions of the Kcross and pcf.cross functions may be the methods of choice among the repertoire of
statistical tests in Spatstat for this type of analysis.

Keywords: spatial analysis; open-source; R; hypoxia; cancer immune evasion; multichannel im-
munofluorescence; head and neck cancer
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1. Introduction

Squamous cell carcinomas of the head and neck often contain extensive tissue areas
with substantially reduced oxygen partial pressures compared to the corresponding normal
tissues [1]. Severe tumor hypoxia has long been recognized as a predictive factor for an
inferior response to primary radiotherapy in this tumor entity [2]. Not only is the effect
of radiotherapy under fully oxygenated conditions amplified by up to a factor of three
(oxygen enhancement effect) compared to hypoxic/anoxic conditions, there are numerous
other implications relevant to therapeutic resistance [3,4].

In recent years, the success of immune-checkpoint inhibitors has brought the immune
system’s role in tumor therapy into the focus of attention. E.g., it has been shown that
the immune system also partially mediates the effects of radiotherapy of cancers of the
head and neck [5]. Various studies in different tumor entities have demonstrated that the
density of the infiltration by CD8-positive cytotoxic T lymphocytes (CTL), and especially
the pattern of this infiltration, represent vital prognostic factors [6,7].

Hypoxic tissue areas in experimental tumors have been found to contain low CTL,
suggesting that hypoxic tissue regions might be partially protected from the immune
system’s access [8]. Conversely, hyperoxia reactivated the immune system in the tumor
microenvironment and led to the regression of metastases in experimental animals [9].
However, one difficulty in testing such a hypothesis is that the assessment of infiltration
patterns is highly subjective and, therefore, associated with questionable reproducibility.
Objective classifications and quantification of the tumor immune phenotype would be
desirable, especially if future therapy decisions are based on such assessments.

The spatial statistics methods include tools already established in other areas of
science (e.g., ecology, geosciences). They seem promising candidates to enable an objective
examination of cell distribution and interaction patterns in human tissue as well. This has
become possible only recently due to the availability of fluorescence slide scanners and
analysis software, allowing single-cell segmentation of cells and subsequent classification
into different tumor compartments (e.g., tumor cells, stromal cells) based on machine
learning algorithms. In the present work, we have applied spatial statistical methods
implemented in the R package Spatstat (E.R. & C.A.N.B., http://spatstat.org/) (accessed
on 13 April 2021) [10] to squamous cell carcinomas of the head and neck region and
compared the results with a traditional visual analysis of CTL infiltration patterns. Data
acquisition in 22 specimens was performed in the open-source software QuPath (P.B.,
https://qupath.github.io/) (accessed on 13 April 2021) [11].

2. Materials and Methods
2.1. Selection of Specimens for the Study

A total of 103 whole-slide head and neck tumors (oral cavity, nasopharynx, orophar-
ynx, hypopharynx, larynx) from the Biobank collection of the University Medical Center
Mainz and one microarray with a total of 70 spots (US Biomax, Derwood, MD, USA,
Cat.-No. HN-801a) were available for the study. Regarding the latter, some spots showed
an insufficient degree of morphological preservation and could not be evaluated. Finally,
we included a total of 22 specimens in the analysis, which contained both extensive hypoxic
micro-regions and sufficient infiltration by CTL.

2.2. Immunofluorescence Staining

Slides were stained for the antigens carbonic anhydrase (CA) IX, CD8, and CD73.
Only the former two antigens are relevant for this study. Results from the analysis of CD73
will be communicated soon (manuscript in preparation). The 4-plex staining protocol
has been described in detail before [12]. In brief, we heated the specimens in 10/1 mm
Tris/EDTA pH 9.0 buffer in a microwave oven (Bosch HMT75M451, Robert Bosch GmbH,
Munich, Germany) for 15 min to retrieve antigenic binding sites. Next, we incubated
tissue specimens with the primary antibodies listed in Supplementary Table S1. We used
the biotin-free, micro polymer-based SuperPicture™ reagents (Thermo Fisher Scientific,
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Waltham, MA, USA) directed against the species of origin of the primary antibodies to
label the latter with horseradish peroxidase. We achieved the visualization of antigens by
incubating specimens with appropriate fluorochrome-tyramide conjugates in appropriate
buffers after their activation with H2O2 (see Supplementary Table S1). We repeated mi-
crowave treatment between successive rounds of fluorescent staining to quench peroxidase
activity from preceding antigen-labeling steps. In a final step, we incubated the slides with
4′,6-diamidino-2-phenylindole (DAPI) at a concentration of 300 nM. Finally, slides were
covered with a coverslip using DAKO Fluorescence mounting medium (Dako Deutschland
GmbH, Hamburg, Germany) and dried overnight at 4 ◦C.

