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Abstract

Background: Understanding how biomolecules interact is a major task of systems biology. To model protein-
nucleic acid interactions, it is important to identify the DNA or RNA-binding residues in proteins. Protein sequence
features, including the biochemical property of amino acids and evolutionary information in terms of position-
specific scoring matrix (PSSM), have been used for DNA or RNA-binding site prediction. However, PSSM is rather
designed for PSI-BLAST searches, and it may not contain all the evolutionary information for modelling DNA or
RNA-binding sites in protein sequences.

Results: In the present study, several new descriptors of evolutionary information have been developed and
evaluated for sequence-based prediction of DNA and RNA-binding residues using support vector machines (SVMs).
The new descriptors were shown to improve classifier performance. Interestingly, the best classifiers were obtained
by combining the new descriptors and PSSM, suggesting that they captured different aspects of evolutionary
information for DNA and RNA-binding site prediction. The SVM classifiers achieved 77.3% sensitivity and 79.3%
specificity for prediction of DNA-binding residues, and 71.6% sensitivity and 78.7% specificity for RNA-binding site
prediction.

Conclusions: Predictions at this level of accuracy may provide useful information for modelling protein-nucleic
acid interactions in systems biology studies. We have thus developed a web-based tool called BindN+
(http://bioinfo.ggc.org/bindn+/) to make the SVM classifiers accessible to the research community.

Background
Protein-DNA and protein-RNA interactions are involved
in many biological processes essential for cellular func-
tion. To understand the molecular mechanisms of the
protein-nucleic acid recognition, it is important to iden-
tify the DNA or RNA-binding amino acid residues in
proteins. The identification is straightforward if the
structure of a protein-DNA or protein-RNA complex is
known. Unfortunately, it is very expensive and time-
consuming to solve the structure of a protein-DNA/
RNA complex. Currently, only a few hundreds of

protein-nucleic acid complexes have structural data
available in the Protein Data Bank (PDB, http://www.
rcsb.org/pdb/). With the rapid accumulation of sequence
data, predictive methods are needed for identifying
potential DNA or RNA-binding residues in protein
sequences.
Several machine learning methods have been reported

for predicting DNA or RNA-binding residues directly
from amino acid sequences [1-3], using biochemical fea-
tures of amino acid residues [4,5], and by incorporating
evolutionary information in terms of position-specific
scoring matrices [6-8]. Ahmad et al. [1] investigated
representative structures of protein-DNA complexes,
and used the amino acid sequences in these structures
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to train artificial neural networks (ANNs) for prediction
of DNA-binding residues. Yan et al. [2] constructed
Naïve Bayes classifiers for DNA-binding site prediction
from amino acid identities. Naïve Bayes classifiers were
also developed for predicting RNA-binding residues
directly from amino acid sequences [3]. However, with-
out using biological knowledge for classifier construc-
tion, the prediction accuracy was relatively low in these
studies.
The use of evolutionary information for input encod-

ing has been shown to improve classifier performance.
Ahmad and Sarai [6] constructed ANN classifiers for
DNA-binding site prediction using evolutionary infor-
mation in terms of position-specific scoring matrix
(PSSM). More recently, PSSM profiles have also been
used to train support vector machines (SVMs) and logis-
tic regression models for sequence-based prediction of
DNA-binding residues [7,8]. For a given protein
sequence, its PSSM profile can be derived from the
result of a PSI-BLAST search against a large sequence
database. PSSM scores indicate how well an amino acid
position in the query sequence is conserved among its
homologues. Since functional sites, including DNA and
RNA-binding residues, tend to be conserved among
homologous proteins, PSSM can provide relevant infor-
mation for classifier construction. However, PSSM is
rather designed for PSI-BLAST searches, and it may not
contain all the evolutionary information for modelling
DNA or RNA-binding sites.
In our previous studies [4,5], ANN and SVM classi-

