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Abstract

Removal models were proposed over 80 years ago as a tool to estimate unknown popula-

tion size. More recently, they are used as an effective tool for management actions for the

control of non desirable species, or for the evaluation of translocation management actions.

Although the models have evolved over time, in essence, the protocol for data collection has

remained similar: at each sampling occasion attempts are made to capture and remove indi-

viduals from the study area. Within this paper we review the literature of removal modelling

and highlight the methodological developments for the analysis of removal data, in order to

provide a unified resource for ecologists wishing to implement these approaches. Models

for removal data have developed to better accommodate important features of the data and

we discuss the shift in the required assumptions for the implementation of the models. The

relative simplicity of this type of data and associated models mean that the method remains

attractive and we discuss the potential future role of this technique.

Introduction

Population density, the number of animals per defined area, is commonly used as a simple

measure of how an organism interacts with local conditions. If circumstances are undesirable

for the species, the density will be low, whereas if conditions are good the density will be high

[1].

One of the most interesting problems for the ecologist is the estimation of the density of a

particular animal species [2] and a tremendous diversity of techniques are available for esti-

mating the size of populations [3–5]. Despite frequent refinements to make some of the more

sophisticated techniques more realistic for particular situations (see for example, [6–10]) the

removal method remains exceptionally popular.

Removal (or depletion) sampling is a commonly used method to estimate abundance of

animal populations [11–14]. Removal models have been used to estimate population size, not

only for many species including birds [15], mammals [15], and fish [16], but also for epidemio-

logical applications [17–19].
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The classic removal model was introduced by [20] and [21], motivated by a theory devel-

oped by [2]. This model relied on the assumption of population closure and constant detection

probability, meaning that the animals are assumed to be available for capture with the same

probability throughout the study and there are no births, deaths or migration during the

study. The basic removal model results in a geometric decline in the expected number of cap-

tured individuals over time.

The classic removal model is a special case of capture-recapture models which allow for

multiple captures and re-releases of animals during a study. The removal model simply con-

strains the probability of re-capture to be zero as once an individual is captured it is then

removed from the study. This is therefore a constrained version of capture-recapture model

Mb which allows probability of initial capture to vary from the probability of re-capture [6].

Removal models are ideally suited to estimating the number of invasive species as they coin-

cide with desirable management (i.e. the reduction or eradication of populations) [22] and the

method has recently been adopted as a conservation management tool for example for mitiga-

tion translocations [13, 23]. Models that use data from management actions need to account

for variations in removal effort as these data are unlikely to be standardised across events [22].

[24] showed that removal models that account for removal effort are effective at estimating

abundance, particularly when removal rates are high.

Overview of the paper

Within this paper we have conducted a systematic literature review of removal modelling in

ecology. We describe the methods applied in the systematic review and the aspects of interest.

We present the results obtained from the literature analyses, highlighting the key methodologi-

cal advances which have been made in this field and a review of software which has been used

to fit removal models. The paper concludes with a discussion about the future role of removal

modelling in ecology.

Materials and methods

Literature search

This systematic review followed the PRISMA (Preferred Reporting Items for Systematic

Reviews and Meta-Analyses), statement as a guide [25]. The bibliographic search was per-

formed using the SciVerse Scopus (https://scopus.com), ISI Web of Science (https://

webofknowledge.com), and Google Scholar (https://scholar.google.com) databases. Papers

published between 1939 and the cut-off date 01 July 2019 with the terms “Removal model” or

“Removal method” and “population” in the title, keywords, or abstract were included. Non-

English publications, and papers reporting removal methods focused on cleaning procedures

were excluded from our search. The process of selecting papers to include in our review started

with a screening of the abstract. Articles were excluded if they mentioned the keyword

“removal model/method” for justification or discussion without implementing a removal

model as part of the study. Thus, only the papers that reported applications, methodological

advances of removal models or removal study design were retained for the analysis (Fig 1).

Data analysis

Features and parameters of each study were categorised and compiled into a database of

removal model publications. We identified the details that were reported in the 104 reviewed

publications and provided a descriptive summary of the essential details that need to be

reported in published removal models (see Table 1).
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Results

Synthesised findings

The reviewed literature was published from 1939 to 2019 and interestingly there have histori-

cally been long gaps in publications on this topic. However in recent years there has been a

more constant stream of published papers, suggesting a resurgence of interest in the method

(Fig 2). It has not been possible to determine if this increase in publications over time is a note-

worthy trend or if this is confounded with the general increase in numbers of publications

Fig 1. PRISMA flowchart.

https://doi.org/10.1371/journal.pone.0229965.g001
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more generally. If there is a genuine increase in use of this methodology, it is potentially an

indication of the role of removal modelling in studies of reintroduction, especially when trans-

located individuals are removed from endangered populations [26], and the adaptations of

model collection protocols to adopt a “removal” design for other data types such as occupancy

and distance sampling, as will be discussed in the Adapting sampling schemes using removal
theory Section f this paper.

