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Abstract

Frataxin is the protein that is down-regulated in Friedreich ataxia (FRDA), an autosomal recessive 

genetic disease caused by an intronic GAA repeat expansion in intron-1 of the FXN gene. The 

GAA repeats result in epigenetic silencing of the FXN gene and reduced expression of the 

cytosolic full-length frataxin (1−210) protein. Full length frataxin translocates to the mitochondria, 

leading to formation of mature frataxin (81–210) formed by cleavage of the mitochondrial 

targeting sequence at K-80 of the full-length protein. There are currently no approved treatments 

for FRDA, although experimental approaches involving up-regulation or replacement of mature 

frataxin protein through numerous approaches are being tested. Many of the pre-clinical studies of 

these experimental approaches are conducted in mouse and monkey models as well as in human 

cell lines. Consequently, well-validated antibodies are required for use in western blot analysis 

to determine whether levels of various forms of frataxin have been increased. Here we examined 

the specificity of five commercially available anti-frataxin antibodies and determined whether they 

detect mature frataxin in mouse heart tissue. Four protein standards of monkey, human, and mouse 

frataxin as well as mouse heart tissue were examined using polyacrylamide gel electrophoresis 

(PAGE) in combination with western blot analysis. One antibody failed to detect any of the 

frataxin standards or endogenous frataxin in mouse heart tissue. Three of the antibodies detected 

a protein in mouse heart tissue that ran slightly faster on PAGE (at 23.4 kDa) to that predicted 

for full-length frataxin (23.9 kDa). One antibody detected all four frataxin standards as well as 
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endogenous mouse mature frataxin in mouse tissue. Significantly, this antibody, which will be 

useful for monitoring mature frataxin levels in monkey, human, and mouse tissues, did not detect 

a protein in mouse heart tissue at 23.4 kDa. Therefore, antibodies detecting the immunoreactive 

protein at 23.4 kDa could be misleading when testing for the up-regulation of frataxin in animal 

models.
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1. Introduction

Friedreich’s ataxia (FRDA) is an autosomal recessive disease caused primarily by an 

intronic GAA triplet expansion in the FXN gene, leading to reduced expression of full

length frataxin protein (Lynch et al., 2002) and the mitochondrial processing peptidase 

(MPP)-derived mature frataxin (Condo et al., 2007; Schmucker et al., 2008b). A small 

number of patients are heterozygous for GAA repeats in one allele and an FXN mutation in 

the other (< 4%); these individuals also have reduced levels of mitochondrial mature frataxin 

(Campuzano et al., 1996; Cossee et al., 1999; Delatycki et al., 2000; Santos et al., 2010). 

FRDA is estimated to affect 1 in 50,000 in the US population with an average age of death 

at 37 years, most commonly from cardiac-related pathologies (Pousset et al., 2015). The 

FXN gene encodes a mitochondrial protein frataxin, a highly conserved protein found in 

both prokaryotes and eukaryotes (Bencze et al., 2006; Pastore and Puccio, 2013). There is 

evidence to suggest that the GAA repeats induce epigenetic changes and heterochromatin 

formation, thereby impeding gene transcription (Al-Mahdawi et al., 2008). For example, 

studies conducted using blood from FRDA patients and lymphoblastoid cell lines have 

detected increased DNA methylation of specific CpG sites upstream of the GAA repeat 

and found histone modifications are present in regions flanking the GAA repeats (Greene 

et al., 2007). Thus, FRDA alleles become associated with histones that are hypoacetylated 

and show more extensive DNA methylation in the region flanking the repeat. It has been 

suggested that the hypoacetylation and extensive DNA methylation result in the formation 

of a compact chromatin configuration, with reduced binding of transcription factors so 

that frataxin transcription initiation and elongation are reduced (Kumari and Usdin, 2012). 

Furthermore, the number of GAA repeats correlate inversely with disease onset and directly 

with progression of the disease (Friedman et al., 2010; Metz et al., 2013; Patel et al., 

2016). Although the exact role of frataxin has not been completely delineated, compelling 

evidence indicates that it is involved in the creation of iron-sulfur clusters. It could serve 

as an iron donor or regulate cysteine-derived persulfide formation during the assembly 

of mitochondrial iron-sulfur complexes (Lill et al., 2012; Fox et al., 2015; Braymer and 

Lill, 2017). The deficiency in frataxin protein leads to decreased ATP production by the 

iron-sulfur cluster (Bürk, 2017; Chiang et al., 2018).

