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Abstract 

Background:  Due to the complexity of microbial communities, de novo assembly on 
next generation sequencing data is commonly unable to produce complete microbial 
genomes. Metagenome assembly binning becomes an essential step that could group 
the fragmented contigs into clusters to represent microbial genomes based on contigs’ 
nucleotide compositions and read depths. These features work well on the long con-
tigs, but are not stable for the short ones. Contigs can be linked by sequence overlap 
(assembly graph) or by the paired-end reads aligned to them (PE graph), where the 
linked contigs have high chance to be derived from the same clusters.

Results:  We developed METAMVGL, a multi-view graph-based metagenomic contig 
binning algorithm by integrating both assembly and PE graphs. It could strikingly res-
cue the short contigs and correct the binning errors from dead ends. METAMVGL learns 
the two graphs’ weights automatically and predicts the contig labels in a uniform 
multi-view label propagation framework. In experiments, we observed METAMVGL 
made use of significantly more high-confidence edges from the combined graph and 
linked dead ends to the main graph. It also outperformed many state-of-the-art contig 
binning algorithms, including MaxBin2, MetaBAT2, MyCC, CONCOCT, SolidBin and 
GraphBin on the metagenomic sequencing data from simulation, two mock communi-
ties and Sharon infant fecal samples.

Conclusions:  Our findings demonstrate METAMVGL outstandingly improves the 
short contig binning and outperforms the other existing contig binning tools on the 
metagenomic sequencing data from simulation, mock communities and infant fecal 
samples.

Keywords:  Contig binning, Assembly graph, Paired-end graph, Dead end, Multi-view 
label propagation
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Background
During long-term genetic evolution, animals, including humans, have formed complex 
ecosystems of symbiotic relationships with diverse microbes. The gut microbiome is 
a community with the highest microbial density in the human body, including thou-
sands of microbial species mixed in varying proportions and constituting a dynamic 
system. Most gut microbes are difficult to be isolated and cultured in vitro. Metagen-
omic sequencing is designed to directly sequence a mixture of microbes and explore 
microbial compositions and abundances by data post-processing.

Due to the paucity of high-quality microbial reference genomes, current pipe-
lines commonly target single genes or species using species-specific markers [1, 
2]. But novel microbes would be lost by the alignment-based approaches. Metage-
nome assembly is a promising strategy to explore the novel species by concatenat-
ing the short-reads into contigs. But these contigs could be fragmented and can be 
only regarded as pieces of the target genomes. Contig binning algorithms provide a 
supplement to genome assembly that group the contigs into clusters to represent the 
complete microbial genomes. This strategy has been widely adopted to explore the 
novel microbes from the human gut metagenomic sequencing data [3–10].

Many state-of-the-art contig binning algorithms have been developed by consider-
ing contig nucleotide compositions (tetranucleotide frequencies (TNF), k-mer fre-
quencies) and read depths. MaxBin2 [11] uses Expectation–Maximization algorithm 
to maximize the probability of a contig belonging to the local cluster centers using 
TNF and read depth. These two types of information are also used in MetaBAT2 [12] 
to calculate the contig similarities. MetaBAT2 constructs a graph using contigs as ver-
tices and their similarities as the edges’ weights, which is further partitioned into sub-
graphs by applying a modified label propagation algorithm. CONCOCT [13] applies 
Gaussian mixture models for contig clustering based on k-mer frequencies and read 
depths across multiple samples. Besides considering TNF and read depths, MyCC 
[14] aggregates the contigs with complementary marker genes by affinity propagation; 
SolidBin [15] develops a spectral clustering algorithm using taxonomy alignments as 
must-links between contigs; BMC3C [16] applies codon usage in an ensemble clus-
tering algorithm. All these methods are helpless in labeling short contigs (<  1  kb), 
because the limited number of nucleotides might lead to unstable TNF distributions 
and read depths. We observed a majority of the contigs (89.55%, Additional  file  1: 
metaSPAdes assembly of Sharon dataset) in the assembly graph were shorter than 
1 kb, which would be dropped by most of the existing binning algorithms.