2.3. Acquisition of Digital Whole-Slide Images

Slides were digitized as czi files using the Zeiss AxioScan Z.1 and appropriate single-
band filter sets for the fluorescence channels, DAPI, fluorescein isothiocyanate (FITC), Cy3,
and Cy5 (Morphisto GmbH, Frankfurt, Germany). For visualization and single cell-based
segmentation of the digital tissue specimens, we used the open-source software QuPath
(https://qupath.github.io/) (accessed on 13 April 2021) in conjunction with a built-in
Bioformats extension to decode the *.czi file format.

2.4. Visual Assessment

Visual assessment of the specimens and the determination of the threshold levels
for the hypoxia marker (i.e., hypoxic vs. non-hypoxic cells) occurred after adjustment
of the gray levels to optimize visibility of individual color channels. This introduces a
minor subjective component that cannot be eliminated on this technological platform.
An example of a flat image without adjustments and the same image after adjustments to
improve visibility is given in Supplementary Figure S1. Specimens were assessed visually
for clustering of CTL and subsequently categorized based upon our (J.K., A.M.) subjective
estimate of the nature of the interaction between CTL and hypoxic tumor tissue into
negative interaction (inhibition), no interaction, and positive interaction (clustering).

2.5. Data Preparation for Spatial Statistics in Spatstat

As a first step, we chose representative tissue regions of interest (ROIs) containing
approximately 20,000 cells. For the whole-slide specimens, a rectangular region with a
prominent expression of CA IX and CD8 was chosen. The environment of all of the ROIs
is shown in Supplementary Figure S2. With regard to the tissue microarray spots (n = 6),
the analysis comprised the entire spot. Within these ROIs, every cell was segmented using
a watershed-based algorithm implemented in QuPath. Subsequently, we programmed
QuPath to classify cells into tumor and stroma using QuPath’s machine learning tools
and a random-forest method. After that, we set thresholds for the antigen intensities
interactively. This was necessary to account for inter-slide and inter-patient variability
in fluorescence intensity resulting from differences in tissue handling (e.g., differences in
fixation time). In total, we generated four classes of events corresponding to the following
subpopulations of cells: 1 = CTL, 2 = normoxic tumor, 3 = hypoxic tumor, 4 = stroma.
Finally, we exported the single-cell data from QuPath into a *.txt file, imported this file in R
(using read.delim), and analyzed data using the R package Spatstat (http://spatstat.org/)
(accessed on 13 April 2021). In Spatstat, every cell of the original image was represented
as a point event in a planar (i.e., two-dimensional) point pattern belonging to an ROI
derived from the original cell X-Y coordinates in the QuPath dataset. Subsequently, every
event was marked using the class of the cell it represents. Figure 1 gives an overview of
the entire procedure. To achieve better visibility for Figure 1, we chose a slightly smaller
ROI with a lower number of cells (n = 12,635). Point patterns, which are subdivided
by a categorical class variable (a factor in Spatstat terms), are referred to as multitype
point patterns. Spatstat provides several tools for the analysis of the interaction between
populations in multitype point patterns. Different statistical functions can be used for
interaction analyses in multitype point patterns of this kind. The significance level was

