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ABSTRACT

Gene expression signatures have been critical in
defining the molecular phenotypes of cells, tis-
sues, and patient samples. Their most notable and
widespread clinical application is stratification of
breast cancer patients into molecular (PAM50) sub-
types. The cost and relatively large amounts of fresh
starting material required for whole-transcriptome
sequencing has limited clinical application of thou-
sands of existing gene signatures captured in repos-
itories such as the Molecular Signature Database.
We identified genes with stable expression across
a range of abundances, and with a preserved rela-
tive ordering across thousands of samples, allowing
signature scoring and supporting general data nor-
malisation for transcriptomic data. Our new method,
stingscore, quantifies and summarises relative ex-
pression levels of signature genes from individ-
ual samples through the inclusion of these ‘stably-
expressed genes’. We show that our list of stable
genes has better stability across cancer and nor-
mal tissue data than previously proposed gene sets.
Additionally, we show that signature scores com-
puted from targeted transcript measurements using
stingscore can predict docetaxel response in breast
cancer patients. This new approach to gene expres-
sion signature analysis will facilitate the develop-
ment of panel-type tests for gene expression sig-
natures, thus supporting clinical translation of the
powerful insights gained from cancer transcriptomic
studies.

GRAPHICAL ABSTRACT

INTRODUCTION

Measurements of transcript abundance are often used to in-
fer the molecular phenotype of a biological system. Assays
that capture such measurements vary in throughput, accu-
racy, and cost (1). Real time quantitative PCR (RT-qPCR)
is a low throughput assay that requires smaller amounts of
biological material, whereas whole transcriptome RNA-seq
is a high throughput assay that requires a larger amount of
RNA. In general, targeted RNA analyses tend to require
smaller amounts of RNA are therefore applicable to sam-
ples where whole transcriptome analysis may not be feasi-
ble, for instance formalin fixed paraffin embedded (FFPE)
samples (2). In a clinical setting, minimising the required
amount of biological material is desirable as less needs to
be acquired from a patient. Together with reduced costs,
this makes RT-qPCR and other targeted sequencing tech-
nologies popular platforms for clinical RNA-based tests.
The Oncotype Dx® is a prognostic test that measures the
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abundance of 21 genes in breast cancer using RT-qPCR to
compute scores that predict the risk of recurrence and guide
chemotherapy (3).

NanoString’s nCounter® platform can provide
moderate-throughput measurements of several hun-
dred transcripts at a low cost, and this platform is used
in the PAM50-based Prosigna® breast cancer prognostic
gene signature assay (4). This test first classifies samples
into PAM50 subtypes and then uses these estimates to
predict a risk or recurrence score. PAM50 subtypes are
higher order molecular phenotypes of patient tumours
that capture information on their molecular state. Lower
order phenotypes that probe the microenvironment can
be used to assess tumour infiltrating lymphocytes and po-
tentially guide immunotherapies (5). Likewise, phenotypes
that assess pathway activity may be used to predict drug
sensitivity and consequently guide therapy (6).

In research, these phenotypes are routinely assessed us-
ing gene expression signatures such as those available in
the molecular signature database (MSigDB) (7,8), and in-
sights provided by them have been vital in developing our
understanding of cancer. These signatures are often devel-
oped using perturbation experiments with an aim of prob-
ing transcriptomic data derived from systems where such
perturbations are not possible (e.g. patient samples). Tens
of thousands of gene signatures have been developed in the
past however their widespread use in research and clinical
contexts has been limited by the need for transcriptome-
wide measurements which are expensive and unnecessary
when only a small set of phenotypes need to be investi-
gated. Additionally, these gene sets are not frequently used
in samples that are formalin fixed and paraffin embedded
(FFPE) as FFPE samples are not suitable for whole tran-
scriptome RNA-seq. As a consequence, large and valuable
collections of archival material cannot be used for RNA-
seq based transcriptomics, but they may be amenable to al-
ternative, low- to medium-throughput cost-effective meth-
ods like RT-qPCR or NanoString nCounter®. Support-
ing this approach, the testing of archival FFPE samples
has shown targeted pathway methods to be the most reli-
able form of transcriptomic analysis for these samples (9).
These use cases highlight the need for systematic methods
for translating whole transcriptome derived gene expression
signatures to a reduced measurement space that allow the
potential exploration of archival samples and support the
development of further targeted and cost-effective molecu-
lar phenotyping assays for use in research, pre-clinical and
clinical settings.

A core requirement across all platforms is the need for
control genes to normalise across sample measurements.
Sample-to-sample variation can arise either form biological
or technical sources. The effects of some technical variation
can be minimised by normalising measurements against
controls; this variation can arise from differences in total
starting material, enzymatic efficiencies and in transcrip-
tional activity between tissues or cells (10). More complex
forms of variation such as batch effects can be corrected
with sophisticated approaches that make use of control
genes (11). Experimental spike-ins such as External RNA
Controls Consortium (ERCC) spike-ins (12) can be used

as control genes, however they do not experience the same
sample preparation steps as endogenous RNA and there-
fore may not be the best representative reference (13–15).
Historically, ACTB and GAPDH have been used as en-
dogenous controls in RT-qPCR experiments, however, nu-
merous studies have shown them to be differentially ex-
pressed across tissues (16–19). Alternatively, housekeeping
genes that are assumed to be invariant across tissues due
to their involvement in core cellular processes can be used
as endogenous controls (20), however they have also been
shown to vary across different tissues (10,16,21,22).