fiers were constructed for DNA or RNA-binding site
prediction using relevant biochemical features, including
the hydrophobicity index, side chain pKa value, and
molecular mass of an amino acid. These features were
used to represent biological knowledge, which might not
be learned from the training data. It was found that
classifier performance was enhanced by using the bio-
chemical features for input encoding, and the SVM clas-
sifiers outperformed the ANN predictors. Nevertheless,
it is still unknown whether classifier performance can be
further improved by combining the biochemical features
with evolutionary information.
This study aimed to examine different descriptors of

evolutionary information for DNA and RNA-binding
site prediction, and to improve classifier performance by
combining relevant sequence features. Three new
descriptors of evolutionary information as well as PSSM
were used to construct SVM classifiers, and the new
descriptors were shown to improve classifier perfor-
mance. Interestingly, the most accurate classifiers were
obtained by combining the new descriptors with PSSM
and relevant biochemical features for input encoding.
The results suggest that PSSM, although useful for clas-
sifier construction, does not capture all the evolutionary

information for predicting DNA and RNA-binding resi-
dues in protein sequences. A new web server called
BindN+ (http://bioinfo.ggc.org/bindn+/) has been devel-
oped to make the SVM classifiers accessible to the bio-
logical research community.

Methods
Data preparation
Two amino acid sequence datasets, PDNA-62 and
PRINR25, were derived from structural data of protein-
DNA and protein-RNA complexes available at the Pro-
tein Data Bank (PDB at http://www.rcsb.org/pdb/). The
PDNA-62 dataset was used to train classifiers for DNA-
binding residues as in previous studies [4-7]. PDNA-62
was derived from 62 structures of representative pro-
tein-DNA complexes. The PRINR25 dataset was pre-
pared for RNA-binding site prediction in our previous
study [5]. PRINR25 was derived from 174 structures of
protein-RNA complexes. Both PDNA-62 and PRINR25
had less than 25% identity among the sequences in each
dataset.
As in the previous studies [1,4-6], an amino acid resi-

due was designated as a DNA or RNA-binding site if
the side chain or backbone atoms of the residue fell
within a cutoff distance of 3.5 angstroms (Å) from any
atoms of the DNA or RNA molecule in the complex.
All the other residues were regarded as non-binding
sites. Both PDNA-62 and PRINR25 were imbalanced
datasets with ~15% residues labelled as binding sites
and ~85% residues as non-binding sites.

Training strategies
Support vector machines (SVMs) were trained using
residue-wise data instances derived from the sequence
datasets. From a sequence with n amino acid residues, a
total of (n – w + 1) data instances were extracted,
where w was the sliding window size. In this study, each
instance consisted of eleven consecutive residues (w =
11) with the target residue positioned in the middle of
the subsequence. An instance was labelled as 1 (positive)
if the target residue was DNA/RNA-binding, or as -1
(negative) if the target residue was non-binding. The
context information provided by the five neighboring
residues on each side of the target residue was pre-
viously shown to be optimal for sequence-based predic-
tion of DNA or RNA-binding residues [4,5].
To generate the input vector for training SVMs, each

residue was represented with three biochemical features
and several descriptors of evolutionary information (see
below). The three biochemical features, including the
hydrophobicity index (feature H), side chain pKa value
(feature K), and molecular mass (feature M) of an
amino acid, were previously used to construct classifiers
for DNA or RNA-binding site prediction [4,5].
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The SVMlight software package available at http://
svmlight.joachims.org/ was used to construct SVM clas-
sifiers. SVM, a class of relatively new machine learning
algorithms, has recently been applied to a variety of bio-
logical problems for pattern classification [9]. SVM may
have superior generalization power with the ability to
avoid overfitting. For a given set of binary-labelled train-
ing examples, SVM maps the input space into a higher-
dimensional space and seeks a hyperplane to separate
the positive data instances from the negative ones [10].
The optimal hyperplane maximizes the separation mar-
gin between the two classes of training data, and is
defined by a fraction of the input data instances (the so-
called support vectors) close to the hyperplane. The dis-
tance measurement between the data points in the high-
dimensional space is defined by the kernel function.
This study used the radial basis function (RBF) kernel:

K x y x y( , ) exp( || || )
   

= − − 2 (1)

where x
� and y

� are two data vectors, and g is a training
parameter. A smaller g value makes the decision bound-
ary smoother. Another parameter for SVM training is
the regularization factor C, which controls the trade-off
between low training error and large margin [10]. Dif-
ferent values for the g and C parameters have been
tested in this study to optimize the classifier
performance.