To rescue those short contigs, Mallawaarachchi et al. developed GraphBin [17] to 
label the short contigs and correct the potential binning errors by employing label 
propagation on the assembly graph. In principle, the assembly graph should include 
s disconnected subgraphs, each representing one species. In practice, the subgraphs 
could be linked by the repeat sequences and some contigs are isolated from the main 
graph (the largest graph component) due to sequencing errors, imbalanced reads cov-
erage, named dead ends. The performance of label propagation heavily relies on the 
number of edges and label density in the graph. The labels of short contigs would be 
significantly affected by the dead ends in two ways: (1) contigs are failed to be labeled 
if the dead end contains no label before propagation (Fig. 1 dead end 1); (2) erroneous 
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labeling happens if only a small proportion of nodes are labeled in the dead end (Fig. 1 
dead end 2).

Here we present METAMVGL (Fig. 2), a multi-view graph-based metagenomic contig 
binning algorithm to address the above-mentioned issues. METAMVGL not only con-
siders the contig sequence overlaps from the assembly graph but also involves the paired-
end graph (PE graph), representing the shared paired-end reads between two contigs. 
The two graphs are integrated together by auto-weighting, where the weights together 
with the predicted contig labels are updated in a uniform framework [18] (Methods). 
Figure 1 gives a proof-of-concept example on the simulated data, where the paired-end 
reads connect the two dead ends (dead end 1 and 2) to the main graph. Our experiments 
indicate METAMVGL substantially improves the binning performance of the state-of-
the-art algorithms, including MaxBin2, MetaBAT2, MyCC, CONCOCT, SolidBin and 
GraphBin in the simulated, mock and Sharon datasets (Figs. 3, 4, Additional files  3, 4, 5, 

Fig. 1  Visualization of the running process of METAMVGL compared with GraphBin in the simulated 
data. METAMVGL connected dead end 1 and 2 to the main graph by paired-end reads, also enhanced its 
connectivity. We observed (1) GraphBin failed to correct the two blue labels in the central of the graph, 
because it could not remove them before propagation due to lack of connectivity; (2) GraphBin mislabeled 
all the contigs in the dead end 2, caused by a small number of wrongly labeled contigs in the dead end; (3) 
METAMVGL labeled all the contigs in the dead end 1 but GraphBin did not

Fig. 2  Workflow of METAMVGL. In step 1, METAMVGL constructs the assembly graph and PE graph by 
aligning paired-end reads to the contigs. The contigs are initially labeled by the existing binning tools 
(vertices in orange and blue). In step 2, the ambiguous labels are removed if their neighbors are labeled 
as belonging to the other binning groups in the assembly graph. METAMVGL applies the auto-weighted 
multi-view graph-based algorithm to optimize the weights of the two graphs and predict binning groups 
for the unlabeled contigs. Finally, it performs the second round ambiguous labels removal on the combined 
graph
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6: Figures). Comparing with assembly graph, the combined graph adds up to 8942.37% 
vertices and 15,114.06% edges to the main graph (Additional file 2: The assembly graph 
from MEGAHIT for Sharon dataset).

Methods
Figure  2 demonstrates the workflow of METAMVGL, which consists of two steps. In 
step 1, METAMVGL constructs the assembly graph and PE graph with contig labels 
generated by the existing binning tools. In step 2, we remove the ambiguous labels of 
contigs if their neighbors are labeled as belonging to the other binning groups. The two 

Fig. 3  The performance of MaxBin2, GraphBin and METAMVGL on the simulated datasets. a–d Results based 
on the assembly by MEGAHIT, and e–h results based on the assembly by metaSPAdes. The initial binning tool 
is MaxBin2

Fig. 4  The performance of MaxBin2, GraphBin and METAMVGL on the BMock12, SYNTH64 and Sharon 
datasets: a, d for BMock12 dataset; b, e for SYNTH64 dataset; c, f for Sharon dataset. MEGAHIT and metaSPAdes 
are used to generate the assembly graphs. The initial binning tool is MaxBin2
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graphs are integrated based on the automatic weights and the unlabeled contigs will be 
further predicted by label propagation on this combined graph. Finally, METAMVGL 
removes the ambiguous labels and generates the binning results.