The availability of large transcriptomic datasets spanning
numerous biological conditions has encouraged data-driven
identification of reference genes. Vandesompele et al. (10)
introduced the geNorm algorithm to select reference genes
for microarray data by iterative elimination of the least sta-
ble gene. Key ideas they introduced were the use of multi-
ple genes for normalisation, and evaluation of gene stability
with respect to a putative set of stable genes. Reference genes
for the NanoString nCounter® pan-cancer panels were se-
lected by applying geNorm to the genotype-tissue expres-
sion dataset (GTEx). Krasnov et al. (21) used pan-cancer
and normal RNA-seq data from the cancer genome atlas
(TCGA) to prioritise reference genes for RT-qPCR experi-
ments on tumour samples. Genes were prioritised such that
they were differentially expressed between tumour and nor-
mal samples, had low variation as measured by the stan-
dard deviation, were associated with clinical parameters
and had a high expression. Genes with many mutations,
isoforms and pseudogenes were penalised. All information
was weighted and collated using heuristic scoring functions.
Lin et al. (22) have identified stable genes for normalisa-
tion single cell RNA sequencing (scRNA-seq) data. Using
gamma-Gaussian mixture models for gene expression, they
decomposed the lower expression spectrum of each gene
into a gamma distribution. Next, they prioritised genes with
a smaller gamma component, lower variation at the higher
end of the expression spectrum, a smaller proportion of zero
counts and lower differences between cell clusters. Their ap-
proach penalised genes with low expression across cell clus-
ters.

Both data-driven approaches above defined stably ex-
pressed genes by computing multiple measures of stability
and combining them into a single metric that can be used
to prioritise stably expressed genes. A shared limitation of
these gene sets was their derivation from a single dataset.
Meta-analysis approaches generally produce robust results
and have been widely used in differential expression analy-
sis. As such, using multiple datasets to identify stable genes
would produce a more robust prioritisation. Additionally,
Krasnov et al. (21) proposed a cancer-specific set of sta-
ble genes but only used data from tumours to define their
list. Most cancer-specific analyses are initially performed on
cell lines and later translated to patients or patient derived
xenografts. As such, genes used to calibrate these datasets
need to be stable in both tumours and other experimental
models.

In this study, we aim to address these limitations and im-
prove the process of prioritising stable genes for use in the
analysis of samples that may be derived from observational
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transcriptomic data (e.g. patient-derived samples and cell
lines) where no specific perturbation has been applied. We
compute a variety of stability measures across two diverse
datasets and combine them using a meta-analysis method
(23). A measure of outliers is included to ensure stability is
maintained across as many samples as possible, and to al-
low usage of these genes in outlier-based analyses (24). The
list of stably expressed genes we propose are comparable or
better than other lists in terms of stability while possess-
ing additional properties. Our list covers a wider range of
expression values than previous studies and therefore may
better capture variability towards the tails of the expres-
sion distribution. A novel property of rank preservation
is observed whereby the relative ranks of stable genes are
also preserved across samples. This additional information
may provide better opportunities for some normalisation
methods, and for rank-based analysis methods. Finally, we
demonstrate how the list of stable genes along with informa-
tion on their relative ranks may provide cost-effective op-
portunities to test for molecular signature enrichment, thus
addressing one of the limitations of molecular phenotyping
in the clinic. The lists we provide in this study may be used in
a diverse set of applications, including, RT-qPCR normal-
isation, NanoString nCounter® normalisation, and RUV-
based batch normalisation (11).

MATERIALS AND METHODS

Pre-processing datasets

Where count-level data were available, gene filtering was
performed on log-transformed counts-per-million reads
(logCPM) with subsequent trimmed mean of m-values
(TMM) normalisation (25) and finally transformation to
log-transformed reads per kilobase of transcript, per mil-
lion reads (logRPKM). RNA-seq data from post-mortem
samples were obtained through the Genotype-Tissue Ex-
pression consortium (GTEx). Some samples have under-
gone autolysis which results in poor RNA quality, there-
fore samples with autolysis scores >1 were excluded from
the analysis. Pan-cancer RNA-seq data from The Can-
cer Genome Atlas (TCGA) were obtained as Subread-
processed output from GEO (GSE62944). Samples with
the phrase ‘carcinoma’ in their annotation were considered
carcinomas and were used to derive our stable gene list.
TCGA breast cancer data were downloaded and processed
using an alternate pipeline described in a R/Bioconductor-
based workflow (26). This data was used to assess the
impact of processing pipelines on putative stable genes.
Cancer cell line encyclopedia (CCLE) samples were classi-
fied as carcinomas similar to TCGA samples. CCLE data
downloaded using the PharmacoGx R package (27) were
used in this analysis. Finally, genes with a logRPKM, log-
transformed transcripts per million (logTPM), logCPM, or
log-transformed fragments per kilobase of transcript, per
million reads (logFPKM) of less than 1 across more than
half of the samples were filtered out from each dataset due
to low abundance. Filtering to remove genes with low abun-
dance was performed independently for carcinoma and
non-carcinoma samples.

Processed level 3 data from the Connectivity Map
(CMap) project (28), representing a large collection of gene

and compound perturbations applied to 76 cell lines was
downloaded from the Gene Expression Omnibus (GEO)
from the accession GSE92742. A compendium of com-
pendium of 10 datasets covering nine cell lines combined
and corrected for batch effects by Foroutan et al. (29) was
downloaded from the University of Melbourne’s figshare
(DOI: 10.4225/49/5a2a11fa43fe3). Gene identifiers from
both datasets were converted from Entrez IDs to gene sym-
bols using annotations from the org.Hs.eg.db R package
(v3.11.4).

Sequencing quality control consortium (SEQC) RNA-
seq data were obtained from the seqc R/Bioconductor
package. RNA-seq measurements from Illumina instru-
ments at the Australian Genome Research (AGR) centre
processed using the RefSeq annotation were used in this
study. RT-qPCR measurements from the PRIME-qPCR
protocol were obtained from GEO (GSE56457).

Transcriptomic measurements from primary biopsies of
24 breast cancer patients treated with docetaxel were down-
loaded from the GEO from the accession GSE6434. Pro-
cessed microarray data were downloaded, and log trans-
formed. Probes representing the same gene symbol were
combined using the average.

Computing metrics of variability

Four metrics of variability were computed for each gene
within each dataset:

• The median absolute deviation (MAD): a rank-based
measure of variation. For gene expression measurements
X1, X2, . . . , Xn , where Xi is the expression of gene i
across m samples, the MAD is calculated as MAD =
median(|Xi − X̄|) where X̄= median(Xi ).