Extraction of evolutionary information
Considering the great complexity of protein-DNA/RNA
interactions, the labelled datasets derived from the avail-
able structures are rather small in size. On the other
hand, there are abundant unlabeled sequence data in
public databases such as UniProt [11]. The unlabeled
data contain evolutionary information about the conser-
vation of each sequence position, and DNA/RNA-bind-
ing residues tend to be conserved among homologous
proteins [12].
Position-specific scoring matrix (PSSM) has often

been used as a descriptor of evolutionary information.
PSSM profiles can be derived by searching a protein
sequence database using the PSI-BLAST program [13].
For each position in a query sequence, there are 20
PSSM scores. The evolutionary information captured by
PSSM was previously shown to improve the perfor-
mance of artificial neural networks and support vector
machines for DNA-binding site prediction [6,7].
However, PSSM is rather designed for general-purpose

sequence comparison using PSI-BLAST, and it may not
capture all the evolutionary information for predicting
DNA or RNA-binding residues, which appear to have
specific biochemical properties. For instance, DNA-bind-
ing residues show a distinct amino acid distribution

[1-4]. Certain basic and polar amino acids are overrepre-
sented whereas acid and hydrophobic amino acids are
underrepresented in the population of DNA-binding
sites. The PSSM profiles derived from PSI-BLAST
search results may not precisely capture the characteris-
tics of the amino acid distribution. Thus, new descrip-
tors of evolutionary information have been developed in
the present study to capture the conserved biochemical
properties of DNA or RNA-binding residues. The
approach is illustrated in Figure 1.
For a given protein sequence p, its homologues Bp = {b1,

b2, …, bj) in a reference database can be retrieved and
aligned to p using PSI-BLAST. In this study, the protein
sequences in UniProtKB (http://www.pir.uniprot.org/)
were used as the reference database, and PSI-BLAST was
run for three iterations with the E-value threshold set to
1e-5. The sequence alignment was then used to compute
the mean Xa

p

i
and standard deviation s of a feature X for

each residue ai in the protein sequence p:
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where ( , )a bi j is the value of feature X for the amino

acid residue in bj, which is aligned to ai at position i in
the query sequence p.
Although X can be any biological feature with a numer-

ical domain, the three biochemical features relevant for
DNA and RNA-binding site prediction have been

Figure 1 Schematic diagram for extracting evolutionary
information.
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investigated in this study, that is, X H K M∈{ , , }. The new
descriptors of evolutionary information can be defined as
follows:

(1) ˆ , ( )H H Ha
p

a
p

i i
=  : The mean and standard

deviation of the H feature values for each residue ai

in the sequence p. Hydrophobicity (H) is a key factor
in amino acid side chain packing and protein fold-
ing. Hydrophobic amino acids, which are often
located inside proteins, are underrepresented at the
DNA interaction interfaces [1-4]. Thus, if a residue
has the greater mean of hydrophobicity with less
standard deviation in the sequence alignment, the
residue in the query sequence is less likely to be
located at the interaction interface.

(2) ˆ , ( )K K Ka
p

a
p

i i
=  : K̂measures how well the

side chain pKa value (K) of an amino acid residue is
conserved among the homologous sequences in the
alignment. The side chain pKa determines the ioni-
zation state of a residue. Since the phosphate groups
of nucleic acids are negatively charged, the ioniza-
tion state of amino acid side chains affects the inter-
action with DNA or RNA molecules. Amino acid
residues with positively charged side chains (e.g.,
arginine) are overrepresented at the interaction
interface. In other words, if a residue has the greater
mean of feature K with less standard deviation in
the sequence alignment, the residue in the query
sequence is more likely to be a DNA or RNA-bind-
ing residue.

