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Abstract 
Background: Coronavirus (CoV) disease (COVID-19) identified in Wuhan, China, in 2019, is mainly characterized by atypical 
pneumonia and severe acute respiratory syndrome (SARS) and is caused by SARS CoV-2, which belongs to the Coronaviridae 
family. Determining the underlying disease mechanisms is central to the identification and development of COVID-19-specific 
drugs for effective treatment and prevention of human-to-human transmission, disease complications, and deaths.

Methods: Here, next-generation RNA sequencing (RNA Seq) data were obtained using Illumina Next Seq 500 from SARS CoV-
infected A549 cells and mock-treated A549 cells from the Gene Expression Omnibus (GEO) (GSE147507), and quality control 
(QC) was assessed before RNA Seq analysis using CLC Genomics Workbench 20.0. Differentially expressed genes (DEGs) were 
imported into BioJupies to decipher COVID-19 induced signaling pathways and small molecules derived from chemical synthesis 
or natural sources to mimic or reverse COVID -19 specific gene signatures. In addition, iPathwayGuide was used to identify 
COVID-19-specific signaling pathways, as well as drugs and natural products with anti-COVID-19 potential.

Results: Here, we identified the potential activation of upstream regulators such as signal transducer and activator of transcription 
2 (STAT2), interferon regulatory factor 9 (IRF9), and interferon beta (IFNβ), interleukin-1 beta (IL-1β), and interferon regulatory factor 
3 (IRF3). COVID-19 infection activated key infectious disease-specific immune-related signaling pathways such as influenza A, 
viral protein interaction with cytokine and cytokine receptors, measles, Epstein-Barr virus infection, and IL-17 signaling pathway. 
Besides, we identified drugs such as prednisolone, methylprednisolone, diclofenac, compound JQ1, and natural products such 
as Withaferin-A and JinFuKang as candidates for further experimental validation of COVID-19 therapy.

Conclusions: In conclusion, we have used the in silico next-generation knowledge discovery (NGKD) methods to discover 
COVID-19-associated pathways and specific therapeutics that have the potential to ameliorate the disease pathologies associated 
with COVID-19.

Abbreviations: COVID-19 = coronavirus disease-19, DEGs = differentially expressed genes, GEO = gene expression omnibus, 
GO = Gene Ontology, NGKD = next generation knowledge discover, RNA Seq = RNA sequencing, SARS = severe acute respiratory 
syndrome, WHO = world health organization

Keywords: A549 cells, BioJupies, COVID-19, in silico, iPathwayGuide, natural products, next-generation knowledge discovery, 
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1. Introduction

Coronavirus disease 2019 (COVID-19) is caused by a type of 
coronavirus (CoV), severe acute respiratory syndrome (SARS) 
virus 2 (SARS CoV-2). COVID-19 is characterized by symp-
toms ranging from a mild cold to more severe illnesses, such as 
SARS, sudden stroke, gastrointestinal complications, and mul-
tiple organ failure, even leading to death in some patients.[1–3] 
Coronaviruses belong to the Coronaviridae family, and the 
presence of viral spike proteins in the virus gives it a halo or 

corona-like appearance under the electron microscope (Fig. 1A). 
A novel coronavirus (nCoV) was discovered in Wuhan, China in 
2019 as the cause of a human respiratory outbreak that resulted 
in severe atypical pneumonia.[4,5] and is the source of the current 
global pandemic affecting all levels of society.[6]

The World Health Organization (WHO) has renamed this 
nCoV as SARS-CoV 2, which is the causative agent of COVID-
19.[4,5,7] COVID-19 is highly transmissible and pathogenic 
compared with other viral infections, and the exact mortality 

Figure 1.  Structure of SARS-CoV 2. (A) The structure depicted based on electron microscopic observations of coronavirus showing the surface protein parti-
cles S, N, M, and E and shows a corona-like shape. (B) The host tissues expressing ACE2 receptors. (C) The mechanism of entry of SARS CoV2 into the host 
cells (this figure was created using the graphic tools offered by BioRender.com with an academic license).
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rate has yet to be determined because the pandemic is not yet 
under control in several countries, resulting in unprecedented 
protective measures, partial or complete lockdowns, travel 
restrictions, etc.[8] As of March 7, 2022, COVID-19 had already 
infected more than 446 million people in 195 countries and ter-
ritories around the world and killed approximately 6 million 
people, according to data from the Johns Hopkins Coronavirus 
Dashboard.[9] However, the exact mortality rate will not be cal-
culated or determined until the COVID-19 epidemic reaches a 
plateau. The United States of America and WHO have declared 
the SARS-CoV-2 outbreak a public health emergency because it 
is more contagious than the severe acute respiratory syndrome 
coronavirus (SARS-CoV) and Middle East respiratory syndrome 
coronavirus (MERS-CoV).[5,8,9] SARS-CoV-2 possesses a nucle-
ocapsid with a positive-sense RNA genome. Host cells express 
SARS-CoV-2 nucleoproteins and the nucleocapsid protein (N 