• Shannon’s entropy: a measure of information content for
a variable. The Shannon entropy is computed using the
distribution of the data. We estimate the distribution by
discretising gene expression measurements into bins of
equal width using the entropy R package. The number
of bins was computed as the square root of the num-
ber of samples and bins were defined using the expres-
sion distribution of the entire dataset. Shannon’s entropy

for gene i is then computed as I = −
k∑

i = 1
P(xi ) log P(xi )

where P(X) is the probability mass function and k is the
number of bins.

• The outlier sum statistic: a metric quantifying the pres-
ence of outliers. Outliers are defined as observations
where transcript abundance is either greater than the sum
of the third quartile and the interquartile range (IQR),
or less than the difference of the first quartile and the in-
terquartile range (x < q0.25 − IQR or x > q0.75 + IQR).
The outlier sum statistic is then the sum of absolute value
from median-centred outliers.

• F-statistic from a one-way ANOVA test on source tissue
to assess group-wise differences.

R code used to compute these metrics and combine the
results is available in additional file 3.



e113 Nucleic Acids Research, 2020, Vol. 48, No. 19 PAGE 4 OF 14

Stability scores for gene sets

We repurposed singscore to compute gene set stability
scores instead of enrichment scores. Genes were ranked
based on their stability across all TCGA carcinoma samples
and CCLE carcinoma-derived cell lines. We then created
a single pseudo-sample with genes ranked on stability and
computed uncentred scores for this pseudo-sample against
gene sets using the R/Bioconductor package singscore. The
resulting scores are each in the range of [0,1] with 1 indicat-
ing perfect gene set stability relative to all assessed genes.
Gene sets were downloaded from MSigDB v5.2 (8). We dis-
carded gene sets where fewer than 10 member genes had
been assessed for stability in our study. The remaining gene
sets were scored for stability using the approach described.

Computing gene set scores using stable genes

The stingscore approach to scoring gene sets using sta-
ble genes is implemented in the R/Bioconductor pack-
age singscore (v1.8.0). Expression data can be ranked
against stable genes by passing a set of stable genes to
the rankGenes() function using the stableGenes argument.
Passing the rank matrix to the simpleScore() function auto-
matically invokes the stingscore implementation.

Deriving a docetaxel gene signature using CMap

Two level 4 processed z-score profiles representing docetaxel
treatment of MCF7 cell lines were downloaded from https:
//clue.io/ (command: /sig ‘docetaxel’) and processed in R
using the R/Bioconductor package cmapR (v1.0.0). The
two profiles were combined using the moderated z-score ap-
proach (28). Genes with a z-score greater than 1.2816 (90th
percentile of standard normal distribution) were considered
as up-regulated and formed the docetaxel gene signature.
Only up-regulated genes were selected to form the signa-
ture as from past experiences, they tend to carry a stronger
signal (26).

RESULTS

Selecting stably expressed genes

In our study we have explored expression stability of genes
relative to other genes. As such, variation of a gene across
samples could be biologically significant, but it would be
considered stable if it is less variable than other genes.
In effect, like previous studies, we identified genes with a
smaller dynamic range relative to other genes. Two cancer
datasets representing different cancer models were used to
identify stable genes: The Cancer Genome Atlas (TCGA)
pan-cancer tumour data and Cancer Cell Line Encyclo-
pedia (CCLE) cell line data (27,30). As the transcriptome
of solid tumours are clearly distinct from those of liquid
(haematological and lymphoid) malignancies, we have fo-
cused on identifying stable genes in solid tumours for this
study. Thus, only carcinomas from TCGA and carcinoma-
derived cell lines from the CCLE dataset were used to iden-
tify stable genes. Using multiple variability measurements
across diverse datasets ensured a robust selection of stable
genes.

For each gene, we calculated the median absolute devi-
ation (MAD), Shannon’s entropy, the outlier sum statistic,
and the F-statistic from a one-way ANOVA analysis - on
either the tissue of the primary tumours or the tissue of
origin for cell lines. The first three metrics quantify vari-
ability of gene expression while the last quantifies between
group differences in abundance. Ideal stable genes would be
invariant to tissue types. Hexbin plots in the background
of Figure 1 show distributions of these measurements for
TCGA carcinomas. These four quantities were measured
for all genes across both datasets, resulting in eight mea-
surements of variation.

Considering each of the eight variation metrics as sepa-
rate stability analyses, we can use meta-analysis approaches
to prioritise stable genes. We used the product of ranks
rank aggregation method to combine stability information
gained from the measurements (23). Briefly, genes were
ranked in ascending order of each variability measurement
independently resulting in eight rankers. These rankers were
then combined using the product function to produce a
product of ranks statistic for each gene. Genes missing
in either dataset were discarded as their product of ranks
could not be computed. A schematic of this approach is
presented in the supplementary material (Additional file 1:
Supplementary Figure S1). The proposed list of stable genes
can be accessed using the getStableGenes() function in the
R/Bioconductor package singscore (v1.8.0). The top 5, 30
and 150 stable genes prioritised using this approach are
overlayed on TCGA metric distributions in Figure 1. It is
evident that the product of ranks approach prioritises genes
that minimise most measures of variation. The F-statistic
from the ANOVA analysis is higher for proposed stable
genes. Variability measurements were plotted against the
median expression value of each gene in Figure 1, demon-
strating that our set of top stable genes covers a wide range
of expression values.

Comparison against other lists of stable genes

We used 14 independent datasets to assess the validity of
our prioritisation of stable genes. These data are listed in
Table 1 with details on the number of samples, groups
and measurements, and the type of data or measurement.
They are derived from tumour samples, cancer cell lines,
normal tissue, and primary cell lines; with RNA-seq, pro-
teomic and CAGE-seq measurements. Pre-processing was
different for some of the data with RNA-seq and CAGE-
seq measurements summarised as either TPM, CPM or
FPKM/RPKM.

