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Abstract

Hematopoiesis is an ideal model system for stem cell biology with advanced experimental access. A systems view on the
interactions of core transcription factors is important for understanding differentiation mechanisms and dynamics. In this
manuscript, we construct a Boolean network to model myeloid differentiation, specifically from common myeloid
progenitors to megakaryocytes, erythrocytes, granulocytes and monocytes. By interpreting the hematopoietic literature and
translating experimental evidence into Boolean rules, we implement binary dynamics on the resulting 11-factor regulatory
network. Our network contains interesting functional modules and a concatenation of mutual antagonistic pairs. The state
space of our model is a hierarchical, acyclic graph, typifying the principles of myeloid differentiation. We observe excellent
agreement between the steady states of our model and microarray expression profiles of two different studies. Moreover,
perturbations of the network topology correctly reproduce reported knockout phenotypes in silico. We predict previously
uncharacterized regulatory interactions and alterations of the differentiation process, and line out reprogramming
strategies.
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Introduction

Hematopoiesis – a system with a well-known biological

background and advanced experimental access – is considered

as a paradigm for stem cell biology [1]. From a single cell type, the

hematopoietic stem cell (HSC), all mature blood cells emerge

through a hierarchical series of lineage decisions via different

progenitor cells [2]. Thus, hematopoiesis is often depicted as a

hierarchical differentiation tree, with a HSC at the root and the

mature blood cells as the leaves (Figure 1A). One of the

intermediate cellular states is the common myeloid progenitor

(CMP) [3]. CMPs can proliferate and differentiate into megakar-

yocyte-erythrocyte (MegE) progenitors and granulocyte-monocyte

(GM) progenitors, which further give rise to megakaryocytes,

erythrocytes, granulocytes, monocytes and others. In the past 20

years, a number of regulatory interactions between important

transcription factors, governing the differentiation process, have

been experimentally unraveled (for a review, see [4]).

Certain aspects of hematopoiesis have previously been described

with mathematical models incorporating detailed kinetic rate laws

(cf. [5–8].) Often however, only qualitative information on the

regulatory interactions (like ‘gene A activates gene B’) is available.

In these cases, a modeling framework that abstracts from actual

compound concentration is needed. An early model of binary gene

regulatory networks shaping differentiation was published by

Kauffman [9] in 1969. Following that approach, Boolean

networks have been applied successfully to the description of,

e.g., plant morphogenesis [10,11], the yeast cell-cycle [12,13],

gene expression patterning in Drosophila melanogaster [14] and

the developing mouse brain [15]. While it is obvious that this

methodology cannot account for continuous changes of concen-

trations or the exact timing of regulatory events, it allows to

explore the functional capabilities of the system without knowledge

of any kinetic parameters. This is especially favorable if the studied

system contains more than just two or three factors [16].

A Boolean network is discrete in space and time, each node xi is

either ‘on’ or ‘off’. The state of a node is updated depending on the

current states of all nodes in the network: xi/f (x1,:::,xN ). The

respective update function f can be conveniently defined by

Boolean equations and logical operators. For instance A/(B_
C) ^ :D represents a regulatory interaction where A will be ‘on’ if

and only if at least one of the activators B and C is present and the

inhibitor D is absent. A Boolean system can be updated synchronously,

that is all factors are updated simultaneously. This scenario leads to

a fully deterministic model, where each Boolean state has at most

one follow-up state, and only a single trajectory through the system

exists from any given initial state. In contrast, when updating fully

asynchronously [17], the state value of only a single factor is changed

during each update. In this scenario, multiple trajectories through

the system are possible. Since we here attempt to describe the

decision-making processes in differentiating myeloid progenitor

cells, a modeling approach that allows for multiple trajectories
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through the state space is desirable. By connecting all states with

their follow-up states we compute the state transition graph, which

represents the complete dynamic potential of the underlying

network. States with no consecutive state represent end-points of

the system. These so-called steady state attractors then correspond to

the mature cell types in the biological context of differentiation.

From a thorough examination of the literature on myeloid

differentiation in mouse, we devised a network with Boolean

regulatory logic of transcription factors, from now on called the

players of the system. We studied the topology of the network and

analyzed the kinetics of small regulatory modules. Under

asynchronous updating, the regulatory network induces an acyclic,

hierarchical state space, whose different branches can be directly

attributed to known biological cell states. For validation, we

explicitly compared the Boolean states of the attractors with gene

expression profiles of differentiating and mature myeloid blood

cells. We confirm the the predictive power of our model by in silico

perturbations of players and interactions and compare the results

with known molecular phenotypes.