https://qupath.github.io/
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set to alpha = 5% for all computations. Our analysis showed that versions of the K and
pcf functions might be the most suitable to the pathophysiological question of our study
(see Results).
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Figure 1. A representative area from a whole-slide specimen is shown to demonstrate the procedure
of data acquisition in QuPath, cell classification, and transfer to R. (A) Tumor section after single-cell
detection in QuPath. Approximated cell borders, extrapolated from the positions of cell nuclei,
which had been segmented based on the DAPI channel (blue), are depicted by red lines. CD8-
positive cytotoxic T lymphocytes (CTL) are shown in yellow. Hypoxic, CA IX-positive tumor cells
are shown in green. (B) Result of the tumor-stroma classification using QuPath’s machine learning
features. A set of example areas for tumor and stroma were delineated by the user. QuPath was
then able to discriminate between both compartments for the rest of the cells in the specimen.
(C,D) Construction of additional single-threshold classifiers for hypoxic cells (C) and CD8-positive
CTL (D). (E) A compound classifier comprising tumor, stroma, and subclassifications according to
the single-measurement classifiers shown in panels (C,D). Scale bar in (E) applies to panels A–E.
(F) A color-coded plot of cell positions generated in R after transfer of the data and conversion to a
multitype planar point pattern (ppp) in Spatstat. For the sake of clarity, subclassifications have been
reorganized to CD8-positive CTL (yellow), normoxic tumor cells (brown), and hypoxic tumor cells
(green). Original subclassifications are shown in panel (G).
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3. Results

Experimental studies have shown that CTL, in principle, can freely infiltrate tumor
tissue, i.e., tumor and stroma areas, including the interstitial space between cells in tumor
cell aggregations [13]. Figure 1A depicts an example of CTL distribution in a specimen from
this study in which CTL are both observed within the tumor stroma and inside the tumor
cell islets. Hence, we first asked whether CTL distribution shows systematic deviation from
complete spatial randomness (CSR) in the form of clustering. Visual inspection strongly
suggested that this was indeed the case in all specimens, and CTL seemed to cluster in the
stroma (Figure 2).
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depicted in Figure 1. Clustering is less evident visually when CTL are viewed separately, outside
of the context of tumor and stroma areas. First, the quadrat test (right panel) shows statistically
significant inhomogeneity (p < 2.2 × 10−16). The numbers within the quadrats (from left to right)
represent the number of events in each quadrat, the average number in all quadrats, and the residuals.
(B) The G-function is another method to assess the clustering of CTL. Left panel: Graph of nearest
neighbor distances of CTL (yellow lines), depicted as an overlay on the same tumor area. Right
panel: a plot of the G-function (for any given CTL) shows a higher probability of the presence of
the nearest neighboring CTL within a distance of approximately 8–23 µm than would be expected
in a random distribution. The low values in the distances leading up to 8 µm are a result of the
technical shrinkage of cells with a certain diameter to points for the sake of the calculation. (C) For
the K-function, the average number of neighboring cell events within a circle of a given radius r is
calculated for each cell event in the population. Left panel: representative circles of r = 50 µm are
shown. This process is repeated for every value of r up to 100 µm in the region of interest (ROI).
K-functions are standardized, and corrections for edge effects are performed, the details of which
have been explained before. The heterogeneity of cell event numbers within these circles is evident.
Right panel: a plot of the K-function (orange), corrected for inhomogeneity with its corresponding
95%-confidence band (green and yellow lines). Although an upward deviation from the Poisson
distribution (complete spatial randomness (CSR), brown line) is evident, this did not leave the
95% confidence bands. Hence, the deviation from CSR in this example using the K-function is not
statistically significant (D). The pair correlation function (pcf) of the same dataset shows pronounced
clustering at low distances. Left panel: contrary to the K-function, the pcf analyzes the number of
cells on expanding rings, thereby scanning through layers around each individual CTL. Right panel:
Contrary to the K-function, the pcf shows significant clustering in a band between 7 and 15 µm
around the cell, whereas no deviation from CSR is evident at distances beyond.