(3) ˆ , ( )M M Ma
p

a
p

i i
=  : Each amino acid has a

unique value of molecular mass (feature M), which
is closely related to the volume of space occupied by
the residue in protein structures. DNA or RNA-bind-
ing residues may have the size constraint to be fitted
into the interaction interface, and the mean and stan-
dard deviation of M may be used to represent the
evolutionary information for the size constraint.

Classifier evaluation
A fivefold cross-validation approach was used to evalu-
ate the performance of SVM classifiers. Positive and
negative instances were distributed randomly into five
folds. In each of the five iterative steps, four of the five
folds were used to train a classifier, and then the classi-
fier was evaluated using the holdout fold (test data). The
predictions made for the test instances in all the five
iterations were combined and used to compute the fol-
lowing performance measures:

Accuracy = +
+ + +

TP TN

TP TN FP FN
(4)

Sensitivity =
+
TP

TP FN
(5)

Specificity =
+

TN

TN FP
(6)

Strength 
Sensitivity  Specificity= +

2
(7)

where TP is the number of true positives; TN is the
number of true negatives; FP is the number of false
positives; and FN is the number of false negatives. Since
the datasets used in this study are imbalanced, both sen-
sitivity and specificity are also computed from prediction
results. Furthermore, the average of sensitivity and spe-
cificity, referred to as strength in this paper, has been
shown to provide a fair measure of classifier perfor-
mance [1-4].
Matthews Correlation Coefficient (MCC) is commonly

used as a measure of the quality of binary classifications
[14]. It measures the correlation between predictions
and the actual class labels. However, for imbalanced
datasets, different tradeoffs of sensitivity and specificity
may give rise to different MCC values for the same clas-
sifier. MCC is defined as:

MCC = × − ×
+ + + +

TP TN FP FN

TP FP TP FN TN FP TN FN( )( )( )( )
(8)

The Receiver Operating Characteristic (ROC) curve is
probably the most robust approach for classifier evalua-
tion and comparison [15]. The ROC curve is drawn by
plotting the true positive rate (i.e., sensitivity) against
the false positive rate, which equals to (1 – specificity).
In this work, the ROC curve has been generated by
varying the output threshold of a classifier and plotting
the true positive rate against false positive rate for each
threshold value. The area under the ROC curve (AUC)
can be used as a reliable measure of classifier perfor-
mance [16]. Since the ROC plot is a unit square, the
maximum value of AUC is 1, which is achieved by a
perfect classifier. Weak classifiers have AUC values close
to 0.5.

Results and discussion
DNA-binding site prediction
The three biochemical features, including the hydropho-
bicity index (feature H), side chain pKa value (K), and
molecular mass (M) of an amino acid, were previously
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used to construct SVM classifiers for DNA or RNA-
binding residues [5], and these classifiers have been
used by the BindN web server (available at http://
bioinfo.ggc.org/bindn/). Similar performance measures
were also obtained in this study. As shown in Table 1,
the SVM classifier without using any evolutionary infor-
mation achieved 70.0% prediction strength with 69.5%
sensitivity and 70.6% specificity. The Matthews correla-
tion coefficient (MCC) of this classifier was 0.295, and
ROC AUC = 0.761. Different SVM training parameters
were tested, and the optimal parameter settings were
based on the highest prediction strength and ROC
AUC. It should be noted that the dataset was imbal-
anced, and the overall accuracy could be misleading
(e.g., ~85% accuracy by simply predicting all the residues
as negatives).
Classifier performance was improved to varying levels