Results

Model construction
The scope of our model is the differentiation of common

myeloid progenitors (CMPs) into erythrocytes, megakaryocytes,

granulocytes and monocytes (see Figure 1A). We disregard earlier

hematopoietic stages (like the lineage switch between the lymphoid

and the myeloid lineage) and other blood cell lineages (like the

differentiation of mast cells or neutrophils from granulocytes).

From recent reviews and overview papers [1,4,18,19] we

assembled a set of 11 central myeloid transcription factors, known

to orchestrate the respective differentiation decisions. The set

comprises early hematopoietic factors (GATA-2, C/EBPa),

intermediate factors (GATA-1, PU.1) as well as late, secondary

fate determinants and cofactors (EKLF, Fli-1, FOG-1, SCL, Gfi-1,

cJun, EgrNab). The latter factor, EgrNab, represents an

integration of Egr-1, Egr-2 and Nab-2. While the three players

play distinct roles during other hematopoietic processes, Laslo

et al. [20] demonstrated highly correlated expression patterns as

well as similar functional roles in the context of myeloid

differentiation. The roles of all 11 factors and their respective

gene products have been determined by knockout, over-expression

and expression profiling studies (for an overview, see [18]). In

addition, many of the genes included in the model are known to be

involved in malignant cell transformations during hematopoiesis

[21,22]. Hematopoietic players which act only in monopotent

lineages or non-myeloid hematopoiesis were excluded from our

model. In the following, we examplarily discuss five such cases. (i)

NF-E2 is regulated by GATA-1 and SCL, but specifically

important for megakaryocytic development [23–25]. (ii) Similarly,

IRF8 is required for macrophage [26] and B-cell [27] differen-

tiation and was thus excluded. (iii) While C/EBPb is known to

rescue targeted disruption of C/EBPa, its primary physiological

role lies in macrophage differentiation [28]. (iv) The erythroid

transcription factor Gfi-1b is induced by GATA-1 [29] and

required in both erythrogenesis and megakaryogenesis [30], and is

thus not involved in the megakaryocyte vs. erythrocyte lineage

decision. (v) RUNX1 is an early transcription factor required in

HSCs [31] which is reused later in the differentiation process for

the megakaryocyte lineage [32]. To the best of our knowledge, no

direct role in myeloid lineage decision has been described for

RUNX1.

We generated a qualitative interaction model of myeloid

differentiation by investigating potential regulatory interactions

proposed by the Bibliosphere [33] text-mining tool (Figure 1B).

For the derivation of concrete Boolean update rules, we manually

interpreted the respective papers and the biochemical interactions

proposed therein. For example, GATA-2 activates its own

promoter, and is synergistically inhibited by GATA-1 and FOG-

1. As both players are required to exhibit the full inhibitory effect,

we combined them using an AND logic in the Boolean update

rule. For the regulation of PU.1, both GATA-1 and GATA-2

independently suppress the PU.1 promoter, and thus we employed

an OR logic for this case. Again, we paid special attention to

incorporate only those interactions which have been reported for

adult murine cells during myeloid differentiation. The list of all

update rules we derived for the 11 players along with short

justifications and references is given in Table 1. For a detailed

discussion of the role of each factor as well as its regulatory

interactions, we refer the reader to Text S1. Note that we propose

the inhibition of C/EBPa by an erythroid factor (see discussion

below).

It is important to understand that transcription factors are

commonly reused in varying contexts during stem cell differen-

tiation processes. For instance, GATA-2, SCL, Fli-1 and Gfi-1 are

also known to play important roles in early hematopoietic stem

cells [8,31,34–36]. The counter-antagonists PU.1 and GATA-1

synergize in the development of the eosinophil lineage [37],

whereas the mutual inhibition between PU.1 and GATA-2 is

Figure 1. A regulatory model of myeloid differentiation. (A)
Hematopoietic stem cell (HSC) differentiation consists of a series of
switch-like decisions. We here focus on differentiation into four myeloid
cell types and omit other myeloid cells and the lymphoid branch (greyed
out). For a detailed discussion of the different progenitor cell types, we
refer the reader to [1]. Abbreviations: MPP, multipotent progenitor; CMP,
common myeloid progenitors; MEP, megakaryocyte-erythrocyte progen-
itor; GMP, granulocyte-monocyte progenitor; CLP, common lymphoid
progenitor. (B) Literature-derived gene regulatory network for 11
myeloid players previously reported to be pivotal for the lineage
decisions in myeloid differentiation (compare Text S1). Note that this
visualization does not contain explicit Boolean update rules. Specifically,
it is not apparent from the graph visualization alone whether multiple
regulatory inputs are combined using AND or OR logic, which can make
substantial differences for the resulting Boolean dynamics.
doi:10.1371/journal.pone.0022649.g001
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absent in mast cell progenitors [38]. Here, we focused on the