protein), which is the most abundant, highly immunogenic pro-
tein, and is required for CoV RNA synthesis. The N protein is 
a structural protein that binds to the CoV RNA genome and 
forms a capsid around viral RNA. However, the spike protein 
(S protein) is critical for binding between SARS CoV-2 and 
angiotensin-converting enzyme 2 (ACE2) surface receptors on 
host cells (Fig. 1B), thus facilitating coronavirus entry into host 
cells.,[10] respectively (Fig. 1C).

Although COVID-19 vaccines are currently available as pre-
ventive measures and many are in the research and development 
phase,[11,12] deciphering the underlying pathological mechanisms 
is central to identifying and developing COVID-19 specific 
drugs to effectively treat and prevent human-to-human trans-
mission, COVID-19 complications, and deaths. In silico meth-
odologies can be successfully used to identify potential drugs 
and natural products based on high-dimensional RNA-seq 

Figure 1.  Continued
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datasets derived from various disease pathologies.[13,14] We have 
recently shown that the next-generation knowledge discov-
ery (NGKD) platforms can effectively be used to uncover the 
gene signatures regulated by COVID-19 and the potential ther-
apeutics using RNAseq datasets derived from normal human 
primary bronchial epithelial (NHBE) cells.[13] However, in the 
present study, the raw RNA Seq reads (single-end) (FASTQ files) 
in quadruplicate obtained from SARS CoV-infected A549 cells 
and mock-treated A549 cells using Illumina Next Seq 500 were 
obtained from the Gene Expression Omnibus (GEO) (accession 
number: GSE147507) and quality control (QC) was evaluated 
before RNA Seq analysis using CLC Genomics Workbench 20.0 
(Qiagen, USA). After the initial QC, the RNA Seq reads were 
imported into the CLC Genomics Workbench 20.0 (Qiagen, 
USA) before RNA Seq analysis and evaluated using NGKD 
platforms such as BioJupies[15] and iPathwayGuide (Advaita 
Bioinformatics, USA) to decipher the disease-specific molecular 
signatures and a series of small molecules derived from either 
synthetic or natural sources to mimic or reverse the COVID-19 
gene signatures.

2. Materials and Methods

2.1. Ethical statement

Animal models and human subjects were not used in this study. 
This study was performed using RNA-seq datasets from next-gen-
eration sequencing experiments with A549 cells. The raw data 
were obtained from the Gene Expression Omnibus (GEO), as 
indicated in the Data Source section below. Therefore, they were 
exempt from institutional review board (IRB) approval.[13,14]

2.2. Next-Generation Sequencing (NGS) data source

Raw RNA Seq reads (single-end) (FASTQ format) in quadru-
plicate obtained with Illumina Next Seq 500 from A549 cells 
infected with SARS CoV-2 and mock-treated A549 cells were 
obtained from the Gene Expression Omnibus (GEO) (accession 
number: GSE147507)[16] and were used for subsequent down-
stream analysis with high-throughput NGKD platforms.

2.3. COVID-19 RNA Seq data from A549 cells – quality 
control

Raw RNA Seq reads (single-end) in quadruplicates (FASTQ 
files) derived from SARS CoV-infected A549 cells and mock-
treated A549 cells using Illumina Next Seq 500 were derived 
from the GEO, and quality control (QC) was evaluated using 
CLC Genomics Workbench 20.0 (Qiagen)[13] to obtain the dif-
ferentially expressed genes (DEGs) before RNA Seq analysis.

2.4. COVID-19 RNA Seq data from A549 cells – differential 
gene and transcript expression analysis

RNA Seq reads were imported into CLC Genomics Workbench 
20.0 (Qiagen) after the QC step. The RNA Seq Analysis Tool 
in the Biomedical Genomics Analysis plugin of the CLC 
Genomics Workbench was used to extract all annotated tran-
scripts using both Homo sapiens (hg38) _genes (Gene track) 
and Homo sapiens (hg38) _mRNA (mRNA track) and mapped 
to the human reference genome (GRCh38). A gene expression 
track (GE) was generated for A549 cells infected with SARS 
CoV-2 and corresponding mock reads (test vs. control). In 
addition, the differential expression tool was used in the two 
groups in the CLC Genomics Workbench to perform a sta-
tistical test for differential expression for a set of expression 
tracks (test vs. control). Here, a multifactorial statistic based 
on a negative binomial generalized linear model (GLM) is 

used, and the differential expression in the two groups tool 
deals with one factor and two groups. In this analysis, “Total 
Exon Read” values were used for GE. Differentially expressed 
genes (DEGs) were generated for the test compared to the cor-
responding control and used for further downstream analysis 
using the NGKD platform.