We evaluated our prioritisation of stable genes on these
datasets and simultaneously compared it against other sta-
ble gene lists or prioritisations. Specifically, we compared
our rankings against those from the ordered lists of Lin et
al. (22) and Krasnov et al. (21). We also compared stabil-
ity against the set of stable genes used for normalisation
in the NanoString nCounter® PanCancer pathways, Pan-
Cancer immune profiling and PanCancer progression gene
expression panels. These panels have 40, 40 and 30 stable
genes, respectively. To enable comparison of both discrete
and prioritised lists of stable genes, we computed M-values
proposed in the geNorm method (10). M-values are com-

https://clue.io/
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Figure 1. Stability metrics for stable genes are minimised on TCGA PanCancer carcinomas. The background distribution represents metrics for all genes.
Top 5, 30 and 150 stable genes are overlayed on each plot. These genes have lower median absolute deviations, Shannon’s entropy and outlier sum statistics.
They have relatively lower between-group differences as signified by the F-statistic from the one-way ANOVA test on tissues. Stable genes tend to cover a
wide range of the expression spectrum (widely distributed median logRPKMs).

puted to capture the variability of each gene relative to ev-
ery other gene in a putative set of stable genes. Thus, adding
a gene to the set of stable genes will alter the M-value for all
other genes in the set. We computed the median M-value
and the interquartile range of M-values for a given set of
stable genes. These values were computed for sets of size 5–
150 for prioritisation lists such as ours. These quantities are
shown in Figure 2 where the median M-value is represented
as either a point or a line, and the interquartile range as er-
ror bars/bands. Lower M-values indicate better stability.

As shown, our list outperforms others in stability mea-
sures across the datasets used for their derivation. Addition-
ally, our list outperforms other lists in all TCGA datasets,
including non-carcinomas, normal tissue samples and the
breast cancer cohort with gene expression measured in
CPM. Interestingly, all lists of stable genes tend to be more
stable in normal TCGA samples than in cancer samples
as evident by the relatively lower M-values. We note that
magnitudes of M-values should not be compared between
datasets if data are drawn from different underlying distri-
butions. It is a valid comparison for RPKM-level data from
TCGA as they were prepared and processed similarly. Our
genes are more stable than other lists across cancer datasets,
including CCLE non-carcinoma cell lines and Daemen et
al. (31) breast cell lines. Additionally, our genes are rela-
tively more stable across normal tissue and primary cell
lines except for the human protein atlas tissue data where
the NanoString nCounter® PanCancer Pathways and Pan-
Cancer Progression panel genes are more stable compared
to our lists of equivalent size. Control genes for the NanoS-

tring nCounter® panels were selected by optimising M-
values in the GTEx data, yet our lists of equivalent size are
more stable in those data. We also showed stability of our
list on data generated using a different protocol for measur-
ing transcript expression, CAGE-seq.

The most distinct datasets were the blood RNA-seq and
cancer proteomic datasets. None of the lists of stable genes
are clearly more stable than the others in blood RNA-seq
data. The top 50 stable genes from Lin et al. (22) tend to
be more stable in the GSE60424 sorted blood data, but
the trend does not hold across other blood datasets. Our
list outperforms other lists in the blood data generated by
Schmiedel et al. (32). Interestingly, control genes used in the
NanoString nCounter® PanCancer Immune panel tend to
be less stable in blood data than our stable genes and those
proposed by Krasnov et al. (21). Finally, the list by Lin et al.
(22) is the most stable in the label-free quantification pro-
teomic dataset from the CPTAC project. Overlap analysis
between the different lists showed that there was little over-
lap between our list of stable genes and other lists (Addi-
tional file 1: Supplementary Figure S2). As such, the list
of stable genes we propose is relatively novel. Additionally,
the set of reference genes commonly used across many gene
expression panels (gathered by Krasnov et al. (21)) have
the little overlap with genes identified from data-centric ap-
proaches.

Though our list of stable genes was identified using ob-
servational samples such as patient samples and unper-
turbed cell lines, we investigated their stability in pertur-
bation experiments which are often performed on experi-
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Table 1. Datasets used to identify stably expressed genes and assess their stability. Datasets are grouped based on the projects they were sourced from
and are annotated for the type of dataset, number of samples, number of biological groups and the measurement used (TPM – transcripts per million,
RPKM/FPKM – reads/fragments per kilobase per million or CPM – counts per million). Original studies that produced the dataset are cited along with
the study where the processed version as downloaded. Processed versions of datasets marked by asterisk were downloaded from the human protein atlas
www.proteinatlas.org

Project Dataset Type Measurement
Number of

samples
Number of

groups Citations

TCGA TCGA carcinomas Pan-cancer tissue FPKM 7310 13 (26,44)
TCGA other Pan-cancer tissue FPKM 1942 10 (26,44)
TCGA BRCA CPM Breast cancer tissue CPM 1077 6 (26,44)
TCGA normal Normal tissue FPKM 718 20 (26,44)

CCLE CCLE carcinomas Pan-cancer cell line RPKM 581 19 (27,30)
CCLE other Pan-cancer cell line RPKM 348 15 (27,30)

HPA HPA tissue Normal tissue TPM 43 43 (45)
HPA cell line Normal cell line TPM 64 64 (45)
HPA blood sample Blood TPM 109 19 (45)

CPTAC CPTAC TCGA colon Colon cancer tissue MS/MS
intensity

95 - (46)

FANTOM FANTOM CAGE tissue* Normal tissue TPM 45 45 (47-49)
GTEx GTEx (v7) Normal tissue

(post-mortem)
TPM 8462 29 -

Other Daeman et al. breast cell
lines

Breast cancer cell line RPKM 64 4 (31,35)