A strong representation of removal model publications was observed in the fields of Statis-

tics (29 publications), Fisheries and Ecology journals (20 papers each of the disciplines) and 13

papers published in ornithological journals.

Methodological contributions

Early model developments. The basic principle of the removal method is that a constant

sampling effort will remove a constant proportion of the population present at the time of

sampling. Thus, if the total population size is N and p denotes the probability of capture of an

individual during a particular sampling occasion [21], the expected number of captures will be

Table 1. Parameters used to categorise removal models included within the database.

Category Definition

Year of publication Year of publication as it appears in the final print

Reference Author-year citation style

Species Scientific name of the species included in the analysis

Taxonomic Group Taxonomic group of the species included in the analysis (Class and Order)

Research goal Aim of the study (practical or methodological)

Journal Name of the journal where the study was published

Subject area Research area of the journal

https://doi.org/10.1371/journal.pone.0229965.t001

Fig 2. Papers published since 1939 by category. Papers published since 1939 by category (application or methodological) and animal classification ecosystem

(aquatic, terrestrial or aerial).

https://doi.org/10.1371/journal.pone.0229965.g002
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given by: pN, p(N − pN) and p[N − pN − p(N − pN)] for the first, second and third sampling

occasions, respectively. Population estimates can be obtained either by plotting catch per unit

effort of collection as a function of total previous catch (see for example [2, 27, 28]) or by

obtaining maximum likelihood estimates [20, 21, 29, 30].

This model can be formalised by defining the corresponding likelihood function, which we

denote by L(N, p;data). Suppose xt denotes the number of individuals captured at sampling

occasion t = 1, . . ., T, where T denotes the number of sampling occasions. Using a binomial-

formulation, if Nt individuals are still in the study at sampling occasion t, we can define the

probability of removing xt individuals by

PrðxtjNt; ptÞ ¼
Nt

xt

 !

pxtð1 � pÞNt � xt ; ð1Þ

where N1 = N and Nt ¼ N �
Pt� 1

k¼1
xk for t� 2. Then, the probability of removing x1, . . ., xT

individuals on occasions 1, . . ., T is given by

LðN; p; x1; . . . ; xTÞ ¼ Prðx1; . . . ; xTjN; pÞ ¼
YT

t¼1

Nt

xt

 !

pxtð1 � pÞNt � xt : ð2Þ

Alternatively, we could specify that the N individuals within the population belong to one

of T + 1 categories: either they are captured on one of occasion 1, . . ., T, or they could never be

captured. Let πt denote the probability that an individual is captured at occasion t

pt ¼ ð1 � pÞt� 1p

and let π0 denote the probability that an individual is never captured:

p0 ¼ ð1 � pÞT

Let n denote the number of individuals never captured, which is given by n ¼ N � ST
t¼1

xt,

then the likelihood can be expressed as:

LðN; p; x1; . . . ; xTÞ ¼ Prðx1; . . . ; xTjN; pÞ ¼
N

x1; . . . ; xT; n

 !
YT

t¼1

pxt
t p

n
0
: ð3Þ

Early developments of removal models were methodological in nature, to overcome issues

which these days are simple to deal with because of computing power. [21] formalised the con-

ditional binomial removal model of [20], providing an asymptotic variance of the abundance

estimator. Further, they demonstrated how graphical methods can be used to estimate the

parameters of capture and abundance. The likelihood of [20] is weighted with a beta prior by

[31], which results in estimators with lower bias and variance. [32] proposed an improved con-

fidence interval for abundance for small populations, whilst [33] proved that the profile log-

likelihood for the removal model is unimodal and demonstrated that the likelihood-ratio con-

fidence interval for the population size has acceptable small-sample coverage properties. Simi-

larly, [34] proposes a profile likelihood approach for estimating confidence intervals which

showed improved performance.