2.5. BioJupies analysis of RNASeq data

BioJupies was used to analyze the DEGs generated using the 
CLC Genomics Workbench to identify novel signaling pathways, 
disease-specific gene networks, and a range of drugs and small 
molecules derived from natural sources to mimic or reverse dis-
ease-specific gene signatures.[15] In Biojupies, RNASeq datasets 
were compressed into an HDF5 data package and uploaded to 
Google Cloud. Raw data were normalized to log10 counts per 
million (log CPM) and differentially expressed genes between 
the control and experimental groups were determined using the 
R package limma.[17] The principal component analysis function 
in the Python module of sklearn was used to transform log CPM 
based on the Z-score method to generate the PCA plot, and 
Clustergrammer[18] was used to generate interactive heat maps, 
and the DEGs were then sent to Enrichr.[19] In the volcano plot, 
DEGs were plotted on the x-axis and P values were corrected 
using the Benjamini-Hochberg method, transformed (−log10), 
and plotted on the y-axis.[20,21] However, average gene expres-
sion is shown on the x-axis in the MA plot, and P values were 
corrected, transformed (−log10), and plotted on the y-axis using 
the Benjamini-Hochberg method.[20,21] Gene Ontology (GO) and 
pathway enrichment analyses were performed with both upreg-
ulated and downregulated genes in Enrichr. Significant GO 
terms and pathways (KEGG, WiKiPathways, and Reactome) 
were calculated using a cut-off value of < 0.1 after applying the 
Benjamini–Hochberg correction.[20,21]

2.6. L1000CDS2 and L1000FWD analyses

The L1000CDS2 analysis was performed by submitting the 
best 2000 DEGs to the L1000CDS2 signature search API.[22] 
Similarly, the L1000FWD analysis was performed by submitting 
the top 2000 DEGs to the L1000FWD signature search API.[23]

2.7. In silico analysis of RNASeq expression data using 
iPathwayGuide

The impact analysis method (IAM)[24] in the iPathwayGuide was 
used to determine the differentially regulated signaling path-
ways, gene ontologies, and upstream drugs or natural products, 
as previously described.[13] Briefly, the pathway score was calcu-
lated based on the p-value obtained using Fisher’s method. The 
P value was corrected using multiple testing corrections for the 
false discovery rate (FDR) and Bonferroni correction.[25,26] The 
FDR has significant power, but it controls only the family-based 
false-positive rate.[20,21] Pathways and gene interactions with 
DEGs were generated using the KEGG database.[27] For each 
Gene Ontology term (GO), the number of DEGs annotated with 
the term was compared with the randomly expected DEGs.[28,29] 
iPathwayGuide used an overrepresentation approach to calcu-
late the statistical significance of observing at least the specified 
number of DEGs.[30–32] The hypergeometric distribution was used 
to calculate P values in the iPathwayGuide analysis and cor-
rected for multiple comparisons using FDR and Bonferroni.[30–32]

2.8. Prediction of upstream drugs or natural products with 
iPathwayGuide

The prediction of upstream chemicals, drugs, and toxicants 
(CDTs) was based on two types of information: (i) the enrichment 
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of DEGs from experiments and (ii) a network of interactions 
from the Advaita Knowledge Base (AKB v2012).[30–32]

2.9. Upstream CDTs predicted to be present (or 
overabundant)

The research hypothesis refers to the presence of CDT. This 
hypothesis is useful for investigating whether a given phenotype 
is influenced by the presence of a particular chemical, drug, or 
toxicant.[30–32] For each CDT u, the number of consistent DE 
genes after u, DTA(u), is compared to the number of measured 
target genes expected to be both consistent and DE. iPathway-
Guide uses an over-representation approach to calculate the 
statistical significance of observing at least a given number of 
consistent DE genes. The P value Ppres was calculated using 
a hypergeometric distribution.[30–32] The analysis uses Fisher’s 
standard method to combine the P values into a test statistic.[33]

2.10. Upstream CDTs predicted to be absent (or 
insufficient)

In parallel with the upstream CDTs predicted to be present, Pabs 
and Pz were used to predict upstream CDTs that were absent. 
This hypothesis is important when investigating whether a given 
phenotype is affected by the absence of a particular chemical 
necessary for the proper functioning of the organism or cell. The 
research hypothesis states that the upstream CDT is insufficient 
under the conditions under study. For each upstream CDT u, the 
number of consistent DE genes downstream of u, DTI(u), was 
compared to the number of measured target genes expected to 
be both consistent and DE by chance. Using Fisher’s method, 
the analysis combines Pabs and Pz, with Pz considered only for 
significantly negative z-scores (z ≤ −2).[30–32]