differentiation of CMPs to erythrocytes, megakaryocytes, granu-

locytes and monocytes and deliberately ignored interactions and

players important in earlier and later stages of hematopoietic

differentiation process (see Figure 1A).

Local dynamics
Our regulatory network comprises 11 players and 28 interac-

tions (Figure 1B). It is composed of a set of well-known regulatory

motifs, each of which contributes a specific functionality to the

overall system dynamics (see [39] for an extensive review). To get

insights into local dynamic capabilities of the system, we study

central functional modules in the network.

First, we observe four mutually inhibitory pairs of genes in our

network (PU.1 vs. GATA-1, PU.1 vs. GATA-2, Gfi-1 vs. EgrNab,

EKLF vs. Fli-1). This regulatory module is known to generate a

toggle-switch behavior of the involved factors (cf. e.g. [40]): Only

one of the two genes can be fully active at any given time, and thus

the switch induces stable decisions between antagonistic lineages.

Note that mutual inhibitory switches belong to the class of positive

feedback loops, which are structurally required for the occurrence

of multistationarity in dynamical systems [41,42]. We observe

additional positive feedback loops, either in the form of direct

autoregulation (GATA-2, GATA-1, C/EBPa, PU.1), or via

indirect mechanisms (as seen between PU.1 and cJun or GATA-

1 and Fli-1). Such activatory positive feedbacks could be means to

stabilize lineage-specific expression patterns or, in addition, can

have specific roles in the interplay of certain factors (see e.g.

GATA-2/GATA-1/FOG-1 module below).

A remarkable dynamic behavior is constituted by GATA-2,

GATA-1 and FOG-1, which are connected through three nested

regulatory modules: (i) a coherent, inhibitory feed-forward loop

[43] from GATA-1 to GATA-2, (ii) GATA-1 positive autoregu-

lation and (iii) the negative feedback loop of GATA-2 through the

other two factors (Figure 2A). This circuit enforces a time-delayed

switch from GATA-2 expression to GATA-1 expression. GATA-2

induces the expression of GATA-1, which first activates its

cofactor FOG-1, and then downregulates GATA-2 cooperatively

with FOG-1. This synergy causes a delayed downregulation of

GATA-2 via the feed-forward loop. Consistently, GATA-2 has

been identified as a gatekeeper for immaturity in hematopoietic

progenitor cells [44]. The negative feedback does not lead to an

oscillatory behavior due to the GATA-1 autoregulation, which

sustains its own expression after the upstream activator GATA-2 is

depleted.

Interestingly, while GATA-1 symmetrically activates its down-

stream targets, we observe an asymmetrical structure for the

activation of Gfi-1 and EgrNab (Figure 2B). Apart from the

mutually inhibitory switch between Gfi-1 and EgrNab, there is an

incoherent feed-forward loop [43] formed by C/EBPa, Gfi-1 and

PU.1. C/EBPa initially activates PU.1 [45,46], but then turns into

its indirect antagonist by activating Gfi-1. This transcription factor

is known to inhibit the transactivation activity of PU.1, while PU.1

expression levels remain unchanged (cf. Text S1 for detailed

evidence). This provides an elegant possibility for a time-delayed

mechanism, where PU.1’s downstream activity will be inhibited

unless it activates its downstream target EgrNab before Gfi-1 is

present. Note that the inhibition of EgrNab by Gfi-1, proposed as

a direct interaction by Laslo et al. [20], could also be established

by the repression of PU.1 activity through Gfi-1 [47].

Systems dynamics
The two modules investigated in the previous section comprised

the core dynamic features of the MegE and GM lineage decision

processes, respectively. We next sought to investigate the dynamic

potential of our regulatory system as a whole. In order to impose

differential dynamics for all players, each node in the network

requires at least one upstream regulatory factor. To the best of our

knowledge, no such regulator is known for the early player C/

EBPa (see Figure 1B). It is well-known, however, that C/EBPa is

Table 1. List of transcription factors in our myeloid differentiation model.