Validity of model assumptions. The model assumptions required for these early models

were very restrictive. Specifically, capture probability, p is assumed to be constant both across

all individuals and for each sampling period. [20, 21, 29, 30] have typically included diagnostic

tests of assumptions or information on necessary sample sizes in their studies. [14] included a
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table of percentage errors to be expected if p varies during sampling. [6] presents a large num-

ber of capture-recapture models for closed populations which can be used to estimate abun-

dance. These models accommodated temporal, behavioural and heterogeneity effects in

capture probability. However, such generalisations for removal models are not possible as each

individual is only captured once. [35], noting that the assumptions of the removal model are

often violated, proposed the non-parametric jackknife estimator as an alternative to the

removal model.

[31] proposed a standard test that combines testing for arrivals or departures of individuals

in the population with testing for equal catchability. The test entails examining trends in the

number of removals over time: “When the expected third catch as determined from the first

two catches is larger than the observed third catch, emigration or a decreasing probability of

capture is indicated. When the opposite condition exists, immigration or an increase in the

probability of capture is indicated”. Both the presence and absence of trends yields ambiguous

information. Significant trends in the observed data can be caused by the population being

open or by unequal catchability. An absence of trends implies either that the assumptions were

met or that migration balanced changing probabilities of capture over time.

[36] indicates that unequal catchability tends to be the rule in biological populations. Hence

testing for equal catchability is crucial unless one adapts the model. Assuming that equal catch-

ability exists when it does not leads to underestimation of the population size. One procedure

that avoids this bias is to identify subsets of the population that are equally catchable and to

obtain separate population estimates for each subset [37]. However, because such subdivision

of the data greatly decreases the precision of the estimate of the total population size, one

should not divide the population unnecessarily if the assumption of equal catchability of all the

individuals is met. Therefore, employing a test of equal catchability is a crucial step in any pop-

ulation analysis, even if failure to reject the null hypothesis of equal catchability is an ambigu-

ous result [38].

Two aspects of equal catchability are important for the removal method: equal catchability

among groups and equal catchability in all sampling occasions. The first is tested analogously

to the test for marked and unmarked captures. If groups with different catchability are identi-

fied, separate population size estimates are made for each such group. Individual differences in

catchability unrelated to a particular group membership are still possible, but [32] showed that

unless these differences are great, their effect on the population estimate is small. [39] investi-

gated the robustness of the removal model to varying behaviours exhibited by fish using

simulation.

The second assumption, that catchability remains constant in all sampling periods can be

tested by the χ2chi-squared test given by [21] or further test given by [6] or [40]. Conclusions

drawn from any of these tests will be accurate only if the population remains closed during

sampling. Use of a physical barrier around the study site, if possible, can reduce arrivals and

departures from the population. Alternatively, independent verification by sampling of

marked animals will allow the validity of the assumption of population closure to be investi-

gated [37].

The closure assumption of the removal model has been relaxed in [41], where a model was

proposed which allows for population renewal through birth/immigration as well as for popu-

lation depletion through death/emigration in addition to the removal process. The arrivals of

new individuals are modelled by an unknown number of renewal groups and a reversible

jump MCMC approach is used to determine the unknown number of groups. Within this

paper however it is assumed that any emigration from the population is permanent, and this

assumption has been relaxed in [13] which presents a robust design, multilevel structure for

removal data using maximum likelihood inference. The implemented hidden Markov model
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framework [42], allows individuals to enter and leave the population between secondary sam-

ples. A Bayesian counterpart to this robust design model is presented in [43].

Change in ratio, index-removal and catch-effort models. Change in ratio models for

population size estimation are closely related to removal models [44, 45]. The model requires

that the population can be sub-divided into distinct population classes and the removals will

be performed in such a way that the ratio of removals of the sub-populations will be the same

as the underlying ratio of the sub-classes within the population.

We can generalise the basic removal model likelihood function of Eq (2) by extending

the definition of the parameters and the summary statistics. Specifically, suppose the popula-

tion is sub-divided into G mutually exclusive and exhaustive groups, and let N(g) denote the

unknown abundance of sub-population g = 1, . . ., G. We now record xt(g) individuals of sub-

population g being removed at occasion t. The likelihood becomes,

LðN; p; x1ð1Þ; . . . ; xTðGÞÞ ¼
YT

t¼1

YG

g¼1

NtðgÞ

xtðgÞ

 !

pxtðgÞð1 � pÞNtðgÞ� xtðgÞ: ð4Þ

where N1(g) = N(g) and NtðgÞ ¼ NðgÞ �
Pt� 1

k¼1
xkðgÞ for t� 2.