2.11. Swiss target prediction of potential anti- COVID-19 
compounds

The isomeric simplified molecular-input line-entry system 
(SMILES) codes of prednisolone and withaferin-A were used in 
the SwissTarget Prediction tool to identify protein targets.[34,35] 
Ligand-based target prediction for both prednisolone and with-
aferin-A was performed as previously described.[35,36]

2.12. The Open Targets Platform analysis of anti-COVID-19 
compounds

The Open Targets Platform web tool was used to uncover the 
molecular targets of prednisolone and withaferin-A associated 
with COVID-19 disease pathology (date accessed: January 12, 
2020)[35,37,38] The Open Targets Platform uses scientific evidence 
to assess and rank associations between targets and disease and 
to help prioritize targets.[38] The query list of approximately 100 
candidate molecular targets of prednisolone and withaferin-A 
was used to discover protein targets significantly (P < .05) asso-
ciated with COVID-19.

3. Results
The present study was done using RNA-seq datasets obtained 
from next-generation sequencing experiments with mock-
treated and SARS CoV-2 infected A549 cells.[16] The raw RNA 
Seq reads (Single-End) (FASTQ files) in quadruplicates derived 
using Illumina Next Seq 500 from SARS CoV-infectedA549 
cells, and mock-treated A549 cells were obtained from the 
Gene Expression Omnibus (GEO) (GSE147507), and quality 
control (QC) was evaluated before RNA Seq analysis using 
the CLC Genomics Workbench 20.0 (Qiagen). The DEGs were 

further analyzed using BioJupies and iPathwayGuide (Advaita 
Bioinformatics, USA) to decipher disease-specific signatures and 
an array of drugs and small molecules derived from natural 
sources to mimic or reverse disease-specific gene signatures.

The global patterns in the high-dimensional RNA-seq 
datasets were uncovered using PCA analysis (Fig.  2A). The 
Clustergrammer web tool was used to generate interactive heat-
maps for visualization and in-depth analysis of DEGs derived 
from high-dimensional RNASeq data of SARS CoV-infected 
A549 cells and mock-treated A549 cells (Fig. 2A–C). A volcano 
plot was generated using transformed gene fold changes using 
log2 and is shown on the x-axis (Fig. 2D). The MA plot was 
based on the average gene expression, which was calculated 
using the mean of the normalized gene expression values and is 
shown on the x-axis (Fig. 2E).

The bar chart (Fig. 3A) shows the top small molecules iden-
tified by the L1000CDS2 query. The left panel displays small 
molecules such as calyculin A, emetine hydrochloride, narli-
clasine, NVP-TAE684, wiskostatin, NCGC00185684-02, and 
amsacrine, which mimic the observed gene expression signature, 
while the right panel displays small molecules such as trichosta-
tin A, vorinostat, afatinib, DL-PDMP, withaferin-A, IMD 0354, 
and 2-[(chloroacetyl) (4-fluorophenyl] amino-N-cyclohexyl-2 
pyridine 3, which reverse it. In addition, natural products and 
drugs with opposite (Table 1) and similar molecular signatures 
(Table 2) based on the L1000FWD tool, which contains gene 
signatures from an array of human cell lines administered with 
more than 20,000 drugs and natural products. Withaferin-A, 
an active ingredient of the medicinal plant (Fig. 3A), Withania 
somnifera was found to reverse the COVID-19 induced molec-
ular signatures in both L1000CDS2 and L1000FWD analyses 
along with other small molecule drugs.

The GO enrichment analysis for the biological processes, 
molecular function, and cellular components was generated 
using Enrichr (Fig. 4). The x-axis indicates the −log10(P value) 
for each term, and significant terms enriched in each GO cat-
egory are highlighted in bold. Similarly, Figure  5 shows the 
results of pathway enrichment analysis using Enrichr. The x-axis 
indicates the −log10(P value) for each term, and the significantly 
enriched pathways (KEGG, Wiki pathways, and Reactome) are 
highlighted in bold.

In this experiment, 141 DEGs were identified from a total of 
9665 DEGs obtained from BioJupies analysis of the RNASeq 
reads of SARS CoV-infected A549 cells and mock-treated A549 
cells based on a P value cut-off (.05) and a fold change cut-off 
of 1.5. The DEGs were analyzed in the context of pathways 
obtained from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database, gene ontologies from the Gene Ontology 
Consortium database, and iPathwayGuide analysis, which fur-
ther showed that 34 pathways were significantly affected in the 
SARS CoV2 infected A549 cells compared to the mock-treated 
A549 cells. In addition, 557 Gene Ontology (GO) terms, 224 
gene upstream regulators, 451 chemical upstream regulators, 
and 31 diseases were found to be significantly (P < .05) enriched 
before the correction for multiple comparisons.

