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This study aims to lay a foundation for studying the regulation of microRNAs (miRNAs)
in colon cancer by applying bioinformatics methods to identify miRNAs and their
potential critical target genes associated with colon cancer and prognosis. Data of
differentially expressed miRNAs (DEMs) and genes (DEGs) downloaded from two
independent databases (TCGA and GEO) and analyzed by R software resulted in 472
DEMs and 565 DEGs in colon cancers, respectively. Next, we developed an 8-miRNA
(hsa-mir-6854, hsa-mir-4437, hsa-mir-216a, hsa-mir-3677, hsa-mir-887, hsa-mir-4999,
hsa-mir-34b, and hsa-mir-3189) prognostic signature for patients with colon cancer
by Cox proportional hazards regression analysis. To predict the target genes of these
miRNAs, we used TargetScan and miRDB. The intersection of DEGs with the target
genes predicted for these eight miRNAs retrieved 112 consensus genes. GO and
KEGG pathway enrichment analyses showed these 112 genes were mainly involved
in protein binding, one-carbon metabolic process, nitrogen metabolism, proteoglycans
in cancer, and chemokine signaling pathways. The protein–protein interaction network
of the consensus genes, constructed using the STRING database and imported into
Cytoscape, identified 14 critical genes in the pathogenesis of colon cancer (CEP55, DTL,
FANCI, HMMR, KIF15, MCM6, MKI67, NCAPG2, NEK2, RACGAP1, RRM2, TOP2A,
UBE2C, and ZWILCH). Finally, we verified the critical genes by weighted gene co-
expression network analysis (WGCNA) of the GEO data, and further mined the core
genes involved in colon cancer. In summary, this study identified an 8-miRNA model
that can effectively predict the prognosis of colon cancer patients and 14 critical genes
with vital roles in colon cancer carcinogenesis. Our findings contribute new ideas for
elucidating the molecular mechanisms of colon cancer carcinogenesis and provide new
therapeutic targets and biomarkers for future treatment and prognosis.
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INTRODUCTION

Colon cancer is one of the common malignant tumors of the
digestive tract and occurs in the colon. With the development of
the economy and the improvement of people’s living standards,
the incidence of colon cancer in recent years has increased, and
the age of onset lowered, posing a serious threat to people’s life
and health (Arnold et al., 2017). Patients with colon cancer have
no specific clinical symptoms in the early stage (Cappell, 2008).
Most patients are in the middle and late stages when they seek
medical treatment, and the treatment and prognosis are poor
(Cappell, 2008). Most of the deaths of colon cancer patients are a
result of tumor metastasis (Siegel et al., 2017). The 5-year survival
rate of patients with metastatic colon cancer is much lower than
that of non-metastatic colon cancer patients (Zhang et al., 2015).
Therefore, it is necessary to identify new biomarkers and find
potential therapeutic targets for early detection and treatment of
colon cancer through effective strategies.

MicroRNAs (miRNAs) are short non-coding RNAs of
approximately 18–25 nucleotides in length. Since their discovery,
there has been a plethora of research indicating the aberrant
expression of miRNAs in various types of cancers, including those
of the colon, liver, and lung (Wang et al., 2015; Yang et al.,
2015; Ding et al., 2018). MiRNAs can act as tumor suppressor
genes or oncogenes in tumor tissues. Studies show that down-
regulation of miR-708 expression could inhibit the progress of
colon cancer cells by targeting the tumor promoter zinc finger
E-box binding homeobox 1 (ZEB1), and overexpressed miR-155
could promote the proliferation of cancer cells by targeting the
tumor suppressor cbl proto-oncogene (CBL) (Yu et al., 2017;
Sun et al., 2019). Multiple high-throughput studies have shown
high correlations between miRNA expression levels and the

Abbreviations: CBL, Cbl proto-oncogene; CCNB1, cyclin B1; CEP55, centrosomal
protein 55; CIN, chromosomal instability; COAD, colon adenocarcinoma;
CXCR2, C-X-C motif chemokine receptor 2; DAVID, Database for Annotation,
Visualization and Integrated Discovery; DEGs, differentially expressed genes;
DEMs, differentially expressed miRNAs; DTL, denticleless E3 ubiquitin protein
ligase homolog; ENTPD5, ectonucleoside triphosphate diphosphohydrolase 5;
FANCI, FA complementation group I; GEO, Gene Expression Omnibus Database;
GO, Gene Ontology Database; GUCA2A, guanylate cyclase activator 2A; HMMR,
hyaluronan mediated motility receptor; HSPB8, heat shock protein family B
(small) member 8; KCNMB1, potassium calcium-activated channel subfamily
M regulatory beta subunit 1; KEGG, Kyoto Encyclopedia of Genes and
Genomes Database; KIF15, kinesin family member 15; KOBAS, KEGG Orthology
Based Annotation System; LMOD1, leiomodin 1; MCM6, minichromosome
maintenance complex component 6; MCODE, Molecular Complex Detection;
MiRNAs, microRNAs; MKI67, marker of proliferation Ki-67; MS4A12, membrane
spanning 4-domains A12; NCAPG2, non-SMC condensin II complex subunit
G2; NEK2, NIMA related kinase 2; NSCLC, non-small cell lung cancer; PADI2,
peptidyl arginine deiminase 2; PLK1, polo-like kinase 1; PPI, protein–protein
interaction; PPP2CA, protein phosphatase 2 catalytic subunit alpha; PRC1,
protein regulator of cytokinesis 1; PTTG1, PTTG1 regulator of sister chromatid
separation, securing; RACGAP1, Rac GTPase activating protein 1; RAD51, RAD51
recombinase; ROC, receiver operating characteristic; RRM2, ribonucleotide
reductase regulatory subunit M2; SCNN1B, Sodium channel epithelial 1 subunit
beta; SMAD4, SMAD family member 4; SNRPA1, small nuclear ribonucleoprotein
polypeptide A; STRING, Search Tool for the Retrieval of Interacting Genes; TCGA,
The Cancer Genome Atlas Database; TNBC, triple-negative breast cancer; TNS1,
Tensin 1; TOP2A, DNA topoisomerase II alpha; UBE2C, ubiquitin conjugating
enzyme E2 C; UPS, ubiquitin–proteasome system; WGCNA, weighted gene co-
expression network analysis; ZEB1, zinc finger E-box binding homeobox 1.
ZWILCH, zwilch kinetochore protein.