Catch-effort models are a straight-forward extension of basic removal models which allow

capture probability to be related to sampling effort. If catch per unit effort declines with time,

then regressing accumulated removals by catch per unit effort allows the starting population to

be estimated. This approach however strongly relies on the assumption that if more effort is

put into capturing the individuals then a higher proportion of the population will be caught

and if this is not satisfied estimators might be appreciably biased [46]. More generally we can

extend the removal likelihood of Eq 2 to define a functional form of capture probability:

LðN; pt; x1; . . . ; xTÞ ¼ Prðx1; . . . ; xTjN; pÞ ¼
YT

t¼1

Nt

xt

 !

pxt
t ð1 � ptÞ

Nt � xt : ð5Þ

where pt is the capture probability at occasion t which can be linked to a recorded covariate of

survey effort, denoted by wt. Possible forms for the functional form might be logit(pt) = α +

βwt, where α and β are parameters to be estimated, or pt ¼ 1 � exp � ywt , where θ is a single

parameter to be estimated has been used for fisheries applications where wt denotes the

amount of time spent fishing. Alternatively if wt denotes the number of traps on occasion t
and each animal is assumed to be caught in any trap with probability θ, pt ¼ 1 � ð1 � yÞ

wt [5].

Indeed the logistic form of time-dependent capture probability can also be used to model

time-variation in capture probability as a function of climatic conditions—see for example

[47].

When sampling is with replacement and the sampling efforts are known, [48] modelled the

survey sampling process as a Poisson point process where each animal is counted at random

with respect to increments of sampling effort and it is assumed that the encounter probabilities

for each individual are independent. [49] propose a class of catch-effort models which allow

for heterogeneous capture probabilities.

The index-removal method makes use of the decline in a measure of relative abundance

due to a known removal. The relative abundance is measured in surveys before and after the

removal [50]. [51] proposed an index-removal estimator which accounts for seasonal variation

in detection.

Further model developments. [52] demonstrates why auxiliary information is beneficial

in removal studies and how to incorporate the extra information into the model and [15]

extended the idea of incorporating sub-class level information by proposing a conditional

PLOS ONE Removal modelling in ecology: A systematic review

PLOS ONE | https://doi.org/10.1371/journal.pone.0229965 March 4, 2021 7 / 19

https://doi.org/10.1371/journal.pone.0229965


likelihood approach for incorporating auxiliary variables. Capture probabilities are directly

estimated from the conditional likelihood and then abundance estimates can be obtained

using a Horvitz-Thompson-like approach.

[53] relaxed the assumption of [20] that traps are not limited in capacity by developing a

model in which traps have a reduced capacity to catch once they have been filled. The model

assumes that the probability that a specific animal will be caught is proportional to the number

of traps that are unoccupied and is often referred to as the proportional trapping model.

Continuous-time removal models were proposed in [54] and the proportional trapping

model and continuous time framework were combined in [55]. Further [56] and [57] extended

the continuous time proportional trapping model to account for known ratios of sub-popula-

tions, thus generalising the change-in-ratio approach.

The theory of analysing multiple types of data in an integrated model within ecology has

gained traction in recent years—see for example [58]. Early ideas of combining data types has

been found in the removal literature. For example, [37] proposed combining capture-recap-

ture and removal methods for fish removals when sampling is over a limited study period and

[59] showed how the proportional trapping model can be extended to include data on non-tar-

get species.

Removal models have been presented as a class of hierarchical models, for example [16]

present a hierarchical removal model where the sites are assumed to have several distinct sub-

sites located spatially. Suppose removals occur at S sites, then records are made of xst, the num-

ber of individuals removed from site s = 1, . . ., S at occasion t = 1, . . ., T. Following the multi-

nomial form of the likelihood of Eq 3 the probability of observing a sequence of removal

counts, xs = {xs1, . . ., xsT} from site s is given by

f ðxsjNs; psÞ ¼
Ns

xs1; . . . ; xsT; ns

 !
YT

t¼1

fpsð1 � psÞg
xstð1 � psÞ

ns ; ð6Þ

where Ns denotes the abundance at site s, ps denotes the capture probability at site s and

ns ¼ Ns �
PT

t¼1
xst. Within the hierarchical formulation, a probabilistic formulation, defined

by density function g(N|ψ), with parameter ψ, specifies the variation in abundance among the

S spatially distinct sub-populations in the sample. The site-specific removal counts (Eq 6) can

be combined with this model by integrating over possible values of Ns:

pðxsjc; psÞ ¼
X1

Ns¼
P

t
xst

f ðxsjNs; psÞgðNsjcÞ ð7Þ

The likelihood function is then the product over the observations from the S sites, which

assuming independence is defined by

Lðc; p1; . . . ; pSjx1; . . . ; xSÞ ¼
YS

s¼1

pðxsjc; psÞ: ð8Þ

This model is in fact a multinomial N-mixture model [60] and it has been shown that the

removal N-mixture model outperforms the standard N-mixture model using simulation [61].