The top five upstream regulators identified after the Bonferroni 
correction for signal transducer and activator of transcription 2 
(STAT2), interferon regulatory factor 9 (IRF9), interferon-beta 
(IFNβ), interleukin-1-beta (IL-1β), and interferon regulatory 
factor 3 (IRF3) were predicted to be activated (Table 7).

COVID-19 infection activates key infectious disease-spe-
cific immune-related signaling pathways such as influenza A, 
viral protein interaction with cytokine and cytokine receptors, 
measles, Epstein-Barr virus infection, and IL-17 signaling path-
way (Table 3). Likewise, significantly enriched Gene Ontology 
(GO) terms such as biological, molecular, and cellular processes 
based on the false discovery rate (q value) were identified using 
iPathwayGuide. The top identified biological processes were 
innate immune response, response to external biotic stimulus, 
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response to other organisms, response to biotic stimulus, and 
defense response to other organisms, including chemokine 
receptor binding, chemokine activity, CXCR chemokine recep-
tor binding, receptor-ligand activity, signaling receptor activator 
activity. The top cellular components identified included blood 
microparticles, fibrinogen complexes, nuclear outer membranes, 
extracellular spaces, and extracellular regions for each pruning 
type (Tables 4–6).

The upstream regulator drugs obtained either based on 
chemical synthesis or natural sources with opposite molecu-
lar signatures were also identified based on iPathwayGuide 
Analysis The drugs that can significantly reverse the molec-
ular impact of COVID-19 infection are Methyl Prednisolone, 
Prednisolone, Gold Sodium Thiomalate, Tofacitinib, Diclofenac, 

JQ1 Compound, Azathioprine, etc. (Fig. 3B). The upstream reg-
ulator drugs and natural products with opposite molecular sig-
natures identified using iPathwayGuide sorted based on the Z 
score are listed in Supplementary Table 1, http://links.lww.com/
MD/G901.

In the present study, SwissTargetPrediction was performed for 
prednisolone and withaferin A, using the canonical SMILES code. 
The Open Targets Platform was applied to uncover Withaferin-A 
molecular targets associated with COVID-19 disease pathology. 
Scientific evidence was used in the Open Targets Platform to 
assign a score and rank target-disease associations and help tar-
get prioritization. Among the molecular targets of prednisolone 
and withaferin-a, 40 and 36 targets, respectively, were signifi-
cantly associated with COVID-19 pathology (Table 8).

Figure 2.  (A) Principal component analysis (PCA) was applied to identify global patterns in high-dimensional RNASeq datasets. (B) The heatmaps were gen-
erated top 250 DEGs and (C) the top 50 DEGs using Clustergrammer web tool for visualizing and analyzing high-dimensional RNASeq data. (D) Volcano plot 
was generated using transformed gene fold changes using log2 and displayed on the x-axis. (E) MA plot was based on average gene expression which was 
calculated using mean of the normalized gene expression values and displayed on the x-axis.

http://links.lww.com/MD/G901
http://links.lww.com/MD/G901
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4. Discussion
COVID-19 is highly infectious and pathogenic compared to other 
viral infections, and the exact mortality rate has yet to be deter-
mined because the pandemic is not yet under control in several 
countries.[9,12] Therefore, deciphering the underlying pathologic 
mechanisms is central to identifying and developing COVID-19-
specific drugs to effectively treat and prevent person-to-person 
transmission, COVID-19 complications, and reduce mortality. 
COVID-19 is usually characterized by cough, breathing prob-
lems, high body temperature, diarrhea, and abdominal discom-
fort, and in severe cases, it causes atypical pneumonia, SARS, 
stroke, thrombosis, multiple organ failure, and in some cases, 
death.[3] It was found that approximately 80% of COVID-19 
cases had mild or asymptomatic symptoms, with the elderly and 
those with other comorbid conditions more likely to develop 
severe symptoms and succumb to the disease.[4,9]

Distinguishing COVID-19 from other influenza viruses, 
SARS, and MERS coronaviruses is essential in the clinical set-
ting to develop effective or efficient treatment strategies for 
patients.[39] Noninfectious diseases such as idiopathic interstitial 
pneumonia, cryptogenic organizing pneumonia, dermatomyosi-
tis, and vasculitis also need to be differentially diagnosed from 
COVID-19[7,9,39]