GSE60424 sorted blood Blood RPKM 28 7 (38,50)
Monaco et al. blood* Blood TPM 30 30 (45,51)
Schmiedel et al. blood* Blood TPM 15 15 (32,45)

mental models such as cell lines. We assessed stability using
data from two perturbation experiments: The Connectivity
Map project (CMap) where 76 cell lines were perturbed us-
ing thousands of chemical and genetic perturbagens, and
a compendium of datasets where a large phenotypic shift
was induced by stimulating cell lines with TGF�. Stability
analysis using M-values reveals that our list of stable genes
outperforms other prioritisation-based lists, however, it is
less stable than the set of control genes used in NanoString
nCounter® PanCancer pathways and progression panels
(Additional file 1: Supplementary Figure S3). Expression
measurements from the CMap project are measured us-
ing the L1000 assay which directly measures the expres-
sion of only 978 genes and infer the expression of more
than 10000 other genes therefore we also investigated the
accuracy with which genes within each list were measured.
This analysis shows that control genes in the NanoString
nCounter® panel are measured with slightly greater accu-
racy than other lists of similar sizes (Additional file 1: Sup-
plementary Figure S3). Since the data from Foroutan et al.
(29) only contained two groups (TGF�-stimulated and con-
trols), we performed t-tests between these groups and used
the resulting t-statistic as a measure of variability. Our anal-
ysis shows that top-ranking stable genes in our list are more
stable than other genes, however, stability between all lists is
comparable when larger gene sets are assessed (Additional
file 1: Supplementary Figure S4).

Functional composition of stable genes

Next, we investigated the functional role of genes with stable
expression. Since these genes were expressed at stable levels
across a wide range of tissues, we suspected they may be in-
volved in essential processes. To test this hypothesis, we used
the list of essential genes identified in the DepMap project
(33,34) using CRISPR knock-out screens across a variety
of cell lines. The DepMap project identified 2164 genes

that were essential for survival. We evaluated their occur-
rence in our list of stable genes and noticed that for lists of
any size, approximately half the stable genes were essential
for survival. Similarly, ∼65% of the stable genes proposed
by Lin et al. (22), ∼35% of the genes proposed by Kras-
nov et al. (21) and ∼40% of the genes in the NanoString
nCounter® panel were essential for survival (see Additional
file 1: Supplementary Figure S5). This analysis suggested
that genes essential for survival tend to be stably expressed
and the set of essential genes may be better a biologically
motivated set of stable genes than the set of housekeeping
genes.

Since stable genes were a mix of essential and non-
essential genes, we further characterised our list using gene
ontology (GO) enrichment analysis. Our aim was to evalu-
ate enrichment accounting for the prioritisation of stability
in our list. We adapted singscore (35) to achieve this and
computed stability scores for gene sets derived from gene
ontologies and KEGG pathways. Gene sets associated with
RNA processing (GO:0006396, GO:0008380), the spliceo-
some complex (GO:0005681), mRNA metabolic process
(GO:0016071) and RNA binding (GO:0003723) were some
of the gene sets enriched with stable genes (see Additional
file 1: Supplementary Figure S6) and had varying propor-
tions of essential genes (50–75%, see Additional file 2). Sim-
ilar analysis of KEGG pathways as gene sets revealed the
spliceosome pathway (hsa03040) to be the most stable. The
epithelial mesenchymal transition gene set from the hall-
marks set of MSigDB was the most variable (least stable).
Stability scores of all MSigDB gene sets can be further ex-
plored using the interactive plot available in Additional File
2.

Relative ranks of stable genes are preserved across samples

The perfect stable gene would be completely invariant under
all conditions. Given two such genes expressed at different

http://www.proteinatlas.org
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Figure 2. The proposed list is more stable than other lists across most of the 14 datasets used to assess stability. Our prioritisation of stable genes is compared
against those from Krasnov et al. (2019) and Lin et al. Stability is compared against fixed lists used in the NanoString nCounter® PanCancer gene panels.
Our list results in a better prioritisation of stable genes in cancer patient and cell line datasets. Additionally, our list is more stable in normal samples.
Different summarisations of transcriptomic measurements (RPKM, TPM and CPM) do not affect stability. Stability of genes proposed in all lists is not
preserved in blood, likely due to the distinct biology of blood. Additionally, our list like most others was identified on solid tissue data, therefore, did not
capture stability in blood. Genes proposed by Lin et al. tend to be more stable in proteomic data. This list was proposed for scRNA-seq data which suffers
from the same problem of missing values as proteomic data therefore would work well with proteomic measurements.

abundances, we would observe that across all samples, the
gene with higher expression would always be ranked higher
than the other gene. This relationship would slowly dissolve
as these genes become more variant or the difference be-
tween their average expression reduces. As such, given a set
of stable genes, their ranks based on gene expression would
be consistent so long as the genes were stable. We identi-
fied this effect for the highest and lowest expressed genes in
our top 5 stable genes, RBM45 and HNRNPK respectively.
RBM45 expression was lower than HNRNPK expression
for all samples across all 15 RNA-seq datasets. This strong
rank preservation is in part attributed to the large difference
in expression between the two genes.

Expression-based ranks for genes were computed using
the product of ranks meta-analysis approach. We ranked
stable genes according to their median expression in the
datasets used to identify them (TCGA carcinomas and
CCLE carcinoma-derived cell lines). Using the rank of me-
dian expression in each dataset as an individual ranker, we
computed the product of ranks to determine the expression-
based rank of each gene. As such, information on the ex-
pected ranks based on abundance is added to any dis-
cretisation for our list of stable genes. Next, we evaluated
rank preservation for stable gene sets of sizes 5–30 across
all datasets. For each pair of genes within a set of stable
genes, we first computed the pairwise rank consistency as
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the proportion of samples where the order of gene expres-
sion matched the expected order. Then, for each gene, we
defined the gene-wise rank consistency as the average of its
pairwise consistency with all other genes in the set. Like the
M-value, the gene-wise rank consistency of a gene is defined
relative to other genes in the gene set. Figure 3A shows the
pairwise rank consistency measurements for the top 7 sta-
ble genes along with their gene-wise rank consistencies in
TCGA carcinomas.

We computed gene-wise rank consistencies of genes in
stable gene sets of varying sizes across the 14 validation
datasets. Figure 3B shows the median of computed gene-
wise rank consistencies along with the interquartile range
for each set of stable genes. As expected, ranks are preserved
in datasets used to derive stable genes and their expected
order. Ranks are preserved strongly in cancer datasets and
in normal tissue/cell line datasets with a slightly higher
preservation in the former. Rank consistency within blood
datasets is generally lower compared to all other datasets.
Larger sets of stable genes tend to be strongly preserved in
TCGA normal samples. Rank preservation is observed in
the CPTAC colon proteomic dataset, though not as strongly
as with transcriptomic dataset.