A number of functions in Spatstat can be employed to assess the question of deviation
from CSR. First, the quadrat test subdivides the ROI into a set of rectangles and tests for
deviations from a homogenous intensity between them [14]. As expected, the quadrat
test, in our example, indicated inhomogeneity (chi-square test, p < 0.0001, Figure 2A). This
is important when choosing the right functions in the subsequent parts of the analysis.
To adjust for the inhomogeneity shown by the quadrat test, inhomogeneous versions
of the functions have to be used. These try to adjust for the inherent inhomogeneity in
the pattern, which might suggest a false clustering effect otherwise. Next, we used the
inhomogeneous G-function (Ginhom), which calculates the nearest neighbor probabilities,
i.e., the chances of a random point of a point pattern to find its nearest neighbor within
a given distance [15]. With an increasing radius around a given point in the pattern, the
G-function value can only ever increase and has a theoretical maximum of 1 (i.e., 100%
likelihood). When compared with the G-function of a random distribution (i.e., a Poisson
point process), the G-function showed the tendency of CTL to have a higher than random
chance to encounter the next CTL within a distance of 8–23 µm (Figure 2B). These analyses
were repeated for the remaining 21 specimens in the study. Hence, the clustering of CTL
was unanimously supported by the inhomogeneous G-function.

More advanced statistical tests enable the assessment of a deviation from spatial
randomness on a continuum of radii in the two-dimensional space. The functions in
Spatstat that we have employed to achieve this are Ripley’s K-function (Kest) [16] and the
pair correlation function (pcf) [17,18]. Since the population of CTL was found to be dis-
tributed inhomogeneously throughout the tumors (see above), we used the inhomogeneity-
corrected versions of the K-function and the pcf (Kinhom, pcfinhom) to adjust for spatial
inhomogeneity [19]. As expected, we could confirm the clustering of immune cells using
these functions in the previous example (Figure 2C,D). There are several reasons for this,
which will be discussed (See Discussion).

To demonstrate the difference between various distribution patterns and how they
might influence the K-function or the pcf, C.A.N.B. and J.K. have started to work on
two Shiny-web applications that are still under further development. One showcases
different patterns and their corresponding spatial statistical functions (Figure 3A–C). When
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comparing these different patterns to the distribution pattern of CTL, the clustering nature
of CTL seemed obvious. The second app was created to provide a low-effort introduction
toward experimenting with spatial statistics. Researchers can upload their own single-
cell datasets and generate results. The beta versions of the apps can be accessed here
(http://apps.math.aau.dk/spatstat/) (accessed on 13 April 2021).
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Figure 3. Exemplary pattern distributions and the corresponding K-function and pcf. All images in
this figure were taken from the Shiny apps by C.A.N.B. and J.K. Lines corresponding to the computed
functions are shown in red, while the lines corresponding to a Poisson distribution are shown in blue.
(A) A randomly distributed pattern (Poisson distribution). While the pcf in the second column varies
around the line of a theoretical Poisson distribution, the K-function of the pattern in the third column
is very close to the line of a theoretical Poisson distribution, implying that the pattern might be close
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to complete spatial randomness (CSR). (B) A pattern with a clustering behavior. The corresponding
pcf in the second column stays mostly above the pcf of a theoretical Poisson distribution, as does
the K-function in the third column. This implies a clustering behavior. (C) A pattern with inhibitive
behavior. The corresponding pcf in the second column stays mostly below the pcf of CSR. The
K-function in the third column is below the line of CSR as well, which implies an inhibitive or regular
behavior. (D) An exemplary dataset of the second app where tumor (blue points) and stroma (red
points) cells were differentiated. Instead of the K-function and pcf used before, their Cross-functions
are being used. Here one can clearly see an inhibitive or avoiding pattern where cells of one type
are mostly close to each other while avoiding close contact with cells of the other type. This effect is
enhanced by the inhomogeneity in the general distribution, with tumor cells being mainly on the left
side of the ROI and stromal cells being almost exclusively on the right half.