Step 1: Preprocessing

Construct assembly graph

We define the assembly graph as G1(V , E1) , where the vertex vi ∈ V represents the contig 
i, and an edge ei,j ∈ E1 exists if vi and vj are connected in the assembly graph and with 
k − 1 mer (continuous nucleotide of length k − 1 ) overlap. In principle, the assembly 
graph should include s unconnected subgraphs, each representing one species and we 
can easily recognize contig binning groups. In practice, the subgraphs could be linked 
due to the inter-species repeat sequences and complicated by the sequencing errors 
and imbalanced genomic coverage. Commonly the assembly graph includes a main 
graph and several dead ends. Figure 2 illustrates an assembly graph with two dead ends 
(vertices 11 and 12). METAMVGL uses the assembly graph from metaSPAdes [19] or 
MEGAHIT [20]. The original assembly graph of metaSPAdes is a unitig-based graph, 
where each vertex represents a unitig. The contigs are sets of unitigs after resolving short 
repeats. Hence we convert the unitig-based graph to contig-based graph by adding the 
edge ei,j , if at least two unitigs connect to each other and belong to vi and vj , respectively. 
MEGAHIT would not provide the assembly graph directly, so METAMVGL uses contig-
2fastg module in megahit_toolkit to generate the graph in fastg format.

Construct PE graph

In order to deal with the dead ends in assembly graph, METAMVGL constructs the PE 
graph by aligning paired-end reads to the contigs by BWA-MEM[21]. For every two con-
tigs vi, vj , we maintain a read name set RS i,j to keep the names of read pairs, where the 
forward and reverse reads are aligned to the two contigs, respectively. The library insert 
size IS is calculated based on the uniquely aligned paired-end reads in the same contigs. 
To alleviate the influence of chimeric reads, METAMVGL links vi and vj if at least half of 
the reads in RS i,j come from the two stretches with length IS in vi and vj , respectively 
[22].

We denote the PE graph as G2(V , E2) , where V represents contigs, and E2 the edges 
linked by the paired-end reads (PE links). According to our observation, PE graph is 
complementary to the assembly graph to some extent, because the edges in assembly 
graph ( E1 ) only capture the overlaps between contigs, while the PE graph edges ( E2 ) link 
the contigs with gaps. Figure 2 illustrates how dead ends of assembly graph can be linked 
to the main graph using PE links.

Initial binning

The contigs’ initial labels are generated by any existing binning tools. In experiments, we 
evaluated the performance of METAMVGL with the initial labels from MaxBin2, Meta-
BAT2, MyCC, CONCOCT and SolidBin in SolidBin-SFS mode. We used the default 
parameters for these algorithms except the MetaBAT2, where the minimum contig 
length was set to 1.5kb to label more contigs.
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Step 2: Auto‑weighted multi‑view binning

METAMVGL applies a multi-view label propagation algorithm [18] to learn the weights 
of assembly and PE graphs automatically and predict the unlabeled contigs in a uni-
formed framework. We remove the ambiguous labels for two times before and after label 
propagation.

Remove ambiguous labels

The initial contig labels could be incorrect especially for the ones from the inter-species 
repeat sequences and their influence would be amplified in label propagation. METAM-
VGL computes the distance between two vertices as the length of shortest path between 
them. Let CLV(v) be the set of labels from vertex v’s closest labeled neighbors in graph 
G and v’s label is ambiguous if CLV(v) contains a label that is different from v [17]. Let 
VA(G) denote the set including all the vertices with ambiguous labels in graph G , and 
we remove the labels in VA(G) . In Fig. 2, the closest labeled vertices of v6 are {v4, v7} . 
Because v6 and v7 have different labels, the v6 ’s label is marked ambiguous. Algorithm 1 
shows the procedure to remove ambiguous labels. As shown in Fig. 2, we applied Algo-
rithm  1 on the assembly and combined graphs before and after label propagation, 
respectively. We only use assembly graph to mark ambiguous labels in the preprocessing 
step for keeping more labels before propagation. 