Factor Boolean update rule Comments and References

GATA-2 GATA{2 ^ (GATA{1 ^ FOG{1) ^ PU :1 Early MegE factor [81]; autoregulatory activation, which is synergistically inhibited by GATA-1 and
FOG-1 [81,82]; inhibited by PU.1 [49,83]

GATA-1 (GATA{1 _ GATA{2 _ Fli{1) ^ PU :1 Central MegE factor [54]; activated by GATA-2 during early hematopoiesis [81]; autoregulatory
activation [84–86]; stimulated by downstream factor Fli-1 [87]; inhibited by PU.1 [49,83]

FOG-1 GATA{1 GATA-1 cofactor [70,71]; activated by GATA-1 [59]

EKLF GATA{1 ^ Fli{1 Erythroid factor activated by GATA-1 [88]; antagonized by Fli-1 [87]

Fli-1 GATA{1 ^ EKLF Megakaryocytic factor activated by GATA-1 [89]; antagonized by EKLF [87]

SCL GATA{1 ^ PU :1 Central hematopoietic player, but specifically involved in MegE differentiation [1,36]; activated by
GATA-1 during erythroid differentiation [90]; inhibited by PU.1 [91]

C/EBPa C=EBPa ^ (GATA{1 ^ FOG{1 ^ SCL) Early GM factor [45]; no known upstream regulatory player, we assume an inhibitory influence
from MegE-specific factors due to downregulation [18]; questionable FOG-1 inhibition proposed
in [92]1

PU.1 (C=EBPa _ PU :1) ^ (GATA{1 _ GATA{2) Central GM factor [55]; activated by C/EBPa during GM development [45,46]; autoregulatory
activation [93,94]; mutual inhibition with GATA factors [49,83]

cJun PU :1 ^ Gfi{1 PU.1 expression required for its cofactor cJun [95]; Gfi-1 antagonizes PU.1 transcriptional activity
[47]

EgrNab (PU :1 ^ cJun) ^ Gfi{1 Integrated monocytic factor (Egr-1, Egr-2, Nab-2) according to [20]; activated by PU.1+cofactor
cJun [20]; mutual antagonism with Gfi-1 [20]

Gfi-1 C=EBPa ^ EgrNab Granulocytic factor [79]; activated by C/EBPa, antagonized by EgrNab [20]

The table displays the Boolean update rules for all factors and brief justifications along with references to the respective publications. Notation: ^= AND, _= OR, X = not
X.
doi:10.1371/journal.pone.0022649.t001
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strongly downregulated during MegE differentiation (cf. e.g. [18]).

From our player list, this downregulation can only be achieved by

inhibitory influences of one of the MegE players GATA-1, FOG-

1, SCL, or a synergistic action between those three (Table 1). This

inhibitory influence could be direct, i.e. by transcription factor

binding, or mediated by a third, yet unknown player.

A Boolean network translates into a state-transition graph,

where each node represents a specific state of the system and each

link is a transition between two states. These links arise from the

Boolean update rules and thus represent the dynamic potential of

the system. Our 11 player model gives rise to a 211~2048 node

state-transition graph, which contains five non-zero attractors (i.e.

steady states of the system). In the following, we focus on the

dynamics initiated by an early, unstable undifferentiated state,

where only GATA-2, C/EBPa, and PU.1 are active (cf. [48,49] for

experimental evidence on the early expression state). The

subgraph of all nodes downstream of this early state comprises

232 nodes and 789 links (see Figure 3A) and has a number of

salient properties: (i) four of the five non-trivial attractors of the

system (denoted as s1 to s4 in Figure 3A) can be reached from the

early state, (ii) the graph is acyclic, forcing the system to move from

the early state towards one of the attractors, and (iii) it exhibits a

hierarchical partitioning into non-overlapping subparts.