We subsequently applied all of the previously mentioned statistical tests to the entire
dataset of the study and found evidence for clustering of CTL in all cases using the inhomo-
geneous versions of the G-function (data not shown) and the pcf (Supplementary Figure S3).
To test for significance, we used the lohboot function, which calculates confidence intervals
for the functions using a bootstrap method. The inhomogeneous K-function only implied
clustering in 18 out of 22 cases (82%) in the study (Supplementary Figure S4). This finding
is most likely caused by the cumulative nature of the K-function, resulting in a tendency
to underestimate the significance of a deviation from spatial randomness (see Discussion
section). When all functions resulting from a single ROI are considered before making a
statement about the distribution of a point pattern, there is a high implication of clustering
in all specimens.

We next turned to the second and more challenging question of possible systematic
avoidance of hypoxic areas by CTL. Visual inspection suggested this to be the case in only 9
of 22 patients. To assess this question using Spatstat tools, we first considered the multitype
equivalent of the G-function, the Gcross function. However, we refrained from using the
Gcross function for the question at hand since it is not suitable for this task due to its
lack of standardization (see Discussion section). Hence, we next employed the multitype
equivalents of Kest and pcf, the Kcross and pcf.cross functions using two different pairs
of cell types, i.e., CTL versus normoxic (1 vs. 2), and CTL versus hypoxic tumor cells
(1 vs. 3) [20,21]. Due to the inhomogeneous nature of the CTL distribution and hypoxia in
the tissue, we once more employed the inhomogeneity-corrected variations. In addition,
we again used the lohboot function to test the significance of possible deviations of the
interaction between these pairs of cell types from complete spatial randomness. For 16 out
of 22 cases, both tests showed a significant divergence of the tests’ confidence intervals for
the two populations, directed in a way that implied an inhibitory effect on CTL by hypoxia.
Although not statistically significant, we found trends toward a repellent effect of hypoxia
on CTL in all but one of the remaining specimens (examples are shown in Figure 4).
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Figure 4. Demonstration of the repellent effect of hypoxic tissue areas on CTL infiltration. Six
examples (A–F) showing significantly stronger inhibitory effects of hypoxic tumor cells compared
to normoxic tumor cells concerning the distribution of CTL. Each row corresponds to one tumor.
Left panels: original immunofluorescence images (DAPI, blue; hypoxic cells, green; CTL, yellow),
all scale bars: 200 µm. Left middle panels, corresponding Spatstat point pattern representation of
the different groups of cells identified in the tumor sections (hypoxic tumor cells, green; normoxic
tumor cells, dark red; CTL, yellow). Right middle panels, inhomogeneity-corrected Kcross functions
testing the distribution of CTL vs. hypoxic (green) and normoxic (red) tumor cells. The areas shown
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represent the confidence bands generated by Loh’s bootstrap method. Right panels, plot illustrating
the delta between the lowest value of the red curve vs. the highest values of the green curves in the
corresponding right middle panels. Values below 0 define a significant deviation. This is the region
of statistically significant divergence between the distribution of both tumor cell populations relative
to CTL. It is evident that hypoxic tumor cells have a stronger repellent or anti-clustering effect on
CTL than normoxic tumor cells.

4. Discussion

In the present study, we have demonstrated that CTL in squamous cell carcinomas
of the head and neck region exhibit clustering and avoid hypoxic areas upon infiltration
into the interstitial space between cells inside tumor cell aggregates. CA IX was chosen as
an endogenous marker of hypoxic tissue areas because it has been shown to co-localize
with the gold standard exogenous marker pimonidazole [22] and because the antigen
has a prolonged half-life after hypoxia exposure, thereby integrating biologically relevant
episodes of hypoxia over longer periods of time [23]. Since this finding has potentially
broad pathophysiological significance, e.g., concerning the interaction between radiother-
apy and immunotherapy, a factual methodological basis for such a statement is essential.
Although the phenomenon of cluster formation seems easy to judge visually, there are
borderline cases in which doubts about such behavior can arise. The expenditure for
statistical test procedures in Spatstat is, as shown here, low and provides certainty in less
obvious cases.