treatment and diagnosis of cancer patients (Bolmeson et al.,
2011; Toiyama et al., 2014; Tan et al., 2018). In colon cancer,
miRNAs are associated with the transmission and inhibition
of numerous signaling pathways, and have great potential in
diagnosis, prognosis, and personalized targeted therapy (Cekaite
et al., 2016). It follows that in-depth studies of miRNAs will
contribute to understanding the mechanism of colon cancer
development and its biological functions, providing a theoretical
basis for its prevention, diagnosis, and treatment.

Bioinformatics uses computational tools to store, search, and
analyze biological information. A wide array of computational
techniques related to database design and construction, protein
structure and function prediction, gene discovery, and expression
data clustering, are provided as bioinformatics methods for
researching cancer and several other diseases (Luscombe et al.,
2001). Access to The Cancer Genome Atlas (TCGA) (Tomczak
et al., 2015), the Gene Expression Omnibus (GEO) (Barrett et al.,
2007), the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000), the Gene Ontology (GO) database
(Ashburner et al., 2000), and other databases are pertinent to
cancer research. These resources enable relevant tumor data
to be searched, processed, and analyzed by using differential
expression analysis, survival analysis, functional enrichment
analysis, pathway enrichment analysis, and the other functional
tools available. Early biomarkers and potential therapeutic targets
of tumors identified by these methods have assisted in exploring
the molecular mechanisms of tumor pathogenesis and provide
clues for further understanding of related tumors. For example,
functional enrichment and survival analysis showed that miR-
19b-3p might affect the apoptosis and proliferation of human
colon cancer cells through SMAD family member 4 (SMAD4)
and serve as a prognostic marker for colon cancer (Jiang
et al., 2017). In another study, differentially expressed genes
(DEGs) identified in colon cancer by differential expression
analysis were further analyzed using function and survival
analysis approaches (Yong et al., 2018). The results implicated
protein phosphatase 2 catalytic subunit alpha (PPP2CA) in the
occurrence and development of colon cancer, and its potential
to serve as a therapeutic target in colon cancer (Yong et al.,
2018). With the gradual development of molecular biology
technology, bioinformatics has become increasingly important in
cancer research, performing a major role in elucidating cancer
mechanisms and finding novel targets for cancer treatment and
patient prognosis.

Colon cancer is a multifactorial disease caused by assorted
factors, such as genetic, environmental, and lifestyle influences,
but its pathogenesis is not fully clarified (Aran et al., 2016).
Exploring and studying the molecular mechanism and critical
genes of colon cancer is key in improving the prevention
and treatment of colon cancer. In this paper, we performed
differential expression analysis to screen out miRNA (DEMs) and
DEGs from colon cancer data downloaded from two independent
databases (TCGA and GEO). To identify prognostic miRNAs, we
constructed a Cox proportional hazards regression model. Then,
we identified the overlapping genes between the predicted DEM
targets and the DEGs and performed a functional enrichment
analysis to understand the potential biological functions of these
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consensus genes. Finally, we constructed the protein–protein
interaction (PPI) network of the consensus genes to illuminate
the critical genes. These results might provide new ideas for
future research and treatment of colon cancer by exploring
prognostic miRNAs and therapeutic targets in colon cancer.

MATERIALS AND METHODS

Tumor Data and Differential Expression
Analysis
We downloaded 467 miRNA transcriptomes of 459 colon cancer
and 8 normal tissue samples from the TCGA database on June 3,
2019, as well as the GSE24514 microarray data of 34 tumor tissues
and 15 normal tissues from the GEO database. Both datasets
were analyzed using R software (version 3.4.4) packages edgeR
and limma, to identify DEMs and DEGs, respectively. The cutoff
criteria were Padj < 0.05 and |log2FC|> 1.0, where FC denotes
fold change (Robinson et al., 2010; Ritchie et al., 2015).

Cox Proportional Hazards Regression
Model Based on DEMs
To evaluate the effect of single independent miRNAs on the
survival time of colon cancer patients, we performed univariate
Cox proportional hazard regression analysis (Ahmed et al., 2007)
on DEMs using the survival package of R software and screened
miRNAs related to patient survival according to the cutoff
criterion of P < 0.01. Multivariate Cox proportional hazards
regression analysis (Ahmed et al., 2007) with stepwise regression
methods and a mathematical model allowed identifying
prognostic miRNAs and evaluating the impact of these miRNAs
on the survival distribution of patients. From the constructed Cox
proportional hazards regression model, we used the following
formula to compute the risk scores for each patient: miRNA risk
score = βmiRNA1 × exp(miRNA1) + βmiRNA2 × exp(miRNA2) + ...
+ βmiRNAn × exp(miRNAn), where β is the regression coefficient
derived from the multivariate Cox proportional hazards
regression model, and exp() is the expression level of prognostic
miRNAs (Sui et al., 2017). This study divided the patients into
a high-risk group and a low-risk group based on the median
value of the risk score. The Kaplan–Meier survival curves of
both groups were estimated. Then, we calculated the 5-year
survival rates of the high-risk and low-risk groups and plotted
the receiver operating characteristic (ROC) (Heagerty and
Zheng, 2005) curve to test whether the predictive ability of the
model was reliable.

Target Genes Prediction for Prognostic
miRNAs
To predict the target genes of the prognostic miRNAs, we
used the online analysis tools TargetScan (Agarwal et al., 2015)
and miRDB (Wong and Wang, 2015) on June 14, 2019. To
further improve the reliability of these results, we identified the
overlapping target genes by using the VennDiagram package of R
software. Then, these overlapping target genes were crossed with

DEGs by using the VennDiagram package of R software to obtain
the consensus genes.