We evaluated the extend of hierarchicity by calculating the

attractor basin overlaps of the reachable steady states s1–s4. That

is, how many of the states that can lead to a given attractor may

also lead to another attractor? We identify two pairs of attractors

with a respective overlap of over 50%. The basins of the first pair

of attractors (s1 and s2 in Figure 3A) are characterized by the

activity of the factors GATA-1 and FOG-1, early activity of

GATA-2 and absence of GM-specific factors in general. Vice

versa, states that lead to the second pair of attractors (s3 and s4 in

Figure 3A) exhibit activated C/EBPa, PU.1 and cJun while all

MegE factors are deactivated. From the known roles of the

secondary lineage-specific factors Gfi-1, EgrNab, EKLF and Fli-1

(see, e.g. [1]) we assign each of the attractors to one of the four

myeloid lineages: erythrocytes (s1), megakaryocytes (s2), mono-

cytes (s3) and granulocytes (s4), respectively, see Figure 3B.

While the subgraph downstream of our defined early state is

certainly of most relevance in the context of myeloid differenti-

ation, we also analyzed the remaining states upstream of the early

state and the supposedly unphysiological fifth stable attractor (with

PU.1, cJun and EgrNab active, see above). Any state that reaches

the early state also requires GATA-2, C/EBPa, and PU.1 to be

active. The basin of the early state contains all those states that

show unstable expression of downstream factors, e.g. activity of

EKLF without presence of GATA-1. Such states cannot be

considered physiologically relevant, and the early state supposedly

represents the true starting point of the modeled biological system.

The fifth steady state, on the other hand, can be reached if PU.1 is

active and either GATA-1 is expressed or C/EBPa is absent. That

is, the state can be reached whenever it is possible to sustain PU.1

expression while C/EBPa vanishes (which is not the case from the

early state used in our analysis).

Figure 2. Functional modules in the network. (A) The GATA-2, GATA-1, FOG-1 regulatory circuit consists of a coherent inhibitory feed-forward
loop (GATA-1 and FOG-1 towards GATA-2), an autoregulation (by GATA-1) and a negative feedback (GATA-2 onto itself). The corresponding
Boolean update rules and a schematic of the Boolean dynamics is shown on the right, demonstrating how the system is pushed towards
maturation. GATA-2 activates its downstream target GATA-1, which synergizes with its cofactor FOG-1 to downregulate GATA-2. Due to the
autoregulatory loop, GATA-1 can sustain its expression after its upstream regulator is inhibited. (B) Asymmetric activation of EgrNab and Gfi-1. The
gene switch is driven by an upstream feed-forward loop around C/EBPa and PU.1. The Boolean update rules between the four players and two
possible system trajectories are shown on the right. C/EBPa initially activates PU.1, but can also upregulate its antagonist Gfi-1 which then inhibits
the PU.1 target EgrNab. Note that the two stable states - one where EgrNab is finally activated and one where Gfi-1 is activated - are mutually
exclusive.
doi:10.1371/journal.pone.0022649.g002
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Evaluation of the state space attractors with mRNA
expression data

In order to assess whether the four attractors indeed correspond

to the respective cellular fates, we compared the Boolean states

with mRNA expression data from two independent microarray

experiments (see Methods for a detailed description). Maturated

granulocyte and monocyte-specific expression data were taken

from Chambers et al. [50], megakaryocyte and erythrocyte

progenitor cell profiles from Pronk et al. [51]. Note that the

Chambers dataset contains a maturated erythrocyte sample which

is in general agreement with the erythrocyte progenitors from

Pronk et al. (see below and Text S2). The comparison of

experimental expression data and predicted Boolean states is

visualized in Figure 4.

For the monocyte lineage, our model correctly predicts the

major monocytic players C/EBPa and PU.1 as well as the PU.1-

cofactor cJun to be upregulated. Furthermore, the counter-

antagonistic activity of EgrNab and Gfi-1 is fully captured, as

EgrNab is upregulated and Gfi-1 is strongly suppressed. As

expected, we observe a flipped pattern for these two factors in the

granulocytic lineage. In the erythroid lineage, all GM players,

including the primary fate determinants C/EBPa and PU.1, are

strongly repressed in both computational model and measured

data. GATA-1 as the central MegE player is strongly expressed

along with its cofactor FOG-1. SCL follows the expression

patterns of PU.1 and GATA-1. This is in accordance with findings

that SCL plays a role in HSCs, but is absent throughout non-

erythroid maturating cell types [52]. The erythrocyte-specific

transcription factor EKLF is upregulated and represses the activity

of Fli-1, its counter-antagonist in the megakaryocyte lineage.