The assessment of the distribution of CTL within the tumor cell aggregates is inher-
ently more subjective. In most specimens, it is not obvious that CTL may avoid hypoxic
areas. In fact, in more than half of the cases, our visual analysis suggested that CTL did
not show such behavior. It is well documented that the visual processing of patterns in
the human brain is distorted by the natural attempt to generate meaning [24,25]. It may,
therefore, be flawed. Specifically, there is an incentive to detect patterns consistent with
a scientific study’s underlying hypothesis, even though they may not exist biologically.
This is related to the phenomenon of cognitive dissonance, which describes the tendency
to filter information [26]. In this setting, objective statistical analyses demonstrate their
strengths and offer reproducible, investigator-independent results.

At this point, it may be essential to consider the differences between inhomogeneity
and clustering. While both result in similar patterns, the reason for these patterns is
vastly different. While inhomogeneity results from external factors, e.g., more favorable
conditions, clustering results from internal factors or actual interaction between individual
entities such as cell-to-cell-signaling. It is important to note that there is no need for direct
contact between two cells to interact, as this interaction can occur via soluble factors such as
chemokines. Furthermore, the scale of interaction is essential as well, e.g., when viewed at
the scale of our galaxy, humans seem to show strong clustering. However, when the scale
is changed to a city, then the subjective evaluation of the spatial distribution of humans is
reversed. They are now more likely to be perceived as repelling each other.

In short, clustering on a large scale is more synonymous with inhomogeneity, while
clustering on a small scale can be interpreted as actual clustering. Although challenging,
defining the correct scale for interaction is, therefore, of utmost importance. For this study,
we arbitrarily limited the size of the scale to 100 µm.

While the functions used may seem straightforward, there are a few things to be
considered during the interpretation of results. The quadrat test might be a quick and easy
tool to obtain a first impression of whether a point pattern is distributed randomly or not.
Still, it can only detect deviations from the null hypothesis of a Poisson distribution. The
cause and direction of the deviation, however, cannot be determined. Tools for additional
analysis of the quadrat test may be available in the future. When analyzing the distribution
of a single population, the G-function is a useful tool to detect deviations from CSR.

In the second part of our analysis, however, we compare the effects of two different
populations (normoxic and hypoxic tumor cells) on a third population (CTL). To do so, we
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compare the results of the Cross-functions between each of the first two populations and
CTL. However, the usage of the Gcross function for this question is not straightforward. It
has a few pitfalls, the most important one being that it is not standardized, and therefore the
results are dependent on the intensity of a point pattern. Graphs of two Gcross-functions
resulting from different combinations of populations should, therefore, not be compared.
Although the K-function and the pcf also have limitations, the ability to be used for inter-
group comparisons is a strength of both; since they can be adjusted for the intensity of a
point pattern, it is possible to compare the degree of deviation from spatial independence of
the two cell populations investigated. Problems of the K-function lie within its cumulative
nature. While this makes the K-function more robust for statistical inference, such as the
lohboot function, it also causes a slower reaction to actual deviations from CSR present
in the specimen. This can suggest that effects take place over a more extended scale of
distances than is biologically the case and make them seem not as significant as they
might be, resulting in a loss of statistical power on the local level. On the other hand, this
cumulative nature and the more global approach make the K-function easier to estimate
and, as a result, more robust for statistical inference, such as the lohboot function on a
global scale.

The pcf, conversely, is not cumulative and has more local information. Compared to
the K-function, it is superior when analyzing the deviations from CSR and on what scale
they do take place. However, it is more difficult to estimate and may suffer from high
variance, resulting in reduced statistical power globally. This can be seen in our study
as well.

When evaluating the statistical results, we noticed that the inhomogeneous K-function
did not significantly deviate from CSR in some of the specimens. The reasons for this are
manifold. On the one hand, in specimen with a sparse immune cell infiltrate, the K-function
show significantly wider confidence intervals due to smaller case numbers. Therefore, the
deviation from CSR must be substantially larger to be considered significant. On the other
hand, one must consider that the K-function indicates a significant departure from CSR
over an entire distance.

In contrast, the pcf-function does so for a specific distance. Hence, deviations from
CSR, which are recognized as significant by the pcf, do not necessarily lead to a deviation
of the K-function due to an averaging effect of the entire area in which the cells are counted.
Conversely, a weak effect over a longer distance may not cause the pcf to indicate a
significant deviation from CSR, while the K-function may do this. Additionally, due to the
cumulative nature, effects within a smaller distance may cancel out effects taking place on
a bigger scale and result in the K-function not deviating from CSR.