In practice, a value K has been used in place of the infinite sum in Eq 8 when evaluating the

likelihood, however what value of K is appropriate is subjective, and it has been shown there

can be some problems with proposed values [62]. [63] has demonstrated that the multinomial

N-mixture model for removal data, with negative binomial mixing distribution, has a closed-

form likelihood and therefore no numerical approximations are required to fit the model.
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Adapting sampling schemes using removal theory. Little work has been found which

investigates study design for removal surveys. [64] explored how to optimally allocate total

sampling effort for multiple removal sites by maximising the Fisher information of the con-

stant capture probability in the classic removal model. This approach was extended by [65] to

allocate effort between primary and secondary sampling occasions within the robust design

removal model [13].

An adaptation of survey design for various data types have been augmented with the con-

cept of removal studies. For example, [66] described a time-removal model that treats subsets

of the survey period as independent replicates in which birds are ‘captured’ and mentally

removed from the population during later sub-periods. This method has been implemented in

many subsequent papers, see for example [67, 68]. Further, the removal study design has been

proposed for occupancy surveys [69], whereby once a site has been observed as occupied by a

species no further surveys are required [70]. [71] developed a spatially explicit temporary emi-

gration model permitting the estimation of population density for point count data such as

removal sampling, double-observer sampling, and distance sampling.

Applications

From the papers we reviewed three animal systems were identified (Fig 2) based on the species

analysed. Almost half of the applied studies were focused on aquatic ecosystems (marine and

fresh water); followed by flying species (n = 24) and the rest of the applied studies analysing

terrestrial ecosystems. However partitioning the papers by taxonomic group shows that the

most common group are bird applications, with 23 papers identified. However, it should be

noted that many of these applications use other data types but with adapted sampling design as

described earlier [15, 66, 72–92]. Removal methods are clearly important in fisheries research

and applications are presented in [93–110]. The papers analysing data from mammals are [2,

6, 22, 111–121]. There are a further six papers analysing data from amphibians: [122–127] and

[51] analysed crustaceans. Insects have being analysed in three papers: [128–130] and the less

common applications included annelids [131] and Holothuroidea [131]. Three papers pre-

sented applications about human disease [17–19] and we included these in our analysis as the

aim of the study was to estimate the proportion of an affected population which is an aim in

common with ecological applications.

Software

There has been a considerable amount of recent work on developing software to make com-

plex statistical models accessible to the wider ecological community. Much software has been

developed to estimate population parameters, including abundance and demographic parame-

ters which account for imperfect detection.

Capture [6], was developed to compute estimates of capture probability and population

size for closed population capture-recapture data and given the basic removal model is a spe-

cial case of closed capture-recapture model Mb, Capture can be used to fit the geometric

removal model. RCapture [132] is an R package [133] for fitting models to capture-recap-

ture data. As well as open, closed and robust-design versions of these models based on multi-

nomial likelihoods it is the only software which also implements a log-linear modelling

algorithm to estimate the parameters.

Mark [134] provides a wide-range of models which can be fitted to more than 65 different

data types to estimate several population parameters from the encounters of marked animals.

Typically, parameters are obtained by method of maximum likelihood estimation through

numerical methods (Newton-Raphson by default). However, an MCMC algorithm has been
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added to provide estimates using a Bayesian framework [135]. [136] demonstrate how removal

models can be fitted using Mark for fisheries data. RMark [137] is a software package for the

R computing environment that was designed as an alternative interface that can be used in

place of Mark’s graphical-user-interface to describe models with a typed formula so that

models do not need to be defined manually through the design matrix. At the time of writing,

RMark supports fitting 97 of the 155 models available in Mark. R packages marked [138] and

unmarked [139] can also be used to fit the standard removal model and multinomial N-mix-

ture removal model, respectively—see [61]. There is also more specialised software that has

arisen for specific applications. Removal Sampling v2 [140] was designed to estimate

population size from removal data and [105] apply this software in order to analyse the effec-

tiveness of stream sampling methods for capturing invasive crayfish.

In addition there is of course well-known software which accommodates the removal study

design when fitting models to other data types. In particular Presence and RPresence
[141] for occupancy surveys and Distance [142] for distance sampling.