Computing gene expression signature scores using a reduced
number of measurements

We previously developed a method, singscore, to score indi-
vidual samples against gene set signatures using transcrip-
tomic data and showed that these scores can assist in assess-
ing the molecular phenotype of tissues and cell lines (35).
Though the method has been applied in diverse scenarios in
an exploratory context (26,35–38), the potential for clinical
translation is limited by a requirement for transcriptome-
wide measurements. Singscore ranked genes based on their
transcript abundance, computed the mean of expected up-
regulated genes in the case of an up-regulated gene signa-
ture, and normalised the mean to produce a signature score.
Higher scores indicated concordance with the gene signa-
ture. Transcriptome-wide measurements were only required
to rank genes in the signature, thereby providing context on
how highly/lowly expressed genes in the signature were rel-
ative to all other genes.

The rank preservation property of stably expressed genes
can be used to calibrate measurements within a sam-
ple, thus providing an appropriate context to evaluate
the relative expression levels of all other genes. Stable
genes allow relative rank estimation of genes without the
need for transcriptome-wide measurements. The relative
transcriptome-wide rank of any gene can be interpolated
given a set of stably expressed genes that are equally spaced
on the expression spectrum and that span the entire range
of expression values. Figure 4A shows that our set of sta-
ble genes cover a wide range of the gene expression spec-
trum and are approximately evenly distributed, therefore,
may be used to approximate the ranks of other genes with-
out the need for transcriptome-wide measurements. We ap-
proximated the unit normalised ranks of genes using a sim-
ple approach (see illustration in Additional file 1: Supple-
mentary Figure S7). For any given set of stable genes, the

rank of a gene was approximated as the number of sta-
ble genes with expression values lower than its expression.
Unit normalisation was performed by dividing this num-
ber by one plus the total number of stable genes in the sta-
ble gene set. The signature score of a signature consisting
of up-regulated genes was simply the average of their unit
normalised ranks. Further normalisation would not be re-
quired since ranks were already normalised. A similar pro-
cedure would be applied for signatures consisting of down-
regulated genes; the only difference being the inversion of
ranks (1 – unit normalised rank). Scores using both up- and
down-regulated genes were centred around 0 by subtracting
the median score (0.5) from them, thus ensuring score were
in the range [–0.5, 0.5]. Additionally, signatures composed
of both up- and down-regulated genes with unknown direc-
tion can be scored using an approach similar to singscore
(35).

We compared scores computed using the original
singscore with those computed using our new method,
stingscore (stable singscore), that only requires measure-
ments of genes in the transcriptomic signature and a few
stable genes. Samples from the SEQC/MAQCIII project
were used to compare scores computed using the differ-
ent approaches on different measurement platforms (39).
The SEQC/MAQCIII project had measurements for four
samples: universal human reference RNA sample (UHRR),
the human brain reference RNA (HBRR), a mixture con-
taining 1

4 UHRR and 3
4 HBRR, and a mixture contain-

ing 3
4 UHRR and 1

4 HBRR. HBRR was extracted from
multiple brain regions of multiple patients and UHRR was
extracted from different tumour tissues of different pa-
tients. Measurements of all samples were taken using RNA-
seq and RT-qPCR. We scored all samples against a brain-
specific neurotransmitter receptor activity gene signature
(GO: 0030594) and a cancer-associated cell cycle signature
(40). Scores were computed using two approaches: using
singscore with transcriptome-wide RNA-seq measurements
and using stingscore with RT-qPCR measurements of genes
in the signatures (67 and 44 genes for the brain-specific and
cancer-associated signatures respectively) and the top five
stable genes identified in our analysis. Since RT-qPCR mea-
sures cycle threshold (Ct) values, we ranked genes using
1/Ct. By sampling from the RT-qPCR measurements, we
replicate a clinical setting where signatures are evaluated on
samples. Scores computed from transcriptome-wide RNA-
seq measurements are highly correlated with those from RT-
qPCR measurements of signature genes and stable genes
(Figure 4B). Despite the high correlation between scores
computed using the different approaches, there is a notice-
able yet variable offset in scores. Relevant biology is reca-
pitulated by scores computed using stingscore, with HBRR
scoring the highest for the brain specific gene signature fol-
lowed by samples with decreasing amounts of HBRR and
finally UHRR having the lowest score. The inverse is no-
ticed with a cell cycle signature which we would expect to
be more active in cancers than normal tissue.

Analysis of the SEQC data demonstrated the ability of
stingscore to reproduce scores using a targeted transcrip-
tomic panel measured using assays such as RT-qPCR. We
then wished to demonstrate reproducibility of scores across
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Figure 3. Expression ranks of stable genes are preserved relative to each other. (A) Pairwise rank consistency measured as the proportion of samples where
the expected ranks learned from the training datasets matches the observed rank. The gene-wise rank consistency is then the average of a gene’s pairwise
consistencies. The gene-wise consistency of HNRNPK is 1 indicating that its rank relative to the six other stable genes being considered is as expected
(higher than the other genes in all samples). (B) Median gene-wise rank consistencies plot for stable genes from lists of sizes 5–30. Bands represent the
inter-quartile range. Rank consistency is low in blood datasets due to reduced stability.