The COVID -19 infection of A549 cells activated upstream 
genes, such as STAT2, IRF9, IFNB1, IL1B, and IRF3. Biological 
processes such as the type I interferon signaling pathway, defense 

response to viruses, negative regulation of viral genome replica-
tion, and interferon-gamma-mediated signaling pathways were 
differentially regulated. Molecular functions such as chemok-
ine activity, CXCR chemokine receptor binding, 2ʹ-5ʹ-oligoad-
enylate synthetase activity, double-stranded RNA binding, and 
protein ADP-ribosylase activity were enriched in the COVID-
infected cells. Cytokines are hormones of the immune system 
that are important for innate and adaptive host responses, cell 
growth and differentiation, repair and development, cellular 
homeostasis, and cell death.[35,40,41] Cytokines are glycoproteins 
that are released upon any external stimulus and bind to specific 
cell surface receptors on the plasma membrane of target cells to 
elicit their responses.[42–44]

The cytokine/chemokine storm seen in moderate to severe 
cases of COVID -19 is caused by a significant increase in the 
levels of several circulating cytokines and chemokines, such as 
interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-al-
pha (TNF-α), C-X-C motif chemokine ligand 10 (CXCL-10), and 
interferon-gamma induced protein-10 (IP-10), and contributes 
to poor prognosis.[7,45] In general, viruses evolve mechanisms to 
avoid detection and subsequent destruction in the host by remod-
eling and copying cytokine and cytokine receptor genes.[46,47] 
Similarly, COVID-19 induced cytokines, cytokine receptors, 
chemokines, and other specific cytokine receptors and binding 
proteins to destabilize and alter host cytokine responses and 
immune networks.[16,45,47] Here, COVID-19-induced chemokines 

Figure 2.  Continued
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Figure 3.  (A) The bar chart displaying the top small molecules identified by the L1000CDS2 query. The left panel displays the small molecules which mimic the 
observed gene expression signature, while the right panel displays the small molecules which reverse it. (B) Bar graphs show the synthetic drugs and natural 
compounds with similar (mimic) and opposite (reverse) molecular signatures based on iPathwayGuide analysis.

Table 1

Natural products and drugs with opposite and similar molecular signatures based on L1000FWD web-based tool.

Opposite molecular signatures

Signature ID Drugs or natural products Similarity score P value q value Z-score Combined score 

CPC019_VCAP_24H:BRD-K50234570-001-06-6:10 EMF-bca1-16 −0.0569 2.03E-10 8.67E-07 1.67 −16.15
ERG005_VCAP_6H:BRD-K88378636-001-02-8:20 Withaferin-a −0.0544 1.54E-09 2.74E-06 1.65 −14.57
CPC006_HCC515_24H:BRD-A28105619-001-01-3:10 Cucurbitacin-i −0.0531 2.51E-09 3.98E-06 1.81 −15.59
CPC006_HCC515_6H:BRD-K16406336-311-01-2:10 Methylene-blue −0.0544 6.11E-09 8.44E-06 1.77 −14.52
CPC016_MCF7_24H:BRD-K08547377-003-03-2:10 Irinotecan −0.0506 1.88E-08 2.12E-05 1.7 −13.16
CPC001_VCAP_24H:BRD-K12516989-001-01-9:10 Zaprinast −0.0442 6.06E-08 5.64E-05 1.93 −13.91
CPC016_NPC_24H:BRD-A22783572-065-01-3:10 Vinblastine −0.0493 1.28E-07 1.08E-04 1.69 −11.63
CPC004_PC3_6H:BRD-A69815203-001-05-0:10 Cyclosporin-a −0.0455 1.90E-07 1.51E-04 1.84 −12.37
CPC008_PC3_6H:BRD-K66037923-001-04-4:10 BRD-K66037923 −0.048 1.96E-07 1.53E-04 1.76 −11.79
MUC.CP003_MCF7_24H:BRD-K02407574-001-04-8:0.3704 Parbendazole −0.0468 2.45E-07 1.79E-04 1.63 −10.75
Similar Molecular Signatures
CPC013_SKB_24H:BRD-K61175124-001-01-0:10 BRD-K61175124 0.0556 2.63E-13 1.12E-08 −1.83 23.09
CPC016_SKB_24H:BRD-A06352508-001-02-9:10 SB-218078 0.0544 1.17E-12 1.67E-08 −1.87 22.28
CPC006_HT29_24H:BRD-A67788537-001-01-7:120 Salermide 0.0493 1.78E-12 1.91E-08 −1.85 21.75
CPC002_PC3_6H:BRD-A22684332-003-03-1:10 Procaterol 0.0582 3.07E-12 2.63E-08 −1.64 18.87
CPC007_HT29_24H:BRD-A09719808-001-02-3:10 BRD-A09719808 0.0506 8.82E-12 6.29E-08 −1.81 20.02
CPC019_VCAP_6H:BRD-K23282736-001-01-1:10 BRD-K23282736 0.0594 1.12E-11 6.83E-08 −1.78 19.53
CPC007_HT29_6H:BRD-A69470004-019-04-0:10 BRD-A69470004 0.0556 5.64E-11 3.02E-07 −1.69 17.3
CPC013_SKB_24H:BRD-K74623475-001-02-7:10 BRD-K74623475 0.048 1.67E-10 7.94E-07 −1.86 18.18
CPC006_A673_6H:BRD-K84924563-001-01-2:40 BRD-K84924563 0.0531 3.62E-10 1.29E-06 −1.68 15.85
CPC013_SKB_24H:BRD-K16541732-001-01-3:10 BRD-K16541732 0.0493 7.61E-10 1.92E-06 −1.81 16.48