Auto‑weighted multi‑view binning algorithm

Assume l contigs are initially labeled with s groups, denoted as Yl = [y1, y2, . . . , yl]
T ∈ R

l×s , 
where yij ∈ {0, 1} , and yij = 1 indicates the contig vi is labeled from group j. We define a 
indicator matrix F = [Fl; Fu] ∈ R

n×s , where Fl = Yl and Fu = [fl+1, fl+2, . . . , fn]
T are 

labels to be inferred. Let Di,Wi ∈ R
n×n denote the degree and adjacent matrices of Gi 

( i ∈ {1, 2} ), respectively. The normalized Laplacian matrix of Gi has the formulation 
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Li = D
−1/2
i (Di −Wi)D

−1/2
i  . According to [18], the inference of Fu by label propagation 

can be modeled as the following optimization problem:

where T R(·) computes the trace of a matrix. The optimization problem is converted to

where L =
∑2

i=1 αiLi . αi is the weight of Gi , with initial values of 1/2. We partition L 
from (l + 1) th row and column into four blocks as [Lll ,Llu;Lul ,Luu] . Fu and αi can be 
updated alternatively until convergence by the following equations [18]:

Equation  3 can be considered as performing label propagation in the com-
bined graph with iteratively updated weight αi , hence αi implies the confi-
dence of each graph. After obtaining Fu , we infer the labels of all the contigs by 
li = arg maxj Fij, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , s} . Algorithm  2 shows the procedure of 
auto-weighted multi-view binning, and Fig. 2 is an illustration of this algorithm. 

(1)arg min
Fu

2
∑

i=1

√

T R(FTLiF), s.t. Fl = Yl ,

(2)arg min
Fu

T R(FTLF), s.t. Fl = Yl ,

(3)Fu = L−1
uuLulYl , F = [Yl; Fu],

(4)αi =
1

2
√

T R(FTLiF)
, i ∈ {1, 2}.
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Datasets

Simulated datasets

We simulated metagenomic sequencing data for a mixture of three strains with low, 
medium and high abundances. The components are:

•	 Acinetobacter baumannii: 0.90%,
•	 Streptococcus agalactiae: 9.01%,
•	 Streptococcus mutans: 90.09%.

We downloaded the complete reference genomes of the three strains from the NCBI 
Nucleotide Database (Taxonomy ID: 400667, 208435, 210007). CAMISIM [23] generated 
short-reads for the three strains with corresponding abundances. Five simulated datasets 
were generated with read depths as 30x (SIM_30x), 50x (SIM_50x), 70x (SIM_70x), 90x 
(SIM_90x) and 110x (SIM_110x).

Mock datasets

We evaluated the performance of METAMVGL on the metagenomic sequencing from 
two mock communities:

•	 BMock12 refers to the metagenomic sequencing for a mock community with 12 bac-
terial strains sequenced by Illumina HiSeq 2500 [24] (NCBI acc. no. SRX4901583). It 
contains 426.8 million 150 bp short-reads with a total size of 64.4G bases.

•	 SYNTH64 is a metagenomic sequencing dataset for a synthetic community with 64 
diverse bacterial and archaea species [25] (NCBI acc. no. SRX200676), sequenced by 
Illumina HiSeq 2000 with read length 101bp and total size 11.1G bases.

Real dataset

Sharon dataset [26] (NCBI acc. no. SRX144807) contains the metagenomic sequenc-
ing data of infant fecal samples from 18 time points, sequenced by Illumina HiSeq 2000 
with a total of 274.4 million 100 bp short-reads. We combined all the 18 datasets for co-
assembly and referred them as Sharon.

Evaluation criteria

We annotated the potential species the contigs came from as ground truth to compare 
METAMVGL with the other tools. For the simulated and mock datasets, we aligned 
the contigs to the available reference genomes and selected the ones with unique align-
ments. For the Sharon dataset, we used Kraken2 [27] to annotate the contigs according 
to k-mer similarities with the species from the build-in database.

Assume there are s ground truth species, and the binning result have k groups. To 
evaluate the binning result, we define the assessment matrix [ni,j](k+1)×(s+1) , where ni,j 
represents the number of contigs in ith binning group that are annotated jth ground 
truth species. The (k + 1) th row denotes unbinned contigs. The (s + 1) th column indi-
cates contigs without ground truth annotations. We applied (1) Precision, (2) Recall, 
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(3) F1-Score and (4) Adjusted Rand Index (ARI) to evaluate the performance of binning 
algorithms. Let N =

∑k
i=1

∑s
j=1 ni,j be the number of contigs; the four metrics are cal-

culated as follows: 

1.	 Precision = 1
N

k
∑

i=1

max
j≤s

(ni,j),

2.	 Recall = 1

N+
s
∑

j=1

nk+1,j

s
∑

j=1

max
i≤k

(ni,j),

3.	 F1-Score = 2×Precision×Recall
Precision+Recall ,

4.	 ARI =

∑k
i=1

∑s
j=1

(

ni,j
2

)

−t

1
2

(

∑k
i=1

(
∑s

j=1 ni,j
2

)

+
∑s

j=1

(

∑k
i=1 ni,j
2

)

)

−t

,

where t = 1
(

N
2

)

∑k
i=1

(∑s
j=1 ni,j
2

)

∑s
j=1

(

∑k
i=1 ni,j
2

)

.