a wider set of conditions and datasets. Since matched RNA-
seq and RT-qPCR data with the stable genes of interest
are rarely available, we used a down sampling approach
to simulate targeted transcript measurements from whole-
transcriptome data where only genes in a given signature
along with a set of stable genes would be used to score sam-
ples. Gene signatures from the CMap project were used to
demonstrate score comparability across a variety of con-
ditions. Of the hundreds of thousands of signatures gener-
ated in phase I of the CMap project, only those signatures
that were derived from more than 10 experiments and had
matching transcriptomic measurements were used. This re-
sulted in 3009 signatures, each with more than 10 transcrip-
tomic experiments across a variety of cell lines (total of
75 012 experiments). For each signature, we then scored the
samples used to generate the signature against the signa-
ture itself using both singscore and stingscore. Since sam-
ples were scored against the signature they represent, they
should be associated with the relevant biology and there-
fore are true positives. The difference in scores across sam-
ples were summarised using the mean absolute error (MAE)
for each signature. Scores were computed using all lists
of stable genes, with the top 5 stable genes used from the
prioritisation-based lists. Figure 4C shows the distribution
of errors, along with the quantiles from scores computed us-
ing the different sets of stable genes. It is evident that our list
of stable genes produces smaller errors in scores computed
with stingscore against those computed using singscore
with transcriptome-wide measurements. Control genes in
the nCounter® PanCancer Immune panel tend to have
smaller errors compared to the other nCounter® panel con-
trol genes. It is difficult to perform further comparisons be-
tween nCounter® control genes and prioritisation-based
genes due to size differences in these lists.

Finally, we performed a very specific and clinically rel-
evant evaluation of stingscores using the different sets of

stable genes. Using transcriptomic measurements from core
biopsies of 24 breast cancer patients (GSE6434) (41), we at-
tempted to predict response to neoadjuvant docetaxel treat-
ment using gene signatures derived from the CMap project
corresponding to docetaxel treatment of MCF7 cell line.
Response for these patients was known with 10 respond-
ing to, and 14 resisting taxane treatment. Patients were
scored against the docetaxel signature using both singscore
and stingscore with the top 5 genes from each of the
prioritisation-based gene sets, and with all genes from the
nCounter® PanCancer panels. The t-test was performed
on scores from each method to determine the ability of
scores to discriminate resistant and sensitive patients. Fig-
ure 4d shows the distribution of scores computed for re-
sistant and sensitive patients along with P-values from a t-
test. Area under the receiver operating characteristic curve
(AUC) was also computed to determine classification per-
formance. The results show that singscore provides the best
separation of patients based on response, however this re-
quires transcriptomic data, and it is closely followed by
stingscore combined with our set of stable genes. The list
from Lin et al. (22) also performs moderately well, whereas
stingscore combined with the list from Krasnov et al. (21)
provides almost no distinction between the two groups.
Scores computed using the nCounter® PanCancer path-
ways and progression panels discriminate samples based on
response however their performance is lower than when us-
ing our top 5 stable genes.

DISCUSSION

Genes with stable expression have frequently been used for
data normalisation including correction of batch effects
(10,11). In this study, we derive a new set of stable genes for
application in cancer transcriptomic analyses and demon-
strate their additional use for targeted molecular phenotyp-
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Figure 4. Scores computed from transcriptome-wide RNA-seq measurements are comparable to scores computed from a small panel of genes and our set
of stable genes. (A) Median expression of the top 5 stable genes from each of the prioritisation-based lists are plot against the interquartile range (dark
grey) and 1%-99% range (light grey) within each of the training and validation datasets. Our list tends to have a wider dynamic range than other lists across
most datasets and our genes are well spaced across this range, therefore, they are more suitable for scoring using stingscore. (B) The brain RNA sample
(HBRR) scores highest for the brain-specific signature (neurotransmitter receptor activity) with scores reducing as the proportion of brain RNA reduces.
The inverse is observed with a cell cycle gene signature which should be more active in cancers. Scores computed using singscore are comparable to those
computed using stingscore and our top 5 stable genes. (C) Difference between scores computed with singscore and stingscore using different sets of stable
genes measured as the mean absolute error (MAE). Quartiles of MAE are coloured. Top 5 stable genes are selected for prioritisation-based lists (Lin et al.
(22) and Krasnov et al. (21)). Scores are computed for 3009 gene signatures across a total of 75012 expression measurements from the connectivity map
project (CMap). (D) Scores computed with singscore and stingscore using different sets of stable genes are used to discriminate docetaxel sensitive (n =
10) patients from resistant (n = 14). Patients are scored using a docetaxel signature derived from CMap (52 up-regulated genes). Area under the receiver
operating characteristic curve (AUC) are computed along with P-values from a t-test. Singscore and stingscore with our set of stable genes provide the best
separation of samples.
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ing beyond data normalisation. Targeted molecular pheno-
typing is particularly useful in the analysis of archival tissue
where rich clinical information is present but the preserva-
tion techniques limit extraction of high-quality RNA and
consequently RNA sequencing. These samples are suit-
able for other smaller scale measurement platforms such as
NanoString® and RT-qPCR. Thus, exploration of strate-
gies such as stingscore that move from reliance on a whole
transcriptome of measurements to the measurement of tens
or hundreds of transcripts will support the analysis of these
valuable and vast historical collections of tissues.

We formulated the identification of stable genes as
a meta-analysis problem and used the product of
ranks approach to combine multiple stability metrics
across two datasets. Our approach provides flexibility in
adding/removing variability metrics and datasets. Since the
product of ranks requires all rankers (the test metrics) to
provide a complete ranking, we had to discard genes that
were not measured and consequently not ranked in either
dataset. While this loss was relatively small for integration
of two datasets, it would be more pronounced if multiple
datasets were used. Other methods that allow rankers to
provide partial rankings might be used (42), but in the
specific application of identifying a general set of stably
expressed genes, it makes sense to limit our analysis to
genes that can be measured reliably.

Our set of stable genes covered a wide range of expression
values (see Figure 1) even though this property was not se-
lected for explicitly. This is likely a result of using multiple
measures of variation which reduced biases resulting from
the mean-variance relationship often observed in RNA-seq
data (43). A wide range of expression values is desirable for
normalisation, as such genes capture variation at the tails of
the gene expression spectrum. A wide range is also impor-
tant for the evaluation of gene expression signatures that
capture down regulated genes, where we expect low abun-
dance. Our selection of stable genes also minimises between-
group differences by minimising the F-statistic from a one-
way ANOVA test on groups. Stable genes do not always
have the smallest F-statistics, but this is expected. Small
between-group differences for highly variable genes are less
significant and will produce smaller F statistics compared
to the same magnitude of differences for less variable genes.
While stability of genes is assessed relative to other genes,
this metric still holds value in our analysis.