Our model is in good agreement with the microarray profiles,

except for GATA-2 in the MegE lineage. GATA-2 cannot be

considered strongly downregulated in the mRNA expression data

of megakaryocyte and erythrocyte progenitor cells. However, the

downregulation of GATA-2 is explicitly delayed via the inhibitory

coherent feed-forward loop discussed above (see Figure 2A). This

view is corroborated by the strong downregulation of GATA-2 in

maturated erythrocytes, a late stage of the differentiation process

(cf. Text S2). In conclusion, the literature-derived regulatory

model is capable of reproducing known molecular phenotypes in

terms of mRNA expression profiles.

In silico perturbations
A reasonable in silico implementation of a biological system

provides the possibility to attempt system perturbations with

computational effort only. This allows us to cross-validate our

model with perturbation experiments independent from the

studies used to construct its regulatory logics (Table 1). Both

nodes and edges of the myeloid differentiation network can be

altered. The knockdown of a regulatory player (Figure 5A) could

be caused, for example, by the destruction its regulatory promoter

sequences, coding sequence mutations that render the gene

product nonfunctional or interference by small RNAs. Player

overexpression, on the other hand, is experimentally implemented

by ectopic transcription factor expression with, e.g., an inducible

construct. Regulatory interaction knockouts finally correspond to

specific mutations that affect, for instance, the binding affinity of a

transcription factor to the promoter region of its target gene. We

performed systematic player and interaction perturbations for our

regulatory network by altering the equations in the Boolean model

(see Methods). To evaluate the consequences of our in silico

perturbation experiments we again determined the steady states of

the resulting state spaces. For each perturbation we checked how

many of the four original attractors, corresponding to the four

Figure 3. Systems dynamics of the myeloid differentiation model. (A) State-transition graph of the Boolean model with dynamical
trajectories. Each node represents a Boolean state of the system where each player is either ‘on’ or ‘off’. Each edge stands for a transition between
two states induced by the application of a single Boolean update rule. The shown subgraph is calculated from an central early hematopoietic state
and comprises 232 nodes with 789 links. The visualization emphasizes the existence of four attractors reachable from the early state, and the
hierarchical structuring of the state space with two pairs of attractors (s1/s2 and s3/s4, respectively) that share a common attractor basin. The
distance of a state from the attractor in the graph corresponds to the number of necessary update steps. (B) Interpretation of the state space in the
context of myeloid differentiation. We observe a hierarchical partitioning with subsequent splits between the GM and MegE lineages, followed by
splits of the granulocyte and monocyte lineages, and the erythrocyte and megakaryocyte lineages, respectively. Arrows in the diagram represent
expression changes on the respective branch of the differentiation tree.
doi:10.1371/journal.pone.0022649.g003
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blood cell lineages, are still present and whether new steady states

appear.

The effects of most in silico player knockouts can be confirmed

by reported phenotypes (see Figure 5B). For example, the

knockouts of PU.1 and GATA-1 entirely deplete the GM and

MegE lineages, respectively [53–56]. However, for a few of cases

no experimental evidence exists so far. In these cases, our model

can be used to predict the altered differentiation dynamics. (i) We

identify a fundamental role of GATA-2 for MegE differentiation.

Previous studies only detected lethal effects of GATA-2-deficiency

in early hematopoietic stem cells and no effects during late,

terminal differentiation [57]. Our model complements this view

and predicts a loss of the MegE lineage after GATA-2 knockout.

(ii) Since SCL has no active regulatory role in the context of our

model, we observe no effect on the remaining players and thus no

change in the overall number of attractors (the loss of the attractors

s1 and s2 in Figure 5B is balanced by two new attractors).

Therefore we assume SCL not to have a pivotal role during

myeloid differentiation, a prediction that has to be confirmed with

e.g. a conditional knockout experiment. (iii) We find the PU.1

cofactor cJun to be specifically required for the monocyte lineage,

firstly because it is strongly repressed during granulopoiesis (see

Figure 4), and secondly because we see no effect on the

granulocytic lineage in the knockout experiment. Moreover, we

analyzed the effects of regulatory interaction knockouts for all 28

interactions in the model (Text S3).

Analogously to the player knockouts we performed player

overexpression in the early multipotent state and in the four stable

states to infer the potential of lineage reprogramming and

transdifferentiation. In accordance with the literature, for instance,

GATA-1 and PU.1 instruct differentiation into their respective

lineages when overexpressed at an early, multipotent state [58–

60]. Interestingly, we predict GATA-1 to be capable of

transdifferentiating a committed GM cell into the MegE lineage,

as demonstrated by [61,62]. A detailed discussion along with

implications for the myeloid differentiation process can be found in

Text S4.