when each of the three new descriptors of evolutionary
information was added to the biochemical features for
input encoding. As shown in Table 1, the K̂ descriptor
(the mean and standard deviation of feature K) gave rise
to the highest performance with 74.2% prediction
strength (73.4% sensitivity and 75.0% specificity), MCC =
0.365 and ROC AUC = 0.813. The classifier using all the
three new descriptors (Ĥ,K̂ and M̂ ) achieved slightly
better performance with 74.6% prediction strength
(72.4% sensitivity and 76.8% specificity), MCC = 0.377
and ROC AUC = 0.817. Therefore, the use of the three
new evolutionary information descriptors for input
encoding was found to improve classifier performance.
Position-specific scoring matrix (PSSM) was previously

shown to improve the accuracy of DNA-binding site
prediction [6-8]. In this study, the SVM classifier con-
structed using PSSM in addition to the biochemical fea-
tures achieved high performance with 76.5% prediction
strength (74.8% sensitivity and 78.2% specificity), MCC
= 0.409 and ROC AUC = 0.849. Interestingly, the most
accurate classifier was obtained by combining PSSM
with the new descriptors of evolutionary information for
input encoding. This classifier achieved 78.3% prediction

strength (77.3% sensitivity and 79.3% specificity),
MCC = 0.440 and ROC AUC = 0.859 (Table 1).
The results suggest that although PSSM can be used

to improve classifier performance, it does not capture all
the evolutionary information for DNA-binding site pre-
diction. While PSSM scores indicate whether an amino
acid residue is conserved among homologous sequences,
the three new descriptors can be used to represent the
conservation of the relevant biochemical properties for
DNA-binding residues. However, since classifier perfor-
mance is improved only slightly by combining PSSM
with the new descriptors, it is likely that the evolution-
ary information captured by the different descriptors
may be partially overlapping.
The ROC curves of four SVM classifiers are shown in

Figure 2. In general, the ROC curve of a more accurate
classifier is closer to the left-hand and top borders of
the plot. Thus, the three classifiers using evolutionary

Table 1 Effect of evolutionary information on DNA-binding site prediction.

Evolutionary Information Accuracy(%) Sensitivity(%) Specificity(%) Strength(%) MCC ROC AUC

None 70.4 69.5 70.6 70.0 0.295 0.761

Ĥ 72.0 71.3 72.1 71.7 0.323 0.779

K̂ 74.8 73.4 75.0 74.2 0.365 0.813

M̂ 71.1 70.0 71.3 70.7 0.306 0.771

ˆ ˆ ˆHKM 76.2 72.4 76.8 74.6 0.377 0.817

PSSM 77.7 74.8 78.2 76.5 0.409 0.849

PSSM + ˆ ˆ ˆHKM 79.0 77.3 79.3 78.3 0.440 0.859

Figure 2 ROC analysis to show the effect of evolutionary
information on prediction of DNA-binding residues.
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information are clearly better than the SVM classifier
constructed with only the biochemical features (HKM).
The classifier using PSSM is slightly better than the
classifier constructed with the new descriptors ( ˆ ˆ ˆHKM ),
and the most accurate classifier appears to the SVM
using all the different descriptors of evolutionary infor-
mation (PSSM + ˆ ˆ ˆHKM ).

RNA-binding site prediction
The biochemical properties of RNA-binding residues are
similar but not identical to those of DNA-binding resi-
dues [17,18]. It is thus interesting to investigate how
RNA-binding site prediction is affected by using the dif-
ferent descriptors of evolutionary information. The SVM
classifier constructed with only the biochemical features
achieved 68.0% prediction strength (66.0% sensitivity
and 69.9% specificity), MCC = 0.265 and ROC AUC =
0.741 (Table 2). This classifier has been used by the
BindN web server for RNA-binding site prediction.
Classifier performance was improved by using each of

the new descriptors of evolutionary information. In par-
ticular, the use of descriptor K̂ resulted in slightly better
performance with 70.5% prediction strength (66.5% sen-
sitivity and 74.6% specificity), MCC = 0.312 and ROC
AUC = 0.774. The performance was improved to 71.6%
prediction strength (67.4% sensitivity and 75.8% specifi-
city), MCC = 0.331 and ROC AUC = 0.784 when all the
three new descriptors of evolutionary information were
used for classifier construction (Table 2).
The use of PSSM was also found to significantly

improve RNA-binding site prediction, and the classifier
achieved 74.6% prediction strength (71.5% sensitivity
and 77.7% specificity), MCC = 0.380 and ROC AUC =
0.818. Nevertheless, the classifier constructed using all
the descriptors of evolutionary information (PSSM, Ĥ,K̂
and M̂ ) appeared to give the best predictive perfor-
mance with 75.2% prediction strength (71.6% sensitivity
and 78.7% specificity), MCC = 0.393 and ROC AUC =
0.825 (Table 2).