We validated stability of our genes across multiple inde-
pendent datasets. To our knowledge, this was the first study
to evaluate stability of genes across such a large and diverse
set of data. Our evaluation of stability was performed across
14 datasets (with approximately 13000 samples) represent-
ing different biology (cancer, normal, and blood), collected
by different consortia using different preparation protocols,
measured with different instruments, processed using differ-
ent pipelines and summarised using different metrics. Our
set of stable genes were equally or more stable than other
lists of stable genes in cancer and normal tissue and cell
line datasets as shown by the smaller M-values (see Fig-
ure 2). Stability of all lists was poor and inconsistent in
blood datasets, likely due to the genes being originally iden-
tified as stable in samples derived largely from solid tissue

which is biologically very distinct from haematological and
lymphoid tissues and cells. Genes with stable expression in
blood could easily be identified by using our approach and
appropriate data. An interesting observation was the stabil-
ity of genes identified by Lin et al. (22) in label-free protein
quantification data. Single-cell transcriptomic datasets suf-
fer from the same problem of missing values as label free
quantification, therefore genes determined to be stable in
one will likely perform well in the other. Our list of stable
genes and by extension other lists do not necessarily have
poor stability in proteomic data, but they may be more dif-
ficult to measure. Stability is a prerequisite to rank preser-
vation as evident from the low rank preservation in blood
and proteomic data and high rank preservation in normal
tissue. Though our list was identified using basal conditions,
its stability was comparable to most other lists in data from
perturbation experiments with the exception of data from
the CMap project where control genes used in NanoString
nCounter® panels were more stable. Data from the CMap
project is only partially measured therefore this observation
may reflect the relative paucity of stable gene sets evalu-
ated in this study in the directly measured LINCS1000 set.
As such, this observation would need further affirmation in
datasets from perturbation experiments where there are no
measurement and prediction biases. Despite having better
stability in CMap (Figure 4C), control genes in NanoString
nCounter® panels had a narrower dynamic range of ex-
pression values (see Figure 4A), and therefore may not be
the most ideal set of controls for normalisation and scoring
of samples against gene expression signatures; this conclu-
sion is supported by the analyses presented in Figure 4C and
D.

Investigation into the functional roles of our proposed
stable genes revealed that genes essential for cell survival
tend to exhibit stable expression, however this is not uni-
versal. Further exploration of gene ontologies and other
gene expression signatures from MSigDB revealed molec-
ular processes involving RNA processing to be enriched
in stably expressed genes. This observation indicates that
these processes essential for cell survival are finely regulated
and little room for error exists. Additionally, we showed
that context/tissue-specific processes such as epithelial-
mesenchymal transition were enriched with highly variable
genes, as expected given the diverse changes associated with
this phenotypic program (37). We used singscore (35) with
stability ranks to enable this analysis, demonstrating that
singscore can be used to assess enrichment using any ranked
data.

Using the rank preservation property of stable genes,
we developed a new molecular phenotyping method,
stingscore, based on our original method (35). To date, this
is the only approach capable of computing signature scores
for single samples using a reduced set of transcriptomic
measurements, such those obtained in a targeted study or
RT-qPCR panel. We demonstrated that signature scores
computed using the two methods and measurements are
only strongly associated if they were computed using bio-
logically meaningful gene signatures (see Figure 4B). Such
signatures possess the power to discriminate samples there-
fore scores are correlated between approaches. In contrast,
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non-relevant signatures capture noise in the context of the
biological problem being analysed. The choice of signatures
used to analyse any biological problem should be motivated
by prior knowledge of the biological system being analysed.
Though scores generated using singscore and stingscore are
correlated, they are not equivalent and there is generally an
offset (see Figure 4B and C). This offset can be reduced if
stable genes are selected in such a way that their distribu-
tion is close to uniform and they cover the entire range of
expression values. Since our genes have this property the rel-
ative offset of scores is smaller than other lists (Figure 4C).
Ranked sample order however is preserved and therefore
scores retain their ability to differentiate clinically relevant
groups such as those based on response to therapy (Figure
4D). This variation could be addressed by identifying other
stable genes that could be used to calibrate scores. For in-
stance, we could identify a stable gene set that represents
the median score observed across all samples and adjust the
score of each sample against the stable gene set score such
that positive scores indicate concordance with a gene signa-
ture and vice versa. Nonetheless, we have shown that our
method has clinical potential by demonstrating that patient
samples can be scored against a relevant signature using as
few as tens of transcript abundance measurements which
could be acquired using lower throughput assays such as
RT-qPCR.

More generally, our results demonstrate the potential
for stable genes in clinical translation of biologically rele-
vant gene sets through single sample gene expression sig-
nature scoring with a reduced panel of target genes. More
sophisticated calibration methods and scoring methods
capable of application to single samples, or small num-
bers of samples often resulting from clinical research, will
be enabled by the ideas and methods presented in this
work.

CONCLUSION

Molecular profiling at the individual patient level is be-
coming increasingly useful in the clinic despite the lack
of translation of such approaches. A wealth of molecu-
lar gene signatures such as those in the Molecular signa-
tures database (MSigDB), remain unexplored in the clinic
because of the requirement of whole transcriptome mea-
surements imposed by most computational approaches that
limit deployment in the context of regular pathology test-
ing. In this study, we propose a novel cost-effective panel-
based approach using stably expressed genes to assess gene
expression signatures for individual patients in the clinic
based on measurement of a substantially reduced number
of genes (around two to three orders of magnitude fewer
than whole transcriptome scale measurement). Since stable
genes are used in this approach, no additional genes are
required for data normalisation thus further saving costs
of panel-based tests. This method will facilitate the adop-
tion of gene expression signature analysis in a clinical con-
text, thus allowing molecular profiling of a patient’s disease,
along with assessment of diagnostic/prognostic gene signa-
tures, and assessment of signatures predictive of response to
therapies.
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