Functional Enrichment Analysis of
Consensus Genes
For GO and KEGG pathway enrichment analyses, we used the
Database for Annotation, Visualization and Integrated Discovery
(DAVID) (Huang da et al., 2009) and the KEGG Orthology-Based
Annotation System (KOBAS) (Xie et al., 2011), respectively.
P < 0.05 was set as the cutoff criterion.

Construction and Analysis of PPI
Networks With Consensus Genes
The Search Tool for the Retrieval of Interacting Genes (STRING)
can aid in understanding the PPI by integrating a large number
of known and predicted correlation data between proteins
(Szklarczyk et al., 2017). To study the interactions between
the consensus genes and to obtain potential critical genes, we
constructed their PPI network using the STRING database on
July 8, 2019. Genes with significant interactions were screened
out based on a confidence score ≥0.4 (Sun et al., 2017), and the
filtered results were imported into Cytoscape software (version
3.7.0) for network visualization (Shannon et al., 2003). We used
the CentiScaPe plugin (Scardoni et al., 2014) for topology analysis
of the entire network to calculate the central parameters, such as
the degree value of each node in the PPI network (Williams and
Del Genio, 2014). In consideration of the degree value of each
node differing significantly, we calculated the average value of the
degree of all nodes. Simultaneously, to obtain more meaningful
target genes, we selected nodes with scores larger than twice the
average as candidate hub nodes. Then, we used the Molecular
Complex Detection (MCODE) plugin (Bader and Hogue, 2003)
in Cytoscape to screen out the important functional modules in
the PPI network of the consensus genes. The MCODE plugin
parameters were degree cutoff ≥10, node score cutoff ≥0.2,
k-core ≥2, and max depth = 100 (Zhao et al., 2018).

Weighted Gene Co-expression Network
Analysis
Weighted gene co-expression network analysis (WGCNA) allows
analyzing the gene expression patterns of multiple samples
for mining the core genes in the pathogenesis of patients
with colon cancer (Langfelder and Horvath, 2008). This study
analyzed 13,640 genes from the transcriptome data (GSE24514)
using the WGCNA algorithm, and 49 samples were clustered
through the systematic cluster tree to determine any outliers.
Then, we set an appropriate soft threshold of 15 to make
the co-expression network meet the scale-free distribution,
and genes with similar expression patterns were merged into
the same module using a dynamic tree-cutting algorithm
(module size = 30) (Ning and Sun, 2020). Subsequently,
three different-colored modules containing the most DEGs
were further selected to mine the core genes. The edges with
topological overlap measures greater than 0.30 were selected
and input into Cytoscape for network visualization (Deng
et al., 2018). Using the CentiScaPe plugin in Cytoscape, we
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calculated the degree value of each gene. Genes with degrees
more than twice the average value were considered the core
genes of the network.

Running Scripts
All running scripts used above can be found in Supplementary
Material.

RESULTS

Differential Expression Analysis of Colon
Cancer
From the analysis of the TCGA data, we identified 472
DEMs with statistical significance, composed of 201 up-
regulated miRNAs and 271 down-regulated miRNAs
(Figure 1A). In addition, the analysis of the GSE24514
dataset identified 565 DEGs with statistical significance, which
included 266 up-regulated genes and 299 down-regulated
genes (Figure 1B).

Cox Proportional Hazards Regression
Model of DEMs
Univariate and multivariate Cox proportional hazards regression
analyses identified 12 miRNAs associated with survival in colon
cancer patients (P < 0.01; Table 1) and a further 8 prognostic
miRNAs (hsa-mir-6854, hsa-mir-4437, hsa-mir-216a, hsa-mir-
3677, hsa-mir-887, hsa-mir-4999, hsa-mir-34b, and hsa-mir-
3189), respectively (Table 2). Among prognostic miRNAs, hsa-
mir-3677, hsa-mir-216a, hsa-mir-4437, and hsa-mir-6854 were
also independent prognostic miRNAs (P < 0.05). The risk score

was calculated as follows: miRNA risk score = (−0.4034 × hsa-
mir-6854) + (1.6106 × hsa-mir-4437) + (0.2508 × hsa-
mir-216a) + (−0.2327 × hsa-mir-3677) + (0.2306 × hsa-
mir-887) + (0.2045 × hsa-mir-4999) + (0.161 × hsa-mir-
34b) + (−0.2008 × hsa-mir-3189). Figure 2A presents the
detailed information of the risk score. Kaplan–Meier survival
analysis showed that the 5-year survival rate was 50.5% in the
high-risk group and 76.3% in the low-risk group (Figure 2B).
The area under the ROC curve was 0.729, demonstrating that
the model could effectively predict the prognosis of colon cancer
patients (Figure 2C).

Target Genes Prediction for Prognostic
miRNAs
To predict the target genes of the eight prognostic miRNAs, we
used two independent online analytical tools (TargetScan and
miRDB). Figures 3A–H shows that the intersections between
the predicted results from the two servers provided 460, 553,
855, 214, 618, 552, 992, and 697 overlapping target genes of hsa-
mir-6854, hsa-mir-4437, hsa-mir-216a, hsa-mir-3677, hsa-mir-
887, hsa-mir-4999, hsa-mir-34b, and hsa-mir-3189, separately.
Overlapping target genes of eight prognostic miRNAs and 565
DEGs from differential expression analysis of colon cancer
intersected to obtain 9, 11, 14, 17, 18, 11, 30, and 19 consensus
genes, respectively, for these miRNAs, with a total of 112
consensus genes (Table 3).