The results have been further confirmed by the ROC
analysis. As shown in Figure 3, the SVM classifier with
PSSM + ˆ ˆ ˆHKM is slightly better than the classifier with
PSSM, and all the three classifiers using evolutionary
information are clearly better than the SVM trained
with only the biochemical features (HKM). Therefore,
the various descriptors of evolutionary information
appear to have similar effects on both DNA and RNA-
binding site prediction.

Comparison with previous classifiers
The best SVM classifiers developed in this study are
compared favourably with the other existing predictors.
For DNA-binding site prediction, DBS-PSSM [6], a
PSSM-based artificial neural network predictor con-
structed using the PDNA-62 dataset, was shown to give
68.2% sensitivity and 66.0% specificity. By contrast, the

Table 2 Effect of evolutionary information on RNA-binding site prediction.

Evolutionary Information Accuracy(%) Sensitivity(%) Specificity(%) Strength(%) MCC ROC AUC

None 69.3 66.0 69.9 68.0 0.265 0.741

Ĥ 70.1 67.4 70.5 69.0 0.281 0.757

K̂ 73.4 66.5 74.6 70.5 0.312 0.774

M̂ 69.2 66.6 69.6 68.1 0.267 0.744

ˆ ˆ ˆHKM 74.6 67.4 75.8 71.6 0.331 0.784

PSSM 76.8 71.5 77.7 74.6 0.380 0.818

PSSM + ˆ ˆ ˆHKM 77.7 71.6 78.7 75.2 0.393 0.825

Figure 3 ROC analysis to show the effect of evolutionary
information on prediction of RNA-binding residues.
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best classifier in this study achieved 77.3% sensitivity
and 79.3% specificity (Table 1).
The DP-Bind system provided several classifiers for

DNA-binding site prediction, and these classifiers were
also constructed using the PDNA-62 dataset. The
PSSM-based SVM classifier of DP-Bind achieved 76.9%
sensitivity and 74.7% specificity with ROC AUC = 0.836
on imbalanced test datasets [7]. The best performance
was achieved by the PSSM-based kernel logistic repres-
sion predictor [8], and the average of sensitivity and spe-
cificity reached 76.5%. In this study, the best SVM
classifier achieved 78.3% prediction strength and ROC
AUC = 0.859 (Table 1).
Yan et al. [2] developed a Naïve Bayes classifier for

DNA-binding residues, and evolutionary information
was not used for input encoding. The Matthews correla-
tion coefficient of the Naïve Bayes classifier reached
0.28, which is significantly lower than that of the present
study (MCC = 0.440, Table 1).
For RNA-binding site prediction, Terribilini et al. [3]

reported a Naïve Bayes classifier that could predict at
38% sensitivity and 93% specificity (65.5% prediction
strength). The highest MCC value of the Naïve Bayes
classifier was 0.35. In contrast, this study achieved 75.2%
prediction strength and MCC = 0.393 (Table 2). With
the specificity level set to 93.0% on the ROC curve (Fig-
ure 3), the best SVM classifier had 47.0% sensitivity and
MCC = 0.421. Thus, the SVM classifier developed in
this study appears to be more accurate than the Naïve
Bayes model [3] for RNA-binding site prediction.