Table 2

Top pathways and their associated P values are stated in the table.

Pathway name Pathway Id P value P value (FDR) P value (Bonferroni) 

Influenza A 05164 7.635e-7 6.389e-5 9.849e-5
Viral protein interaction with cytokine and cytokine receptor 04061 1.533e-6 6.389e-5 1.978e-4
Measles 05162 1.665e-6 6.389e-5 2.148e-4
Epstein-Barr virus infection 05169 2.019e-6 6.389e-5 2.605e-4
IL-17 signaling pathway 04657 2.476e-6 6.389e-5 3.194e-4

The P value corresponding to the pathway was computed using only over-representation analysis.
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and cytokines can either enhance or prevent cytokine signal-
ing and significantly alter or attenuate various arms of the host 
immunity. In addition, cellular processes such as the blood 

microparticle-fibrinogen complex were activated in COVID-
infected A549 cells. The increase in cellular processes, such as 
blood microparticles, observed in the present study was confirmed 

Figure 4.  Gene Ontology Enrichment Analysis. The bar charts display the results of the Gene Ontology enrichment analysis generated using Enrichr. The x-axis 
indicates the −log10(P value) for each term. Significant terms are highlighted in bold.
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by a recent study showing an increase in circulating blood micro-
particles and activated platelets in COVID-19 patients.[48]

The COVID-19 pandemic is currently being addressed with 
vaccines, convalescent plasma, monoclonal antibodies, antiviral 
drugs such as remdesivir, and preventive measures such as wear-
ing masks, hand hygiene, and social distancing.[49] In the present 
study, withaferin-A was predicted to counteract the molecular 

signatures triggered by COVID-19. Using NGKD platforms, we 
recently found that withaferin-A reverses the gene signatures 
induced by COVID-19 in NHBE cells.[13]

Analysis of the open-target platform revealed that 36 tar-
gets played a role in COVID-19 pathology. Withaferin-A is a 
constituent of the medicinal plant W. somnifera (Indian ginseng 
or ashwagandha). Its active constituents include withanolides, 

Figure 4.  Continued
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saponins, alkaloids, and steroidal lactones. W. somnifera is 
used in herbal preparations in traditional medicine and has 
antioxidant, anti-anxiety, anti-inflammatory, antibacterial, and 
aphrodisiac properties, among others[50,51] Ashwagandha has 

neuroprotective, cardioprotective, immunomodulatory, and 
anticancer properties.[51] In a recent in silico screening study, 
ashwagandha was also found to contain natural compounds 
against COVID-19.[52]

Figure 5.  Pathway Enrichment Analysis. The bar charts displaying the results of the pathway enrichment analysis generated using Enrichr. The x-axis indicates 
the −log10(P-value) for each term. Significant terms are highlighted in bold.
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Traditional Chinese Medicine (TCM) has also been used in 
the treatment of COVID-19.[53] The traditional Chinese herbal 
formula, JinFuKang, consists of 12 medicinal plants, with each 
dose containing 10 mL.[54] JinFuKang has anticancer proper-
ties and numerous medicinal benefits.[54] Antiviral remdesivir 
reduces mortality only very slightly,[56] the use of corticosteroids 

increases the possibility of secondary infections,[57] and mono-
clonal antibody therapies are either expensive or difficult to 
obtain for COVID-19 therapy. However, oral antiviral drugs 
such as paxlovid and molnupiravir introduced by Pfizer and 
Merck, respectively, are authorized by the Food and Drug 
Administration (FDA), USA, for COVID-19 treatment.[58]  
Nevertheless, it may also be valuable to explore the gene signa-
tures triggered by COVID-19 and its variants in different exper-
imental model systems to identify potential drugs or natural 
products for COVID-19 therapy.