The major FXN mRNA encodes the full-length 210-amino acid form of human frataxin 

with a molecular weight (MW) of 23,135 Da (Bencze et al., 2006). The corresponding 
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cynomolgus monkey frataxin (1–210) and mouse frataxin (1–207) isoforms have MWs of 

23,133 Da and 22,924 Da, respectively (Fig. 1). Upon being translated, the full-length 

human frataxin (1–210) is rapidly translocated from the cytosol to the mitochondria where 

a two-step process yields the mature biologically active form of human frataxin (Gakh 

et al., 2002a; Rufini et al., 2007; Schmucker et al., 2008a). MPP initially cleaves at 

the R-2 site between G41-L42 to give rise to an intermediate form of human frataxin 

(42–210), a 169-amino acid protein with a MW of 18,826 Da (Gakh et al., 2002b). The 

corresponding cynomolgus monkey intermediate frataxin (42–210) and mouse intermediate 

frataxin (41–207) isoforms have MWs of 18,741 Da and 18,574 Da, respectively (Fig. 

1). The human intermediate frataxin then undergoes a second MPP-mediated cleavage at 

K80-S81 (a second R-2 site) to yield the mature active form of human frataxin (81–210), a 

130-amino acid protein with a MW of 14,268 Da (Fig. 1) (Condo et al., 2007; Schmucker 

et al., 2008b). The corresponding cynomolgus monkey mature frataxin (81–210) and mouse 

mature frataxin (78–207) isoforms are also 130 amino acid proteins with MWs of 14,210 Da 

and 14,380 Da, respectively (Fig. 1). Additional minor human FXN alternative transcripts 

been reported (Campuzano et al., 1996; Pianese et al., 2002; Xia et al., 2012; Pérez-Luz et 

al., 2015), and we recently reported a novel frataxin protein of 135 amino acids (76–210, 

isoform E, MW 14,953 Da) found in human erythrocytes (Guo et al., 2018a).

There are currently no approved approaches for treating FRDA or slowing the progression of 

its symptoms (Strawser et al., 2017). Numerous therapeutic approaches are currently being 

tested, with the majority involving up-regulation or replacement of frataxin protein (Vyas et 

al., 2012; Wilson, 2012; Evans-Galea et al., 2014; Aranca et al., 2016; Kearney et al., 2016; 

Lynch et al., 2019). As an alternative to classical pharmacologically-based approaches, 

gene therapy and CRISPR-based methods are continuing to progress rapidly to become a 

promising potential therapeutic approach to increase frataxin expression (Evans-Galea et al., 

2014; Li et al., 2015; Ouellet et al., 2017; Strawser et al., 2017). Most of the pre-clinical 

gene therapy and CRISPR approaches have been conducted in mouse models and/or human 

cells. We anticipate that monkey models will also be used for pre-clinical gene therapy 

studies before such treatments are tested on human FRDA patients. The adeno-associated 

virus 9 (AAV9) has been reported efficiently delivers virus to a conditional mouse model 

with severe cardiomyopathy caused by complete frataxin deletion in cardiac and skeletal 

muscle. The injection of AAV9-frataxin reverses the functional features of cardiomyopathy 

(Perdomini et al., 2014). In addition, AAV9-c to typical FRDA mouse models (Gérard et 

al., 2014). To circumvent the possible toxic effect caused by overexpression of frataxin, 

other approaches such as CRISPR/Casp9 were also tested on mouse models (Li et al., 

2015; Ouellet et al., 2017). The expression levels of full length frataxin protein in the 

gene therapy studies are usually monitored by quantifying the corresponding mRNA levels. 

However, this will not necessarily reflect the amount of mitochondrial mature frataxin that 

is expressed. Therefore, specific and sensitive methodology is required in order to reliably 

analyze expression of mature frataxin in tissue samples. Availability of this methodology 

would also enable surrogate tissues to be identified so that mature frataxin expression can be 

monitored in human subjects. In the present study, we report a screening of five antibodies in 

order to identify those that would be useful for conducting such studies using PAGE/western 

blot of tissue samples.
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2. Materials and methods

2.1. Materials

Four protein standards were used in this study. Cynomolgus monkey mature frataxin (aa 

81–210) was purchased from LifeSpan BioSciences (LS-G21788). Mouse recombinant 

intermediate form of frataxin (aa 41–207) was obtained from LifeSpan BioSciences (LS

G14956). Human and mouse mature frataxin were prepared using a protocol described 

previously (Guo et al. Anal. Chem.). Five antibodies were tested here, including AB113691, 

AB175402, AB124680 obtained from Abcam (Cambridge, MA), MAB1594 from Millipore

Sigma (Billerica, MA), and LS-C197243 from LifeSpan BioSciences (Seattle, WA). Anti

rabbit HRP and anti-mouse HRP were obtained from Santa Cruz Biotechnology, Inc. 