Functional Enrichment Analysis of
Consensus Genes
Gene Ontology enrichment analysis, performed using the DAVID
database, showed 35 GO terms noticeably enriched with these 112
consensus genes included protein binding, one-carbon metabolic

FIGURE 1 | Volcano plot of DEMs in TCGA (A). Volcano plot of DEGs in GSE24514 (B). Red dots represent up-regulation and green dots represent down-regulation.
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TABLE 1 | Univariate Cox regression analysis of the 12 miRNAs associated with
survival in colon cancer patients.

miRNA HR z P-value

hsa-mir-887 1.488449 3.418183 0.000630

hsa-mir-3677 0.729468 −3.29453 0.000986

hsa-mir-216a 1.349487 3.274952 0.001057

hsa-mir-149 1.333374 3.184117 0.001452

hsa-mir-4437 4.482079 3.068887 0.002149

hsa-mir-4999 1.390901 3.047926 0.002304

hsa-mir-1271 1.351069 2.990206 0.002788

hsa-mir-3189 0.685402 −2.91866 0.003515

hsa-mir-187 1.201949 2.841883 0.004485

hsa-mir-6854 0.726455 −2.81219 0.004921

hsa-mir-34b 1.297501 2.781959 0.005403

hsa-mir-130a 1.380213 2.744909 0.006053

HR, hazard ratio.

TABLE 2 | Multivariate Cox regression analysis of the 8-miRNA signature
associated with survival in colon cancer patients.

miRNA Coefficient HR SE P-value

hsa-mir-887 0.2306 1.2594 0.1194 0.05338

hsa-mir-3677 −0.2327 0.7924 0.1047 0.02619

hsa-mir-216a 0.2508 1.2851 0.0938 0.00750

hsa-mir-4437 1.6106 5.0059 0.4972 0.00120

hsa-mir-4999 0.2045 1.2269 0.1149 0.07519

hsa-mir-3189 −0.2008 0.8181 0.1406 0.15327

hsa-mir-6854 −0.4034 0.6681 0.1183 0.00065

hsa-mir-34b 0.1610 1.1747 0.1044 0.12306

HR, hazard ratio; SE, standard error of coefficient.

process, bicarbonate transport, cytoplasm, and membrane,
among others (Figure 4A). The GO term “protein binding
function” had the smallest P-value (P = 5.52e-04) and was
enriched with the largest number of consensus genes, with a total
of 72, indicating the strongest correlation between them. The
KEGG pathway enrichment analysis of these consensus genes,
performed using the KOBAS database, revealed 56 pathways
were noticeably enriched, including nitrogen metabolism, the
thyroid hormone signaling pathway, proteoglycans in cancer,
chemokine signaling pathways, and focal adhesion, among others
(Figure 4B). Of these pathways, nitrogen metabolism had the
smallest P-value (P = 2.38e-05) and was associated with three
consensus genes. Proteoglycans in cancer had the largest number
of genes involved, and a P-value of 3.07e-05.

Construction and Analysis of PPI
Networks for Consensus Genes
To study their PPIs, we entered all the 112 consensus genes
into the STRING database to construct the PPI network. Next,
for visualization, we imported the genes with confidence scores
above 0.4 into Cytoscape. The constructed network was an
undirected graph. Each node in the network represented a
gene, and the connections between the nodes symbolized the
interactions between the proteins encoded by the corresponding

genes (Kohler et al., 2008). The network contained 75 nodes and
198 interactions (Figure 5A). According to a criterion larger than
twice the average (average = 5.28), we identified 16 candidate
hub genes: CCND1, CEP55, DTL, FANCI, HMMR, KIF15, MCM6,
MKI67, MYC, NCAPG2, NEK2, RACGAP1, RRM2, TOP2A,
UBE2C, and ZWILCH (Figure 5B). The module analysis of the
PPI network, performed using the MCODE plugin, revealed
two functional modules (Figures 5C,D). Except for CCND1 and
MYC, the remaining 14 of the 16 candidate hub genes appeared
in module 1, indicating that these 14 genes may play important
biological functions in the PPI network, and thus, were defined
as the critical genes of the network.

Weighted Gene Co-expression Network
Analysis
The cluster analysis in WGCNA showed no abnormal value in
the 49 GSE24514 samples. According to the independence and
average connectivity of networks with different power values
(power values ranging from 1 to 20), the soft threshold was
determined to be 15 (Figure 6A). Ultimately, there were 17
modules of different colors generated. The co-expression degree
of genes in the same module was high, and the co-expression
degree of genes from different modules was low (Figure 6B).
Among them, the midnight blue, red, and yellow-green modules
contained the most DEGs, which were 200, 103, and 126,
respectively. We constructed three weighted gene co-expression
networks using edges with topological overlap measures greater
than 0.30 in these modules. Ultimately, 19 core genes, which were
all DEGs, were identified, according to a degree value criterion of
greater than twice the average of the degree. These DEGs were
CCNB1, DTL, ENTPD5, FANCI, GUCA2A, HSPB8, KCNMB1,
LMOD1, MKI67, MS4A12, NEK2, PADI2, PRC1, PTTG1, RRM2,
SCNN1B, TNS1, TOP2A, and UBE2C (Figures 7A–C).

DISCUSSION

MicroRNAs play important roles in cell differentiation, biological
development, and the occurrence and progression of diseases,
attracting increasing attention from researchers. Despite progress
in understanding the role of miRNAs in the regulation of tumor
growth and evolution, miRNAs are easily affected by a variety of
factors during their activity in cancer, and they have the specificity
of spatiotemporal expression in different types of tumors or
different stages of the same tumors. Therefore, the specific
relationships between miRNAs and tumors remain unclear and
need to be further clarified.

In this study, we identified DEMs and DEGs of colon
cancer from the TCGA and GEO databases, respectively.
Then, we derived a prognostic model using Cox proportional
hazards regression analysis based on eight miRNAs, namely hsa-
miR-6854, hsa-mir-4437, hsa-mir-216a, hsa-mir-3677, hsa-mir-
887, hsa-mir-4999, hsa-mir-34b, and hsa-mir-3189. We further
obtained a total of 112 consensus genes from the intersection of
DEGs with the target genes predicted for these eight miRNAs
using TargetScan and miRDB tools. Subsequent GO and KEGG
pathway enrichment analyses revealed that these consensus genes
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FIGURE 2 | Prognostic risk score model analysis of eight prognostic miRNAs in colon cancer patients. (A) From top to bottom are the risk score distribution,
patients’ survival status distribution, and the heatmap of eight miRNA expression profiles ranked by risk score. (B) Kaplan–Meier curves for high-risk and low-risk
groups. (C) The ROC curves for predicting survival in colon cancer patients by the risk score.