Discussion

In this contribution we presented a regulatory network driving

differentiation of murine common myeloid progenitors into

megakaryocytes, erythrocytes, granulocytes and monocytes. From

a thorough study of the existing literature, we constructed a meso-

scale Boolean model comprising 11 transcription factors and 28

regulatory interactions. We included only players and interactions

that were reported in the particular context of myeloid

differentiation and for the respective cell types. Locally, our

gene-regulatory network reveals a modular structure composed of

well-known functional motifs, like mutual inhibitory switches, feed-

forward loops and negative feedback loops. We examplarily

demonstrated the local dynamics and functional implications of

two subgraphs in the network, one which induces a one-way street

effect during MegE differentiation, and a second subgraph that

shows asymmetrical activation of the granulocyte vs. monocyte

switch. Globally, our Boolean model induces a hierarchical state

space. That is, the respective opposing lineages are excluded once

the differentiating cell is committed to one of the primary lineages

(GM and MegE) or, subsequently, to one of the monopotent

secondary lineages. The validity of our model was confirmed by

explicit comparison of the attractor states with microarray

expression profiles from previously published studies. Moreover,

we performed in silico knockouts of both players and regulatory

interactions as well as player overexpression, compared the model

results with phenotypes from the literature and derived new

hypotheses. Certainly, intermediate expression levels, e.g. found in

early lineage priming processes [1], cannot be captured by the

Boolean approach. However, without any parametrization, our

model is able to properly describe the potential of common

myeloid progenitors to hierarchically differentiate into four

myeloid lineages.

Our study leads to a number of predictions of potential

biological relevance. On the level of transcription factor

regulation, we predict an inhibition from the MegE lineage onto

the central GM activator C/EBPa. While it is evident from

expression profiles that C/EBPa is sharply downregulated once

Figure 4. Comparison of Boolean states (top) with normalized mRNA expression profiles (bottom) for the 11 players of our model
(see text for a detailed discussion). We observe a good agreement between model prediction and measured mRNA expression. Note that
we excluded non-differentially expressed genes with a maximum fold change smaller than 2 in all samples of the respective study (EgrNab in
Pronk et al. [51] and Fli-1 in Chambers et al. [50], greyed out). For a discussion of the mismatch between prediction and data for GATA-2, see
main text.
doi:10.1371/journal.pone.0022649.g004
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the cell is committed to the MegE lineage (see Figure 4B), no

inhibitory regulator of this factor has been identified yet. Our

model proposed three players as potential regulators: GATA-1,

FOG-1, or SCL. Hints about an indirect inhibition, although in

different cell types and differentiation context, exist: In Landry et

al. [63], RUNX1 has been identified as a direct target of SCL in

the yolk sac, while Tokita et al. [64] showed that the leukemia-

inducing fusion protein RUNX1/EVI1 inhibits C/EBPa function

in LG-3 cells. This regulatory cascade has not been included into

our model since the interaction evidences refer differentiation

contexts beyond the scope of our model – however, it constitutes a

hypothetical interaction that might be worth testing experimen-

tally.

Our model predicts a fifth stable state, which resembles the

monocytic lineage profile (PU.1z, cJunz, EgrNabz) but lacks

expression of the early myeloid transcription factor C/EBPa.

According to this stable state, PU.1 should be able to sustain its

own expression even without the presence of C/EBPa. Since we

assume C/EBPa to be the primary activator of PU.1, such an

expression pattern (PU.1z, C/EBPa{) will not occur during

physiological hematopoietic differentiation. However, this state

might occur due to pathological alteration of the regulatory wiring

during disease development.

The model can be used to outline strategies for the forced

differentiation and reprogramming of progenitor cells within the

myeloid differentiation tree [1,4,65,66]. Our overexpression

analysis of the model state space allows for the identification of

possible trajectories from one cellular state to another. As an

example, consider the conversion of erythrocytes to megakaryo-

cytes. The mutual antagonism of Fli-1 and EKLF determines the

final cell fate, and thus, overexpression of the respective antagonist

allows to switch the cell from one fate to the other. Interestingly, the

lineage reprogramming of both monocytes and granulocytes to the

MegE lineage is accomplished by the overexpression of just one

factor, GATA-1 or GATA-2. This recapitulates the effect of ectopic

GATA-1 overexpression described in [61,62]. A transdifferentiation

of the MegE lineage to the GM side is more intricate since here the

coordinated overexpression of C/EBPa and PU.1 is required.