(Dallas, TX). Stainless steel beads for tissue homogenization were purchased from Next 

Advance (Troy, NY). NuPAGE™ LDS sample buffer was from Thermo Scientific (Waltham, 

MA) and chemiluminescence reagent (NEL103E001) was purchased from Perkin Elmer 

(Waltham, WA). Costar® Spin-X centrifuge tube filters (0.22 μm cellulose acetate) were 

obtained from Corning (Corning, NY).

2.2. Tissue homogenate

The heart samples were from WT C57BL/6 mouse, and were provided by Dr. Wellen 

(Associate Professor of Cancer Biology, Perelman School of Medicine, University of 

Pennsylvania). All surgery experiments were performed in accordance with protocols 

approved by the Institutional Animal Care and Use Committee (IACUC) of the University 

of Pennsylvania. A piece of heart tissue sample was weighed (20–100 mg) and cut into 2–3 

mm2 pieces. All the pieces were collected in an Eppendorf tube and immunoprecipitation 

(IP) lysis buffer [150 mM sodium chloride, 50 mM tris(hydroxymethyl)aminomethane 

(Tris). HCl pH 7.5, 1 mM ethylenediaminetetraacetic acid (EDTA), 0.5% Triton X-100, 

0.5% NP-40, 1 mM dithiothreitol (DTT)] with 0.5% SDS was added to make the 

concentration of 100 mg/mL. Approximately, 30–50 stainless steel beads (0.9–2.0 mm) were 

added to the mixture. The homogenization was carried out twice using Bullet Blender® 

Gold (Next Advance Inc., Troy, NY) at a speed of 6 for 4 min. If white fibers were 

still present in the samples, they were further homogenized using probe sonication at 

strength of 5 for 30 pulses. Following centrifugation at 17720×g for 5 min, a portion of 

the supernatant was withdrawn to mix with 1 × NuPAGE™ LDS sample buffer containing 

2% β-mercaptoethanol and boiled at 95 °C for 5 min. After being briefly cooled down, 

the samples were filtered through Costar® Spin-X centrifuge tube filter (0.22 μm cellulose 

acetate) before being loaded on 12% SDS PAGE.

2.3. Western blotting

A portion of tissue homogenate or protein standards including the intermediate form of 

mouse frataxin and the mature form of monkey frataxin, human frataxin, and mouse frataxin 

were mixed with 1×NuPAGE™ LDS sample buffer containing 2% β-mercaptoethanol. 

The mixtures were boiled 95 °C for 5 min and cooled down to room temperature, the 

supernatants were loaded on 12% SDS PAGE. The gel was run at 100 V for about 80 min 

until the dye was at the bottom. Typically, 200–400 μg of tissue was analyzed for each 

western blot. There was 0.03–0.07 mg protein/mg tissue and so 6–28 μg of total protein was 
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load in each lane. Intense signals were observed for the protein standards showing that the 

proteins were transferred well to the membrane. This was confirmed by Ponceau staining 

after transferring to the membrane, which showed that of all the high abundant protein bands 

in the tissue samples were present. Proteins were transferred to an Invitrogen nitrocellulose 

membrane with a pore size of 0.2 μm (Thermo Scientific, Waltham, MA). Membranes 

were blocked for 1 h at room temperature with 5% milk in Dulbecco’s phosphate-buffered 

saline containing 0.1% Tween-20 (DPBST), then incubated with a range of anti-Frataxin 

antibodies that were diluted using 5% non-fat dry milk in DPBST as instructed by the 

manufacture at 4 °C for overnight. Ab113691 and Ab175402 were diluted 1:500, and 

Ab124680, MAB1594 and LS-C197243 were diluted 1:1000. The membranes were washed 

in DPBST for 15 min 3 times before being incubated with the secondary Ab, either anti

rabbit HRP 1:5000 or anti-mouse HRP 1:5000, as appropriate. Chemiluminescence was 

generated using NEL103E001 and captured by X-ray films that were developed using a 

Konica Minolta SRX-101A medical film processor (Browns Medical Imaging, Omaha, NE). 