TABLE 3 | One hundred and twelve consensus genes shared by the target genes of 8 prognostic miRNAs and DEGs from differential expression analysis of colon cancer.

miRNA Consensus genes

hsa-mir-887 SLC36A1, C7, HNRNPL, MCM6, HSPB6, SVIL, PPP1R12B, TOP2A, SLC17A4, MARCKSL1, ATP1A2, CXCL9, METTL7A, SLC25A32,
VSNL1, VCL, FOXF1, CLIP3

hsa-mir-3677 SORBS1, ARNTL2, KIF15, RAB15, AKAP12, SSR3, PJA2, CXCL12, CA12

hsa-mir-216a CA7, HSPD1, NEK2, HMGB3, NPTX1, TXNIP, ZCCHC24, CA12, HOXC6, MAN2A1, FOSB

hsa-mir-4437 CCNB1IP1, SPIB, UBE2C, SULT1A1, CDHR5, HHLA2, BACE2, TRANK1, PTPRH, CD79A, NDC1, HSD11B2, LGR5, MLEC

hsa-mir-4999 IFITM1, SORBS1, SLC17A4, LMO3, ZWILCH, CCND1, RCN1, XPOT, PDZRN4, LRRC19, CAV1

hsa-mir-3189 FAM57A, TMEM97, FANCI, CDH3, SETBP1, ITIH5, MAB21L2, VIPR1, RETSAT, GOLT1B, MEIS1, NPTX1, JAM3, TXNIP, ZCCHC24,
SLC4A4, A1CF, NR3C2, DUSP1

hsa-mir-6854 STMN2, SYNM, SORBS1, DTL, RACGAP1, PLN, C1orf115, MKI67, GPD1L, HMMR, SLC25A32, FNBP1, PRKACB, CAV1, TDP2,
CXCL14, DCN

hsa-mir-34b STMN2, NCAPG2, RRM2, CEP55, CA1, ENC1, CXCL1, SLC17A4, BCAS1, PBX1, FAM47E-STBD1, CCDC59, MEST, MYC, PUS1,
CCND1, SPP1, SATB1, NDC1, AHCYL2, KRT20, PALLD, MLEC, SSR3, PJA2, PAPSS2, TGFBI, CAV1, PDZRN3, CLDN8

Bold represents the critical genes.
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FIGURE 3 | The number of predicted target genes of eight prognostic miRNAs. Target gene number predicted for (A) hsa-mir-6854, (B) hsa-mir-4437, (C)
hsa-mir-216a, (D) hsa-mir-3677, (E) hsa-mir-887, (F) hsa-mir-4999, (G) hsa-mir-34b, and (H) hsa-mir-3189. In these sub-figures, blue represents the predicted
results of TargetScan, and red represents the predicted results of miRDB.

FIGURE 4 | Functional enrichment analysis of 112 consensus genes. (A) GO enrichment analysis; (B) KEGG pathway enrichment analysis. In these two sub-figures,
the x-axis represents the P-value, and the y-axis represents the different GO terms and the KEGG pathways, respectively. The size of the bubbles grows as the
number of involved genes increases.
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FIGURE 5 | Construction and analysis PPI networks of consensus genes. (A) PPI network of 75 consensus genes. Red nodes represent up-regulated genes, and
blue nodes represent down-regulated genes. The color of the node deepens as the value of |log2FC| increases. The color of the line connecting the circles deepens
as the confidence scores increase. (B) Degree values of 75 consensus genes were obtained by CentiScaPe. As the degree values increase, the color of the node
changes from green to yellow. (C) Module 1 (MCODE score = 13.8466). (D) Module 2 (MCODE score = 3.067).

were mainly involved in protein binding, one-carbon metabolic
process, nitrogen metabolism, proteoglycans in cancer, and
chemokine signaling pathways. Finally, we used the STRING
database to construct the PPI network of the 112 consensus genes.
With the two Cytoscape plugins CentiScaPe and MCODE, 14
critical genes were recognized (CEP55, DTL, FANCI, HMMR,
KIF15, MCM6, MKI67, NCAPG2, NEK2, RACGAP1, RRM2,
TOP2A, UBE2C, and ZWILCH).

Among eight prognostic miRNAs in colon cancer, the
expression of hsa-mir-6854, hsa-mir-216a, hsa-mir-3677, hsa-
mir-4999, hsa-mir-34b, and hsa-mir-3189 was up-regulated, and
that of hsa-mir-4437 and hsa-mir-887 was down-regulated.
Among these eight miRNAs, hsa-mir-216a and hsa-mir-34b
have been validated in experiments previously, proving they
have crucial roles in colon cancer. Wang et al. (2018) showed
that the up-regulation of miR-216a-3p inhibited the expression
of its target genes ALOX5 and COX-2 in colon cancer cells,
consequently enhancing the proliferation of colon cancer cells.
Hiyoshi et al. (2015) used quantitative RT-PCR to detect

overexpression of miR-34b in colon cancer tissues and confirmed
that it was associated with poor prognosis in patients.