Results
METAMVGL was compared to six binning tools, MaxBin2, MetaBAT2, MyCC, CON-
COCT, SolidBin in SolidBin-SFS mode and GraphBin. We analyzed their binning 
results on the five simulated datasets with various read depths, two mock communities 
(BMock12 and SYNTH64) and a real metagenomic sequencing dataset (Sharon dataset).

Evaluation on the simulated datasets

Figure 3 shows the binning results of the simulated datasets. The contigs and assembly 
graph were generated by MEGAHIT (Fig. 3a–d) and metaSPAdes (Fig. 3e–h). MaxBin2 
was applied as the initial binning tool for GraphBin and METAMVGL.

All the three binning algorithms (MaxBin2, GraphBin and METAMVGL) yielded 
extremely high precision and ARI (Fig.  3a, d, e, h), due to the low complexity of the 
simulated datasets. Because of considering assembly and PE graphs jointly, METAM-
VGL labeled more contigs than GraphBin and MaxBin2 across various sequence depths, 
as shown in Fig. 3b, f. We also found both Recall and F1-Score were improved as read 
depth became higher until SIM_70x (Fig. 3b, c, f, g). This observation was analog to the 
results from CAMISIM [23], suggesting too high read depth would introduce assembly 
noise even it might help in detecting the low-abundance microbes.

Evaluation on the mock communities

We illustrate the binning results for two mock communities with initial binning tool 
of MaxBin2 in Fig. 4a, b, d, e. In general, the graph-based methods (METAMVGL and 
GraphBin) were better than MaxBin2, but their performance would be influenced by 
the assembly graph. We observed the recalls could be significantly improved using the 
assembly graph from metaSPAdes (Fig. 4d, e), but the elevation became unobvious by 
the one from MEGAHIT (Fig.  4a, b). This was probably because metaSPAdes could 
generate more accurate and complete assembly graph than MEGAHIT. In the mock 
communities, METAMVGL was just slightly better than GraphBin, suggesting the PE 
graph was largely overlapped with the assembly graph (Additional file 2: BMock12 and 
SYNTH64 datasets). This observation only occurred if a perfect assembly graph was 
generated due to a low microbial complexity in the community. The results for the other 
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initial binning tools (MetaBAT2, MyCC, CONCOCT and SolidBin) could be found in 
Additional files 3, 4, 5, 6: Figures, which were akin to the observations from MaxBin2.

Evaluation on Sharon datasets

Figure 4c, f describe the binning results of MaxBin2, GraphBin and METAMVGL in Sha-
ron dataset. METAMVGL substantially improved the recalls comparing with GraphBin 
(2.12 and 2.46 times on the assembly graph from MEGAHIT and metaSPAdes, respec-
tively) and MaxBin2 (2.29 and 3.24 times on the assembly graph from MEGAHIT and 
metaSPAdes, respectively). METAMVGL showed the highest precision on the assembly 
by metaSPAdes (Fig. 4f ). All the three binning algorithms were comparable in ARI.

The outstanding recalls from METAMVGL validate the capability of PE graph to 
connect the dead ends to the main graph when the assembly graph is incomplete in 
the complex microbial community. We observed that MEGAHIT produced very frag-
mented assembly graph in the Sharon dataset, in which the main graph only had 59 
vertices with 64 edges, while a total of 15,660 vertices existed in the whole graph (Addi-
tional  file  2: MEGAHIT assembly of Sharon dataset). The fragmented assembly graph 
was also mentioned as a limitation of GraphBin [17]. With PE links, METAMVGL 
yielded 5335 vertices and 9737 edges in the main graph (Additional file 2: MEGAHIT 
assembly of Sharon dataset), rescuing a large number of unlabeled contigs from the dead 
ends (Fig. 4c). Although the assembly graph was more complete (23.69% vertices in the 
main graph) from metaSPAdes, the PE graph still added 28.97% edges to the main graph 
(Additional  file  2: metaSPAdes assembly of Sharon dataset) and improved the recall 
substantially.