The amount of sample loaded on the gel was adjusted so that bands could be observed 

with a similar intensity after a similar exposure time (30–45 s). Each western blot was 

performed at 3–5 times with very consistent results. Western blots using different antibodies 

were performed separately. The standards that were obtained commercially had defined 

concentrations so they served as loading controls. Control experiments were conducted 

without the primary antibody to show that the detected bands were specific to that antibody.

3. Results

3.1. Analysis of human and mouse mature frataxin

Human and mouse mature frataxin, which were prepared as described with His-tags at 

their C-termini (for purification) (Guo et al., 2018b), had MWs of 15.3 Da and 15.4 

kDa, respectively. The protein standards were subjected to SDS-PAGE followed by western 

blotting with all five selected antibodies. Four out of five tested antibodies detected human 

mature frataxin, but with different sensitivities (Figs. 2–4). The two Abs purchased from 

Abcam (AB113691 and AB175402) and the mAb from LifeSpan Bio (LS-C197243) had the 

highest sensitivity for human frataxin (Figs. 2A, B, and 3B; Table 2). Both of the Abcam 

Abs were prepared using recombinant full-length human frataxin as the immunogen (Table 

1). The LifeSpan Bio mAb was raised against a peptide from human mature frataxin (aa 

91–200) with GST tag (Table 1, Fig. 3B). Human mature frataxin showed low intensity 

when blotted with the mAb from Millipore-Sigma (MAB1594), even though a larger amount 

of the protein was loaded on the gel (Fig. 3A). Interestingly, this mAb was also raised 

against full length human frataxin, although fused to TrpE. The Ab (AB124680) prepared 

using a synthetic peptide corresponding to human frataxin aa 150 to the C-terminus as the 

immunogen (the full amino acid sequence was not divulged from the manufacture due to 

protection of intellectual property) did not recognize human mature frataxin at all (Fig. 4). 

Of the three Abs that were supposed to recognize mouse frataxin, AB175402 showed the 

best immunoreactivity (Fig. 2B), MAB1594 was less sensitive (Fig. 3A), and AB113691 

barely recognized the mouse mature frataxin standard (Fig. 2A). The other two mAbs 

(AB124680 and LS-C197243) could not detect mouse mature frataxin standard, as expected 

from the supplier’s description (Figs. 3B and 4).
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3.2. Analysis of cynomolgus monkey mature frataxin

Cynomolgus monkey mature frataxin was expressed in E. coli, with a 4 kDa tag at the 

N-terminus and so the migration for this protein corresponded to 18.3 kDa. Two of the 

Abs that were tested (AB175402 and LS-C197243) recognized the monkey mature frataxin 

standard with good intensity (Figs. 2B and 3B). MAB1594 weakly detected it when a larger 

amount was loaded on the gel (Fig. 3A). AB113691, which detected human mature frataxin 

with good intensity, did not recognize mature monkey frataxin at all (Fig. 2A). This was 

very surprising in view of the sequence similarity between human and monkey frataxin (Fig. 

1).

3.3. Analysis of mature frataxin in mouse heart tissue

Mouse heart tissue was homogenized and filtered before being analyzed by SDS-PAGE. A 

mouse intermediate frataxin form purchased from Lifespan BioSciences was also loaded 

on the side as a control. The intermediate standard was expressed with a 4 kDa His-tag 

according to the manufacture and so migrated at 22.4 kDa. Surprisingly, AB113691, which 

barely detected mouse mature frataxin, recognized the mouse intermediate standard with 

high sensitivity (Fig. 2A). It also detected two proteins in the mouse tissue samples, with 

one protein migrating the same as the mouse intermediate frataxin standard (22.4 kDa), 

the other migrating slower (27 kDa). Endogenous intermediate frataxin (41–207) is an 18.5 

kDa protein whereas full-length mouse frataxin has a MW of 22.9 kDa. Therefore, the two 

proteins are most likely immunoreactive proteins detected by the Ab that are un-related to 

frataxin. This mAb also failed to detect either endogenous mouse mature frataxin or the 

mouse mature frataxin standard that was added to the tissue samples (Fig. 2A). AB175402 

recognized both the endogenous mature mouse frataxin and the mouse mature frataxin 

standard that was spiked into the tissue samples (Fig. 2B). It also recognized the mouse 