Furthermore, attempts are made to reduce the number of false-positive results by
correcting the K-function for, e.g., boundary effects and inhomogeneity. A lack of signifi-
cance of the K-function does not necessarily contradict the statement that clustering occurs
within a population. Looking at the curves of the corresponding pcf, however, it appears
that there is only comparatively mild clustering in these particular specimens. The reasons
for this could be an unfavorable environment for the CTL or other factors not tested here.
Future comparisons of data from these statistical tests with survival data may identify
biological differences between different types of clustering behavior of CTL [27].

While overcoming most of the subjective parts of this kind of analysis, the statistical
methods presented here do not yet enable a fully automated, unbiased evaluation. Such a
methodology would certainly be very interesting as it would open up the possibility of cell
distribution assessment in large numbers of specimens without user interaction.

Interestingly, despite the K-function’s lack of sensitivity described above, results
obtained with the cross variant of the function were surprisingly unanimous in the second
part of our analysis. According to the hypothesis of hypoxia-induced immunosuppression,
we expected the Kcross and pcf.cross functions to show more substantial deviations from
CSR for the comparison between hypoxic tumor cells vs. CTL with normoxic tumor cells
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vs. CTL. Indeed, this pattern could be demonstrated for all specimens in the study (see
Figure 4 and Supplementary Figure S5).

Fluorescence-based multichannel staining of formalin-fixed and paraffin-embedded
human tumor tissue in conjunction with whole-slide scanning, digitization, and single
cell-based segmentation now offers the opportunity for mathematical analyses of human
cancer tissue specimens. With the emergence of even more advanced biomarker analysis
methods with the possibility of higher multiplexing, the necessity of using such methods
will become increasingly apparent. Simultaneously, the data’s validity and reproducibility
will improve, and the opportunity will arise to ask more complex questions than is possible
with the limited number of antigens today. Four advanced systems are nanostring digital
spatial profiling (nanostring DSP, [28]), imaging mass cytometry (IMC, Fluidigm [29]),
multiplexed ion beam imaging (MIBI, IonPath [30]), and Cell DIVE (Cytiva, formerly
General Electric [31,32]). The methodological approaches differ considerably: while Cy-
tiva’s system uses conventional fluorescence, the two mass spectrometry techniques (IMC,
MIBI) work with lanthanide-coupled antibodies, while nanostring technology uses short
nucleic acid sequences that can be coupled to antibodies or RNA molecules like a barcode.
Simultaneous detection of more than 30 proteins has been published for all methods, but
the theoretical maximum numbers are higher. So far, the highest published number of
antigens detected simultaneously was achieved on the Cell DIVE System in a study that
investigated 61 antigens [32]. With the nanostring platform, however, 82 RNA targets could
be detected in addition to 32 proteins.

5. Conclusions

In this study, we could demonstrate the value of implementing spatial statistics in
the analysis of immunofluorescence-stained cancer specimens. This approach enables an
objective investigator-independent in situ analysis. We could show that CTL objectively
and systemically avoid hypoxic regions within cancers of the head and neck.

It is our vision that the semantics of spatial analysis in human tumor tissue, which is
beginning to be established, will serve as building blocks for the spatial interpretation in
the setting of far more complex investigations with high multiplexing in the future. To ease
implementation of spatial statistical tools for other researchers C.A.N.B. and J.K. developed
the Shiny apps mentioned above to upload single-cell data in *.csv-format for exemplary
analysis (Figure 3D). The apps can be accessed here (http://apps.math.aau.dk/spatstat/)
(accessed on 13 April 2021). We hope that these introductory apps may motivate researchers
to use spatial statistical tools to underline statements made from in vivo observations. Such
an approach may significantly deepen the pathophysiological understanding of the tumor
microenvironment and serve as an in vivo benchmark for the pathophysiological concepts
behind novel approaches to cancer treatment.
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