For the other six prognostic miRNAs, including hsa-mir-
6854, hsa-mir-4437, hsa-mir-3677, hsa-mir-887, hsa-mir-4999,
and hsa-mir-3189, although their roles have not yet been shown
in colon cancer, some experimental studies demonstrated that
the expression change of hsa-mir-887 and hsa-mir-3189 played
crucial roles in other cancer cells. Jiang et al. (2016) illustrated
that miR-887-5p was overexpressed in the serum of patients
with endometrial cancer and might be a potential biomarker
for endometrial cancer. Jones et al. (2015) demonstrated that
overexpression of miR-3189-3p up-regulated p53 and many p53
target genes, which could effectively induce apoptosis and inhibit
cell proliferation in colorectal cancer (CRC). In glioblastoma and
gastric cancer, overexpressed miR-3189 could markedly inhibit
cell proliferation and migration (Jeansonne et al., 2015; Bian et al.,
2018). These studies showed miR-3189 as a tumor suppressor.
The above results illustrated that the expression of miR-887
and miR-3189 in these cancers was contrary to ours. MiRNA
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FIGURE 6 | Weighted co-expression gene network analysis. (A) Determination of the soft threshold in the WGCNA algorithm. When the soft thresholding power was
15, the gene distribution conformed to the scale-free network. (B) The cluster dendrogram of all the genes in GSE24514. Each leaf represents a separate gene, and
each branch represents a co-expression gene module.

expression may differ among cancer types, so the expression and
specific mechanism of miR-887 and miR-3189 in colon cancer
need to be further clarified experimentally.

He et al. (2018) showed that hsa-mir-4437 could directly act on
C-X-C motif chemokine receptor 2 (CXCR2), which can increase
tumor inflammation and angiogenesis. Saintigny et al. (2013)
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FIGURE 7 | The visualization of co-expression gene modules. (A) Midnight blue module. (B) Yellow-green module. (C) Red module. The color of the line connecting
the circles deepens as the topological overlap measures increases. The color of the node changes from yellow to red as the degree values increases.

indicated that in lung adenocarcinoma, the overexpression of
CXCR2 caused invasion, metastasis, and poor prognosis of tumor
patients. Wu et al. (2015) also showed enhanced expression of
CXCR2 in colon cancer tissues, particularly in advanced-stage
tumor cells or tumor cells with lymph node metastasis, indicating
the potential to use the expression level of CXCR2 for evaluating
tumor growth and invasion in CRC. Our results showed that
hsa-mir-4437 was an independent prognostic factor for colon
cancer, and CXCR2 was found from the target prediction by
both TargetScan and miRDB. Therefore, hsa-mir-4437 may
affect the proliferation and apoptosis of colon cancer cells by
targeting CXCR2.

According to our prediction results, all 14 critical genes of
colon cancer we identified from the PPI network were up-
regulated in colon cancer cells. Among these 14 genes, abnormal
overexpression of CEP55, DTL, HMMR, MCM6, MKI67, NEK2,
RACGAP1, RRM2, TOP2A, and UBE2C have previously been
reported in colon cancer (Table 4).

Denticleless E3 ubiquitin–protein ligase homolog (DTL)
complex is a nuclear protein that targets centrosomes in
mitosis, with an important role in DNA synthesis, cell cycle
regulation, cytokinesis, proliferation, and differentiation (Pan
et al., 2006). Baraniskin et al. (2012) demonstrated that miR-
30a-5p could produce a tumor suppressor effect by repressing
the overexpression of DTL in colon cancer. Karaayvaz et al.
(2011) showed miR-215 achieved a similar outcome. The Rac

GTPase activating protein 1 (RACGAP1) is a member of the
GTPase-active protein family, with a regulatory role in cell
division, cell growth differentiation, and tumor metastasis and
proliferation (Milde-Langosch et al., 2013; Yeh et al., 2016).
According to Yeh et al. (2016), patients with high expression
of cytoplasmic RACGAP1 in CRC had a favorable prognosis,
whereas those with high expression of nuclear RACAGAP1
had a poor prognosis. Imaoka et al. (2015) demonstrated
that RACGAP1 expression was dramatically high in CRC with
advanced tumor stage, vessel invasion, and lymph node and
distant metastasis, causing poor overall survival. The marker of
proliferation Ki-67 (MKI67) is a nucleoprotein gene involved
in cell proliferation and expressed at all stages of the cell cycle
(Yang et al., 2017). Lin et al. (2008) detected high expression
of MKI67 in CRC based on immunohistochemistry. Zeng et al.
(2019) showed that in CRC, the knockdown of oncogenic
gene small nuclear ribonucleoprotein polypeptide A (SNRPA1)
caused the down-regulation of its other downstream genes,
including MK167, inhibiting the proliferation of CRC cells. The
hyaluronan-mediated motility receptor (HMMR), also known as
RHAMM, plays a key role in the occurrence and development
of tumors by mediating the migration of hyaluronan to tumor
cells and is closely related to cell proliferation, migration, signal
transduction, adhesion, and metastasis (Hatano et al., 2011).
Koelzer et al. (2015) indicated that HMMR was overexpressed in
tumor-budding cells of CRC and associated with advanced tumor

Frontiers in Genetics | www.frontiersin.org 10 June 2020 | Volume 11 | Article 478

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00478 June 8, 2020 Time: 13:35 # 11

Chen et al. Prognostic miRNAs of Colon Cancer

TABLE 4 | Fourteen critical genes reported in cancer from previous studies.

Gene CEP55 DTL FANCI HMMR KIF5 MCM6 MKI67

Feature

Gene NCAPG2 NEK2 RACGAP1 RRM2 TOP2A UBE2C ZWILCH

Feature

Gene experimentally up-regulated in colon cancer, and the expression was consistent with our calculation result of colon cancer. Gene experimentally up-regulated

in other cancers, and the expression was consistent with our calculation result of colon cancer. Gene not yet experimentally verified in colon cancer or other cancers.
Bold represents the genes that are both critical genes and WGCNA core genes.

grade, invasion, metastasis, and poor prognosis. HMMR is also a
biomarker for poor prognosis in several cancers, including those
of the colon, stomach, lung, and breast (Chen et al., 2018).