intermediate standard but did not recognize either of immunoreactive proteins in the heart 

tissue at 22.4 and 27 kDa (Fig. 2B). Ab124680 detected numerous immunoreactive proteins 

in the mouse heart tissue but it was not clear whether any of them corresponded to a 

frataxin isoform (Fig. 4). Conversely, Ab124680 showed weak immunoreaction to mouse 

intermediate standard and no band was founded corresponding to endogenous mouse mature 

form (Fig. 4). MAB1594 weakly recognized endogenous mature frataxin in the mouse heart 

tissue and also weakly recognized the mouse mature frataxin standard that was spiked into 

the tissue (Fig. 3A). In contrast, MAB1594 recognized the mouse intermediate standard 

with high sensitivity and the protein that migrated with the same mobility as the mouse 

intermediate frataxin standard at 22.4 kDa as well as some higher MW proteins (Fig. 4A). 

LS-C197243 did not recognize endogenous mature frataxin in the mouse heart tissue or 

the mouse mature frataxin standard that was spiked into the tissue (Fig. 3B). However, it 

did recognize the mouse intermediate standard with high sensitivity and the protein that 

migrated with the same mobility as the mouse intermediate frataxin standard at 22.4 kDa as 

well as some higher MW proteins (Fig. 3B).

4. Discussion and conclusion

Human, monkey and mouse frataxin sequences were down-loaded from Uniprot and aligned 

with the relevant Uniprot program. Full-length frataxin (1–210) from human and monkey 
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frataxin share 91% sequence similarity while human full-length frataxin (1–210) and mouse 

full-length frataxin (1–207) share over 72% sequence similarity (Fig. 1). The sequence of 

intermediate frataxin (42–210) from human and monkey are over 92% similar whereas 

human intermediate frataxin (42–210) and mouse intermediate frataxin (41–207) share 78% 

sequence similarity. Human and monkey mature frataxin (81–210) differ by only 3 amino 

acids (E92D, W168R, A186G), while the human mature frataxin (81–210) and mouse 

mature frataxin (78–207) differ by 11 amino acids (Fig. 1). Of the five Abs that were 

tested, the suppliers indicated that five of them were immunoreactive with human frataxin; 

whereas, three suppliers indicated that their Abs were immunoreactive with both human and 

mouse frataxin (AB113691, AB175402 and MAB1594). Due to the high sequence similarity 

between monkey and human frataxin, it was highly likely that the selected Abs would also 

recognize monkey frataxin, although none of the suppliers claimed that they would.

Clearly, the mAb obtained from LifeSpan Bio (LS-C197243) was the best for differentiating 

human and mouse mature frataxin (Fig. 3B). It recognized human mature frataxin but did 

not recognize endogenous mature frataxin in the mouse heart tissue or the mouse mature 

frataxin standard that was spiked into the tissue (Fig. 3B). Therefore, this mAb will be useful 

in mouse models such as the siRNA knockdown mouse (Chandran et al., 2017) to show that 

when treated with a human transgene, human frataxin protein is expressed. Curiously, this 

mAb detected a His-tagged mouse intermediate frataxin standard but not endogenous mouse 

mature frataxin (Fig. 3B). This suggests that the mAb could also be useful for confirming 

whether there is aberrant processing of the full-length mouse protein during pre-clinical 

gene therapy studies in mouse models.

Abcam Ab175402, was undoubtedly the best for detecting both human and mouse frataxin 

(Fig. 2B). It detected both endogenous mouse mature frataxin in mouse heart tissue as 

well as the mature frataxin standard spiked into the tissue samples. There was no loss in 

sensitivity as a result of Ab binding to tissue components when compared with the standard 

alone (Fig. 2B). This contrast with MAB1594 where there was a significant loss of intensity 

in the presence of the tissue sample as well as a reduction in intensity of the signal for 

endogenous frataxin (Fig. 3A) when compared with Ab175402 (Fig. 2B). Four of the Abs 

bound strongly to the mouse intermediate frataxin (41–207) standard (Table 2). This means 

that they would be useful for determining whether there is aberrant processing of full-length 

frataxin in the animal models. AB113691 was the only Ab tested that could differentiate 

cynomolgus monkey mature frataxin form from human mature frataxin (Fig. 2A). However, 

it is not clear if the large tag that was present at the amino terminus could have caused this 

loss of immunoreactivity. Additional experiments with cynomolgus monkey tissue coupled 