5. Conclusions
The present study demonstrated the application of RNA 
sequencing technologies in conjunction with NGKD plat-
forms to decipher specific compounds, either synthetic or 
derived from natural products, for the potential amelioration 
of COVID-19. However, further in-depth studies are needed 
to validate drugs such as prednisolone, methylprednisolone, 

Table 7

Top upstream regulators after Bonferroni Correction are given in the table.

Upstream Regulator (u) DTA(u) DT(u) P value P value (FDR) P value (Bonferroni) 

STAT2 11 11 1.655e-14 6.848e-12 8.092e-12
IRF9 10 10 2.801e-14 6.848e-12 1.370e-11
IFNB1 6 7 1.526e-6 2.488e-4 7.464e-4
IL1B 7 8 1.188e-4 .014 .058
IRF3 3 3 1.464e-4 .014 .072

Table 3

Top identified biological processes. The top-scoring biological process, molecular function, and cellular component for each pruning 
type are described below in the table.

Pruning type: None Pruning type: High-specificity
Pruning type: Smallest common 

denominator

GO Term P value  P value (FDR) P value (Bonferroni) GO Term P value GO Term P value 

Biological processes
Innate immune 

response
1.000e-24 4.427e-22 4.427e-22 Type I interferon signaling 

pathway
2.380e-12 Type I interferon signaling 

pathway
9.961e-14

Response to 
external biotic 
stimulus

1.000e-24 6.549e-22 1.965e-21 Defense response to virus 8.301e-12 Defense response to virus 4.012e-13

Response to other 
organism

1.000e-24 6.549e-22 1.965e-21 Negative regulation of viral 
genome replication

2.490e-8 Interferon-gamma-mediated 
signaling pathway

1.383e-10

Response to biotic 
stimulus

3.000e-24 2.075e-21 8.301e-21 Interferon-gamma-mediated 
signaling pathway

8.301e-6 Negative regulation of viral 
genome replication

1.868e-8

Defense response 
to other organism

4.900e-23 2.712e-20 1.356e-19 Innate immune response    

Molecular functions
Chemokine receptor 

binding
1.300e-9 3.897e-7 5.629e-7 Chemokine activity 7.794e-7 Chemokine receptor binding 5.629e-7

Chemokine activity 1.800e-9 3.897e-7 7.794e-7 CXCR chemokine receptor 
binding

4.546e-5 2ʹ-5ʹ-Oligoadenylate 
synthetase activity

.040

CXCR chemokine 
receptor binding

1.300e-8 1.876e-6 5.629e-6 2ʹ-5ʹ-Oligoadenylate 
synthetase activity

.030 Double-stranded RNA 
binding

.040

Receptor ligand 
activity

1.700e-6 1.840e-4 7.361e-4 Double-stranded RNA 
binding

.030 Protein ADP-ribosylase 
activity

.086

Signaling receptor 
activator activity

2.400e-6 2.078e-4 .001 Protein ADP-ribosylase 
activity

.068 ISG15 Transferase activity .109

Cellular components
Blood microparticle 9.800e-8 3.763e-5 3.763e-5 Blood microparticle 3.763e-5 Blood microparticle 3.763e-5
Fibrinogen complex .002 .358 .768 Fibrinogen complex .358 Fibrinogen complex .358
Nuclear outer 

membrane
.003 .358 1.000 Nuclear outer membrane .358 Nuclear outer membrane .358

Extracellular space .006 .425 1.000 Specific granule lumen .553 Extracellular region .553
Extracellular region .008 .425 1.000 Costamere .553 Specific granule lumen .553

Table 4

Top upstream regulators after Bonferroni Correction is given in 
the table.

Upstream 
Regulator (u) DTA(u) DT(u) P value 

P value 
(FDR) 

P value 
(Bonferroni) 

STAT2 11 11 1.655e-14 6.848e-12 8.092e-12
IRF9 10 10 2.801e-14 6.848e-12 1.370e-11
IFNB1 6 7 1.526e-6 2.488e-4 7.464e-4
IL1B 7 8 1.188e-4 .014 .058
IRF3 3 3 1.464e-4 .014 .072
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diclofenac, and JQ1, and natural products such as Withaferin-A 
and JinFuKang in COVID-19 infection model systems, such 
as primary human alveolar epithelial cells and human small 
intestinal organoids (hSIOs)[1,2] to determine mechanisms of 
action before preclinical and clinical trials for the potential 
treatment of COVID-19 and related pathologies. In con-
clusion, this study outlines a valuable method for applying 
NGKD platforms to discover precise drugs and natural prod-
ucts for the potential treatment of COVID-19-related disease 
pathologies.
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