Discussion

Early removal models were simplistic and did not adequately account for potential variability

exhibited by the underlying population, however computational and methodological advances

give the possibility of more complex models, increasing opportunities, scenarios and accuracy

in population estimation. The framework we have presented here is designed to assimilate the

use of removal models in order to assist future practitioners in the effective application of

removal models.

In our review we have not only presented a list of papers published, differentiating applica-

tion and methodological advances, but also we have explained the evolution of the model. We

have shown how the model has been developed since [2] presented the first case with the evo-

lution in likelihood function from the basic to, for example, that proposed by [49], accounting

for heterogeneous capture probability, and more recently the work of [63], theoretically devel-

oping the multinomial N-mixture model for removal data.

We have shown how the model assumptions have been adapted, trying to fit the model to

different scenarios such as unequal catchability [36], non closure of population [41], heteroge-

nity accross sites [16] and temporary migration [13, 43].

Software development, means that even the complex models described in this paper are

accessible to ecologist, meaning that maximum utility can be obtained from removal data.

There are several advantages for non-specialists that wish to apply removal methods: there

is a vast array of available models for removal data, with the possibility of selecting the

approach where the model assumptions best align with their particular study; there is no

restriction to frequentist or Bayesian paradigms; there are several software packages and R

code accompanying publications of more recent development to investigate where model

assumption might fall short.

In our research we noted in earlier papers a thorough assessment of effects if model

assumptions were violated but this rigour was not found in late methodological papers, except

in some cases through part of a simulation. New methods developed in this research field have

been motivated by unique aspects of particular data sets, and therefore nuances of a case study

should be embraced rather than avoided in order to encourage methodological advances.

There is a worldwide interest in identifying tools for effective estimation of species popula-

tion size and removal models show great potential for application in a wide range of situations,

such as species relocation projects and control of exotic invasive species. Even if the original

aim of this method was to deplete a species, and some of the studies included in this review use
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the method for this purpose [2, 22, 107, 108, 113, 117, 119], most of the studies included in this

review were focused on understanding abundance of a particular species due to general inter-

est (for example [78, 81–84, 88, 143]). However, as a management tool it has been used not

only to estimate abundance [12, 144], but also, to estimate catchability [35, 66, 68, 109, 118],

migration [13, 43, 71, 85], habitat selection [64, 77, 96], endangered species [26, 116, 145], pop-

ulation dynamics [90, 103, 124] or translocation [23]. The potential of removal models to facil-

itate the estimation of population size in the source population whilst also obtaining a pool of

individuals to translocate/reintroduce means that such models will remain important and will

likely be further developed.

Species relocations are becoming more prevalent in conservation worldwide [145–147].

They are performed in several countries on an extensive range of species including plants

[145], amphibians and reptiles [148, 149]. There are many studies of translocated species and

the success of reintroductions, including settlement, survival and reproduction of translocated

individuals and their effects on the viability of the reintroduced population [150–155]. How-

ever, there is less information regarding the impact of translocations on the source or donor

population [156, 157]. These impacts can dramatically affect community stability, which is

especially important when translocated individuals are from endangered populations [25].

The main components that can affect the stability of a population are: resistance, that is the

ability to maintain its current state when subjected to a perturbation [158]; amplitude, that will

determine, after some alteration, if it will return to its original state [159]; elasticity is the prop-

erty that will determine the rate of return to its initial configuration when the perturbation

exceeds the resistance of a community, but not its amplitude [160]. Removal data and removal

models may be a powerful tool in order to understand and manage these populations.

As we have shown in this review there are several methodological tools available for practi-

tioners. Although a deep mathematical/statistical knowledge is not needed to apply these

methodologies due to the prevalence of software, some assessment should be made of the

appropriateness of the statistical models in order to obtain robust estimates of parameters of

interest. When removal models were first proposed two core assumptions were key: popula-

tions had to be closed and capture probability had to be constant across both time and individ-

uals. We have shown that these assumptions are no longer necessary and more general models

exist. However we have to recognise that the ability to estimate all parameters from a very com-

plex model will depend on the data you have available. Substantial numbers of papers exist

introducing the concept of removal study design in other types of data collection studies how-

ever we have found little work on study design of removal studies themselves, an exception

being [64]. Some papers have demonstrated the power of collecting additional information

during removal studies, such as sub-group information or spatial information, and it is likely

this type of adaptation to basic removal data that will facilitate the fitting of more complex

models. Addressing the important aspect of removal study design more generally is an area of

active research.
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