The ubiquitin-conjugating enzyme E2C (UBE2C) is the
central component of the ubiquitin–proteasome system
(UPS), an ATP-dependent protein degradation pathway in the
cytoplasm and nucleus (Rousseau and Bertolotti, 2018). By
immunohistochemical analysis, Fujita et al. (2009) confirmed
that the UBE2C content was higher in colon cancer tissues
than in normal colon epithelium, and overexpressed UBE2C
could change the cell cycle and promote tumor proliferation.
Okamoto et al. (2003) noted that UBE2C was highly expressed
in a variety of tumors, including CRC, causing cell growth
promotion and malignant transformation. NIMA-related kinase
2 (NEK2) encodes a serine/threonine protein kinase involved in
the centrosome cell cycle and mitosis regulation. The expression
of NEK2 is closely associated with the prognosis and pathological
features of cancer, including colon cancer (Ren et al., 2018).
Takahashi et al. (2014) found that the high expression of NEK2
in CRC was associated with advanced tumor stage, invasion,
dissemination, and poor prognosis, but that mir-128 could
repress NEK2 expression, and inhibited cell proliferation. As a
member of the MCM family, mini-chromosome maintenance
complex component 6 (MCM6) is highly expressed in human
malignant cells. The encoded product of MCM6 is a key protein
for DNA replication and is involved in the regulation of the
cell cycle (Lei, 2005). MCM6 is highly expressed in colon
cancer tissues (Hendricks et al., 2019). Huang et al. (2018)
showed that the suppression of MCM6 in colon cancer cells
could inhibit the foci-forming and chromatin localization of
RAD51 recombinase (RAD51), a protein essential for DNA
damage recovery. DNA topoisomerase II alpha (TOP2A) is
a key enzyme that controls the topological state of DNA and
is involved in processes, such as chromosome condensation,
chromatid separation, and gene expression (Tsavaris et al., 2009).
Zhang R. et al. (2018) detected up-regulated TOP2A in colon
cancer tissues compared with adjacent non-cancerous tissues
and found that down-regulated TOP2A in colon cancer cells
could dramatically inhibit proliferation and invasion of colon
cancer cells. The ribonucleotide reductase regulatory subunit
M2 (RRM2) plays a vital role in DNA synthesis and repair, as
well as many key cellular processes, such as cell proliferation,
invasion, migration, senescence, and tumorigenesis (Nordlund
and Reichard, 2006). In colon cancer, the increased expression
of RRM2 can noticeably enhance the invasive ability of cancer
cells (Liu et al., 2007). Liu et al. (2013) proved that increasing the

expression of RRM2 in colon cancer cells substantially enhanced
cell migration and invasion ability, which indicated that RRM2
was an independent prognostic biomarker for colon cancer and
could predict the low survival rate of colon cancer patients.
The centrosomal protein 55 (CEP55) is involved not only in
the process of cytokinesis but also in the invasion, metastasis,
and prognosis of many malignancies (Jeffery et al., 2016).
Bioinformatics analysis performed by Hauptman et al. (2019)
indicated that CEP55 was overexpressed in CRC and could be
used as a potential biomarker in colon cancer tissues, as validated
in clinical samples. Similarly, Sakai et al. (2006) reported that
inhibiting the expression of CEP55 caused a marked reduction
in the growth rate of colon cancer cells. These experiment results
on the expression of the above 10 genes in colon cancer are
consistent with our calculation results, which further verified the
reliability of our computational analysis.

As mentioned above, 4 of the 14 key genes recognized in
this study as playing major roles in colon cancer (FANCI,
KIF15, NCAPG2, and ZWILCH) have not been experimentally
shown to be up-regulated in colon cancer. However, abnormal
overexpression of KIF15 and NCAPG2 has been detected in many
other types of cancer. Kinesin family member 15 (KIF15) is
involved in important biological processes, including mitosis,
cell signaling pathways, gene translation, and protein trafficking
(Penna et al., 2017). According to Sheng et al. (2019), the up-
regulation of KIF15 in breast cancer led to poor overall survival,
indicating that KIF15 could serve as a potential therapeutic target
for triple-negative breast cancer. In a study by Wang et al.
(2017), overexpression of KIF15 in pancreatic cancer promoted
the expression of p-MEK and p-ERK, inducing activation of the
MEK–ERK signaling pathway and causing G1/S phase transition
and cancer growth. The non-SMC condensin II complex subunit
G2 (NCAPG2) is a component of the condensin II complex that
interacts with Polo-like kinase 1 (PLK1) during the anterior-
to-metaphase transition of mitosis, thereby regulating correct
chromosome segregation (Kim et al., 2014). The up-regulation
of NCAPG2 in non-small cell lung cancer (NSCLC) cells caused
a short survival time, whereas suppressing NCAPG2 expression
led to proliferation inhibition and G2/S cycle arrest (Zhan et al.,
2017). Zhan et al. (2017) concluded that NCAPG2 expression
was closely related to the progression of NSCLC and could
act as a prognostic factor. In liver cancer, Meng et al. (2019)
determined that highly expressed NCAPG2 promoted tumor cell
proliferation, migration, and invasion, mediated by activation
of the STAT3 and NF-κB pathways. Such findings confirmed
NCAPG2 as both an oncogene of liver cancer and a biomarker
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predicting poor patient prognosis. In summary, KIF15 and
NCAPG2 might be involved in the development and progression
of colon cancer, and they serve as prognostic markers or
therapeutic targets for colon cancer.

Zwilch kinetochore protein (ZWILCH) is an important
component of the Rod–Zw10–Zwilch complex and is crucial for
maintaining the normal function of mitotic checkpoints (Kops
et al., 2005). The abnormal function of mitotic checkpoints is
associated with the appearance of chromosomal instability, a
consensus sign of many human malignancies. According to Shih
et al. (2001), chromosomal instability occurs in the early stages of
colon cancer, resulting in genomic instability that might promote
tumor development. Fanconi anemia (FA) complementation
group I (FANCI) is a gene belonging to the FA–breast cancer
pathway, and the mono-ubiquitination of the FANCI–FANCD2
protein complex is the key to the normal function of the
FA pathway (Smogorzewska et al., 2007). A dysfunctional FA
pathway reduces the ability of DNA repair, causing genomic
instability, which increases the incidence of tumor development
(Deans and West, 2011). FANCI is one of the most pathogenic
mutated genes in CRC (Zhunussova et al., 2019). This gene is a
negative regulator of the consensus oncogene Akt (Zhang et al.,
2016). Although no current study concerns the direct correlation
between these two genes and cancer, both genes can act as
components of cancer progression pathways and play certain
roles in the formation of cancer, yet the specific mechanism
remains unclear. Our results identified FANCI and ZWILCH as
critical target genes of colon cancer, suggesting that they might
provide a potential pathway for the treatment and intervention
of colon cancer.