Discussion
De novo assembly together with contig binning offer a practical way to explore the novel 
microbes from metagenomic sequencing. But the current binning algorithms work 
stably merely on long contigs; the shorter ones are commonly neglected in the subse-
quent analysis. We observed a large proportion of contigs were shorter than 1 kb, which 
resulted in low completeness of the binning groups. A recent study [17] suggests the 
short contigs could be rescued from the assembly graph by considering their connec-
tions with the labeled ones. Assembly graph is accurate, but its connectivity relies heavily 
on the complexity of microbial community. Extremely low or high read depth, sequenc-
ing errors and imbalanced coverage could generate considerable dead ends, which would 
introduce both missing labels and labeling errors (Fig. 1).

In experiments, we observed a slightly lower ARI of METAMVGL comparing with Max-
Bin2 and GraphBin when read depth was low (Fig. 3d, h). It might because METAMVGL 
could only retrieve very few and low-confidence PE links. First, the label propagation would 
perform poorly on the contigs with low read depth. Comparing with GraphBin, METAM-
VGL included more edges in the graph, but these edges were sparse and cannot guarantee 
the good performance of label propagation, e.g. the unlabeled contigs might only have one 
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neighbor. Second, the label refinement after label propagation could remove a majority of 
erroneous labels generated by METAMVGL based on our experience. Due to the paucity 
of edges, this step also performed inefficiently. Third, the quality of the contigs assembled 
from the sequencing data with low read depth was poor, making difficulties in aligning 
paired-end reads correctly.

In this paper, we developed METAMVGL, a multi-view graph-based contig binning 
algorithm to integrate both assembly and PE graphs to label short contigs and correct ini-
tial labeling errors. PE graph could link the dead ends to the main graph and increase the 
graph connectivity. METAMVGL automatically weights the two graphs and performs label 
propagation to label the short contigs. In experiments, we observed METAMVGL could 
substantially improve the recalls without loosing any precision comparing with the exist-
ing contig binning tools, especially for the metagenomic data from the complex microbial 
community (Fig. 4c, f ). We also evaluated METAMVGL: 1. on the assembly graphs from 
metaSPAdes and MEGAHIT; and 2. using the initial binning labels from different tools. 
All these results support METAMVGL outperform GraphBin in different experimental 
configurations. On average, METAMVGL could finish the contig binning in 3.38 min and 
requires 2.81 Gb RAM to store the two graphs and perform label propagation. It requires 
a little bit more computational resources than GraphBin due to the analysis of more com-
plex and complete graph (Additional file 7). Sometimes, we found the combined graph was 
still incomplete after incorporating both assembly and PE graphs and there still required 
to consider other information to reveal contig long-range connectivity from various long-
fragment sequencing (PacBio and Oxford Nanopore sequencing) or linked-read sequenc-
ing (Tell-seq and stLFR sequencing) technologies.

Conclusion
Metagenomic sequencing has been proved as an efficient technology to explore and recog-
nize the novel microbes in the environmental and human fecal samples. Due to the scar-
city of the reference genomes, the genomes of novel species could be obtained by de novo 
assembly. Because only fragmented contigs can be assembled from the mainstream short-
read sequencing technologies, the interests rise quickly in developing efficient contig bin-
ning algorithms. But most of the available algorithms can only handle long contigs based 
on their sequence contexts and read depths. In this study, we developed METAMVGL, a 
multi-view graph-based contig binning algorithm to integrate both assembly and PE graphs 
to label short contigs and correct initial labeling errors. METAMVGL could weight the two 
graphs automatically and connect the dead ends to the main graph efficiently. Our experi-
ments proved it can significantly improve the recalls without loosing any precision com-
paring with the existing contig binning tools on the metagenomic sequencing data from 
simulation, mock communities and infant fecal samples. We believe METAMVGL would 
attract more interests of the fast-growing metagenomic research field and pave the way to 
future understanding the microbial genome dark matter.
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