with expression of monkey frataxin with a shorter His-tag will be required to clarify this 

issue. AB175402, MAB1594, and LS-C197243 were able to detect both human and monkey 

frataxin without clear preference (Figs. 2B, 3A, and B). This means that if frataxin is 

up-regulated in a monkey model after gene therapy, it will be necessary to confirm the 

presence of the human frataxin isoform using mass spectrometry-based procedures such as 

those we have described recently (Guo et al., 2018a; Guo et al., 2018b). Finally, AB124680 

was unable to detect any of the frataxin standards or endogenous frataxin in mouse heart 

tissue because of the high level of non-specific binding (Fig. 4).
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In conclusion, an Ab has been identified that can distinguish human from mouse frataxin 

(LS-C197243), an Ab that binds to human, mouse and monkey frataxin (Ab175402), and 

an Ab that binds to human and mouse mature frataxin but not monkey mature frataxin 

(Ab113691). We anticipate that these Abs will be useful for analyzing frataxin expression 

in both pre-clinical animal and human cell models to determine whether human frataxin is 

up-regulated by novel therapeutic interventions such as gene therapy and CRISPR designed 

to correct the defect in frataxin production in Friedreich’s ataxia.
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Abbreviations:

Ab Antibody

mAb Monoclonal antibody

DTT Dithiothreitol

DPBST Dulbecco’s phosphate-buffered saline containing 0.1% Tween-20

EDTA Ethylenediaminetetraacetic acid

FRDA Friedreich’s ataxia

IP Immunoprecipitation

MPP Mitochondrial processing peptidase

MW Molecular weight

PAGE Polyacrylamide gel electrophoresis

SDS Sodium dodecyl sulfate

Tris Tris(hydroxymethyl)aminomethane
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Fig. 1. 
Comparison of the sequences of frataxin isoforms from three species. Sequences obtained 

from Uniprot.
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Fig. 2. 
Western blot images of frataxin standards and mouse tissue samples. (A) Abcam Ab113691. 

(B) Abcam Ab175402. Lane 1: Monkey mature His-tag-frataxin standard (a, 200 pg; 18.3 

kDa); lane 2: Human mature His-tag-frataxin standard (200 pg; 15.3 kDa); lane 3: Mouse 

mature His-tag-frataxin standard (200 pg; 15.4 kDa); lane 4: Mouse intermediate His-tag

frataxin standard (200 pg, 22.4 kDa); lane 5: Mouse heart homogenate (400 μg); lane 6: 

Mouse heart homogenate (400 μg) + mouse mature His-tag-frataxin standard (200 pg). b: 

Expected mobility for mouse mature frataxin (14.3 kDa). c: Expected mobility for mouse 

full-length frataxin (22.9 kDa).
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Fig. 3. 
Western blot image of frataxin standards and mouse tissue samples. (A) Millipore Sigma 

MAB1594. (B) LifeSpan Biosciences LS-C197243. Lane 1: Monkey mature His-tag

frataxin standard (a; 500 pg; 18.3 kDa); lane 2: Human mature His-tag-frataxin standard 

(500 pg; 15.3 kDa); lane 3: Mouse mature His-tag-frataxin standard (500 pg; 15.4 kDa); 

lane 4: Mouse intermediate His-tag-frataxin standard (500 pg, 22.4 kDa); lane 5: Mouse 

heart homogenate (200 μg); lane 6: Mouse heart homogenate (200 μg) + mouse mature 

His-tag-frataxin standard (500 pg). b: Expected mobility for mouse mature frataxin (14.3 

kDa). c: Expected mobility for mouse full-length frataxin (22.9 kDa).
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Fig. 4. 
Western blot images of frataxin standards and mouse tissue samples blotted with Abcam 

Ab124680. Lane 1: Monkey mature His-tag-frataxin standard (a; 300 pg; 18.3 kDa); lane 

2: Human mature His-tag-frataxin standard (300 pg; 15.4 kDa); lane 3: Mouse mature 

His-tag-frataxin standard (500 pg; 15.3 kDa); lane 4: Mouse intermediate His-tag-frataxin 

standard (300 pg, 22.4 kDa); lane 5: Mouse heart homogenate (300 μg); lane 6: Mouse 

heart homogenate (300 μg) + mouse mature His-tag-frataxin standard (500 pg). b: Expected 

mobility for mouse mature frataxin (14.3 kDa). c: Expected mobility for mouse full-length 

frataxin (22.9 kDa).
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