Web server description
To make the SVM classifiers accessible to the biological
research community, we have developed the BindN+ web
server (http://bioinfo.ggc.org/bindn+/). The web interface
of BindN+ is similar to that of our previous system,
BindN [5]. Users can enter an amino acid sequence in
FASTA format; choose the type of prediction to be made
for either DNA or RNA-binding residues; and specify the
desired level of sensitivity or specificity for the prediction
result. The system performs a three-iteration PSI-BLAST
search against the UniProtKB database to extract evolu-
tionary information as described in Methods. The query
sequence is encoded using the three biochemical features
(H, K and M), PSSM, and the new descriptors of evolu-
tionary information (Ĥ,K̂ and M̂ ). The most accurate
SVM classifier constructed in this study is then used to
scan the query sequence for putative DNA or RNA-bind-
ing residues. To make predictions, the user-defined level
of sensitivity or specificity is used to choose the output
threshold of the SVM model according to its ROC curve
shown in Figure 2 or Figure 3.
The output report of BindN+ includes a summary of

the prediction result, an overview of the predicted DNA

or RNA-binding residues, and detailed information
about the prediction for each residue. A sample report
is shown in Figure 4 for the RGG box and flanking
sequence of the human fragile X mental retardation 1
(FMR1) protein. Mutations in FMR1 cause the most
common form of inherited mental retardation, and the
RGG box has been shown to bind G-quartet mRNAs
important for neuronal function [19]. For the summary,
the estimated sensitivity (or specificity) is computed
using the classifier’s ROC curve. In the example, the
user-defined specificity was 95.00%, and the estimated
sensitivity was 40.20% (Figure 4). The overview can be
used to examine the distribution of putative binding resi-
dues along the query sequence. Positive predictions
(putative binding residues) are labelled with ‘+’ and high-
lighted in red, whereas negative predictions are labelled
with ‘-’ in green. In the example, the RGG box
(RGGGGRGQGGRGRGG) and some neighbouring resi-
dues are predicted to interact with RNA. The confidence
of prediction is computed as follows. Let o be the output
of the SVM classifier, sn and sp be the corresponding
sensitivity and specificity, respectively, on the classifier’s
ROC curve, and t be the output threshold. Then, for a
positive prediction (o ≥ t), its confidence value is set to
(1 – sn). For a negative prediction (o <t), its confidence
value is set to (1 – sp). The confidence value indicates
where the SVM output is ranked when compared with all
the true positive or true negative predictions in the cross-
validation. For example, the fifth residue (S) of the input
sequence in Figure 4 gives the SVM output equal to
0.9923 and has the confidence for positive prediction
equal to 0.7252, which indicates that 72.52% of the RNA-
binding residues in the training dataset (PRINR25) have
SVM outputs less than 0.9923. For the prediction over-
view, the confidence level is computed as the floor of
(10 × confidence) so that it ranges from the lowest level
0 to the highest level 9 for the purpose of presentation.
BindN+ represents a significant upgrade to the

previous web server BindN, which was based on SVM
models constructed with the relevant biochemical fea-
tures [5]. BindN has been frequently accessed, and the
prediction results have been shown to provide useful
information for biological research [20]. Since our
approach does not require structural information for
binding site prediction, BindN+ can be used for gen-
ome-wide analyses of DNA and RNA-binding proteins.
The analytical results may provide useful information
for systematic understanding of protein-nucleic acid
interactions.

Conclusions
In this study, several descriptors of evolutionary infor-
mation have been examined for sequence-based predic-
tion of DNA and RNA-binding residues. The new
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descriptors of evolutionary information have been
shown to improve classifier performance. Interestingly,
the most accurate classifiers have been obtained by
combining the new descriptors, PSSM and relevant bio-
chemical features for input encoding. The results sug-
gest that although PSSM can be used to improve
classifier performance, it does not capture all the evolu-
tionary information for DNA and RNA-binding site pre-
diction. The SVM classifiers developed in this study are
compared favourably with the other existing predictors.
Thus, a new web server called BindN+ (http://bioinfo.
ggc.org/bindn+/) has been developed to make the SVM
classifiers publicly available. We anticipate that BindN+

can provide a useful tool for modelling protein-nucleic
acid interactions in systems biology studies.
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