Figure 5. In silico knockout experiments. (A) Example case. When setting the expression value of PU.1 to zero in the model (left), a specific set
of states becomes unreachable in the state space (right). In this case, these states correspond to the differentiation trajectories and attractors of
the granulocytes and macrophage lineages. That is, functionally, we predict all myeloid progenitor cells to differentiate into the MegE lineage
upon PU.1 knockout. (B) Knockout effects for all 11 players in our model. For each knockout we determined which of the original 4 attractors are
still reachable and whether new attractors emerged. The ‘Comments’ column contains brief descriptions of the predicted effects on the
differentiation process. In the ‘Evidence’ column we list publications that confirm the predictions of the respective in silico knockout [20,53–
56,70–80].
doi:10.1371/journal.pone.0022649.g005
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Currently, our differentiation model describes the core

machinery that steers a myeloid progenitor into one of the

myeloid lineages, but does not provide an explanation for why a

certain decision takes places. To this end, the model could be

extended and refined in a number of ways. Most importantly,

cytokine signaling has been shown to be a major instructor of

lineage decisions [67]. The inclusion of these factors and, more

generally, signal transduction pathways, cell-cell signaling [68] and

communication with the stem cell niche should provide insights

into the mechanisms that give rise to a constant ratio of various

blood cells. Furthermore, the incorporation of other regulatory

species with impact on hematopoiesis, like microRNAs (see [69]

for an extensive review) would allow for a more detailed picture of

the differentiation process.

Taken together, we assembled a computational model of

myeloid development in mouse which is in accordance with

previously acquired molecular data. The hierarchical structure of

our transcription factor network directly induces a hierarchical

state space and thus typifies general principles of stem cell

differentiation. Ultimately, the transfer of the murine model to

human hematopoiesis might lay the groundwork for the diagnosis

and possibly the treatment of severe disorders in the blood system.

Materials and Methods

mRNA expression datasets
We downloaded two mRNA expression studies of hematopoi-

etic progenitor cells from the ArrayExpress database (http://www.

ebi.ac.uk/microarray-as/ae/): (i) A study investigating self-renewal

and differentiation mechanisms by Chambers et al. [50]. The

experiment includes measurements of long-term hematopoietic

stem cells and mature blood cells, including erythrocytes,

granulocytes, monocytes, B cells, T cells and natural killer cells.

For our work we only used the erythrocyte, granulocyte and

monocyte data. ArrayExpress ID: E-GEOD-6506. (ii) Pronk et al.

[51] attempted to elucidate differential expression patterns during

myeloerythroid differentiation by mRNA profiling. Megakaryo-

cyte-erythrocyte progenitors (MEPs), granulocyte-macrophage

progenitors (GMPs), common lymphoid progenitors (CLPs) as

well as monopotent megakaryocyte and erythrocyte progenitors

were measured. For our work we investigated the profiles of the

megakaryocyte and erythrocyte progenitors. ArrayExpress ID: E-

GEOD-8407.

Both datasets are based on the Affymetrix GeneChip Mouse

Genome 430 2.0 and were used as downloaded from the

ArrayExpress database (MAS5-normalized and logarithmized to

the base of 2). For each nucleotide probe, the median over all

replicates was calculated as an average value of expression of the

respective probe. Since we cannot distinguish between different

variants of a gene transcript, multiple probes for a single gene

locus were averaged by median calculation subsequently. A

complete list of all probes used in our study is provided in Text

S5. For a better comparison of measured and Boolean states, we

linearly scaled the expression values in each study between 0

(minimal expression) and 1 (maximal expression). Genes that

shows a total maximum fold change smaller than 2 were excluded

from the respective experiment.

Model perturbations
We performed three types of perturbations on our Boolean

model: (1) Factor knockouts, (2) factor overexpression, and (3)

interaction knockouts. A regulatory factor is knocked out by simply

setting its value in the respective Boolean equation to zero or ‘off’.

Analogously, overexpression is modeled by setting a factor’s value

to one or ‘on’. An interaction knockout, on the other hand, can be

modeled by setting the regulator to zero in the Boolean equation of

its regulated target. For instance, the knockdown of the activatory

influence of B towards A in

A/(B _ C) ^ :D

yields a perturbed Boolean equation which reads

A/(0 _ C) ^ :D~C ^ :D:
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