In this study, we also performed WGCNA to mine the core
genes via the analysis of gene expression patterns of multiple
samples in GSE24514 and constructed 17 co-expression modules
from 13,640 genes of these transcriptome data. Among them,
three modules (midnight blue, red, and yellow-green) containing
the most DEGs were the key functional ones significantly
related to colon cancer. These modules comprised 19 core genes
(CCNB1, DTL, ENTPD5, FANCI, GUCA2A, HSPB8, KCNMB1,
LMOD1, MKI67, MS4A12, NEK2, PADI2, PRC1, PTTG1, RRM2,
SCNN1B, TNS1, TOP2A, and UBE2C). 7 genes, including DTL,
FANCI, MKI67, NEK2, RRM2, TOP2A, and UBE2C, appeared in
the above-discussed 14 critical genes from the consensus genes
(Table 4), which, at least partially verified the reliability of the
main results of this work. In addition, although the remaining 12
core genes from WGCNA were not target genes for our derived
prognostic miRNAs, they were DEGs of colon cancer, and their
relationship with colon cancer deserves further study.

Bioinformatics is indispensable for mining data related to
colon cancer. In 2018, Wei et al. (2018) constructed a 10-
miRNA prognostic model composed of hsa-mir-891a, hsa-
mir-6854, hsa-mir-216a, hsa-mir-378d-1, hsa-mir-92a-1, hsa-
mir-4709, hsa-mir-92a-2, hsa-mir-210, hsa-mir-940, and hsa-
mir-887, by analyzing the genome-wide miRNA sequencing
dataset and corresponding clinical information of 425 colon
adenocarcinoma patients from TCGA. In the same year, Zhang
H. et al. (2018) identified DEMs between 457 colon cancer
tissues and 8 normal tissues from TCGA. Subsequent Cox

proportional hazards regression analysis provided a prognostic
model of six miRNAs, including hsa-mir-149, hsa-mir-3189,
hsa-mir-3677, hsa-mir-3917, hsa-mir-4999, and hsa-mir-6854.
Thus, six of eight prognostic factors (hsa-mir-6854, hsa-mir-
4437, hsa-mir-216a, hsa-mir-3677, hsa-mir-887, hsa-mir-4999,
hsa-mir-34b, and hsa-mir-3189) we calculated were consistent
with their results. It is worth noting that although the
expressions of miR-887 and miR-3189 in other cancers were
experimentally different from our predicted ones, the above two
studies provided the same analysis results as ours showed in
colon cancer, namely down-regulated miR-887 and up-regulated
miR-3189. However, different from these two previous works,
our study further explored the potential critical target genes
of the prognostic miRNAs by using combination methods,
including target prediction calculation, differential expression
screening, intersection analysis, and PPI network construction
and visualization.

As shown in Table 3, 14 targeting relationships are available
between 8 prognostic miRNAs and 14 critical genes. Specifically,
DTL, HMMR, MKI67, and RACGAP1 were predicted as the
target genes of hsa-mir-6854. FANCI, KIF15, NEK2, UBE2C, and
ZWILCH were the target genes of hsa-mir-3189, hsa-mir-3677,
hsa-mir-216a, hsa-mir-4437, and hsa-mir-4999, respectively.
MCM6 and TOP2A were the target genes of hsa-mir-887, and
CEP55, NCAPG2, and RRM2 were the target genes of hsa-mir-
34b (Table 3). To date, there have been no experiments to confirm
any of the above targeting relationships. However, the targeting
relationships of KIG15 with has-mir-3677 (Zorniak et al., 2018),
and CEP55 with has-mir-34b (Liang, 2008) were also predicted in
the functional analysis of miRNA in patients with gastric antral
vascular ectasia and expression meta-analysis of lung cancer
miRNA targets, respectively. As discussed above, experiments
have shown that these miRNAs and genes are mostly, directly
or indirectly, related to colon cancer. Therefore, we speculate the
existence of these targeting relationships for further study, which
might clarify the mechanisms of colon cancer and provide novel
methods for future exploration of prevention and treatment.

CONCLUSION

In summary, we used bioinformatics methods to construct a
prognostic model of colon cancer patients with eight prognostic
miRNAs, including hsa-mir-6854, hsa-mir-4437, hsa-mir-216a,
hsa-mir-3677, hsa-mir-887, hsa-mir-4999, hsa-mir-34b, and hsa-
mir-3189. Fourteen potential critical target genes of these
independent prognostic biomarkers were identified in the PPI
network. These genes were CEP55, DTL, FANCI, HMMR,
KIF15, MCM6, MKI67, NCAPG2, NEK2, RACGAP1, RRM2,
TOP2A, UBE2C, and ZWILCH. One miRNA (hsa-mir-4437)
and four genes (FANCI, KIF15, NCAPG2, and ZWILCH) have
not yet been confirmed to be associated with colon cancer in
previous experiments and calculations. In addition, the targeting
relationship between the 8 prognostic miRNAs and the 14
critical genes deserves further study. Furthermore, 12 core genes
obtained from WGCNA are also worthy of future research. Our
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results indicate that these prognostic miRNAs and their target
genes could have valuable potential for prognosis and targeted
therapy of colon cancer, and thereby could provide new guidance
for the diagnosis and treatment of colon cancer in the future.
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