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Abstract: Efficient removal of Cd(II) and Pb(II) from contaminated water is considered a fundamental
point of view. Synthetic hydrogel biopolymers based on chitosan and alginate (cost-effective and
eco-friendly) were successfully designed and characterized by highly efficient removal contaminants.
The sorbents are characterized by FTIR, SEM-EDX, TGA, XPS analyses and textural properties
which are qualified by N2 adsorption. The sorption properties are firstly investigated by the effect of
pH, sorption isotherms, uptake kinetics, and selectivity from multi-metal solution with equi-molar
concentration. The sorbent with 1:3 ratios (of chitosan and alginate respectively) is the most effective
for metal removal (i.e., 0.81 mmol Cd g−1 and 0.41 mmol Pb g−1). Langmuir and Sip’s models fitted
better the adsorption isotherms compared to the Freundlich model. Uptake kinetics was well fitted
by pseudo-first-order rate equation, while the saturation was achieved within 40 min. The sorbent
shows good reproducibility through duplicate the experiments with negligible decreasing efficiency
(>2.5%). The sorbent was applied for water treatment on samples collected from the industrial area
(i.e., 653 and 203 times over the MCL for Cd(II) and Pb(II) respectively according to WHO). The
concentration of Cd and Pb was drastically decreased in the effluents as pH increased with removal
efficiency up to 99% for both elements at pH 5.8 and SD equivalent 1 g L−1 for 5 h.

Keywords: eco-friendly sorbent; cost-effective biopolymers; cadmium and lead contamination;
contaminated water treatment

1. Introduction

Metal ion removal from either industrial effluents or wastewater is considered a
critical topic according to international regulations and governments [1]. The importance
of this point is due to the damages of the biotope and health threats that are affected
by the discharge of the hazardous metals. The activities in the mining processes and
other industries generate contaminations to soil and water for the surrounding areas. The
metal mobility through discharging of the industrial tailing data, leaching (in escaping the
filtrates from the hydrometallurgy processes), or flying dust, etc., are the main source of

Materials 2021, 14, 2189. https://doi.org/10.3390/ma14092189 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-8935-6884
https://orcid.org/0000-0003-3821-9078
https://orcid.org/0000-0003-2607-0050
https://orcid.org/0000-0003-3840-7837
https://doi.org/10.3390/ma14092189
https://doi.org/10.3390/ma14092189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14092189
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14092189?type=check_update&version=1


Materials 2021, 14, 2189 2 of 23

pollution and have a bad impact on human health [2]. Metal contamination of water bodies
may naturally occur (i.e., rain and floods) or by anthropogenic effects (i.e., metallurgical
activities) [3].

The bioaccumulation of the contaminants for the food chain, persistence, and toxicity,
may explain the high attention paid to the evaluation in ground and drinking waters.
Organizations have designed strict guidelines for the maximum levels of the contaminants
(MCL) for livestock and irrigation of water (i.e., World Health Organization (WHO),
European Union (EU), U.S. Environmental Protection Agency (U.S.-EPA), and Food and
Agriculture Organization of United Nations (FAO) [1,4–6], as reported in the Table S1 (see
Supplementary Materials).

Cadmium and lead ions are taken directly by a human from the metal-emitting
industries or reached indirectly through other live organisms like plants (i.e., seeds and
fruits) which allow the passing of these ions from roots (up to 90% from the soil and 10%
form air) [7,8], accumulating in fatty tissues and animal milk. Therefore, humans can easily
be exposed to metal poisoning from plants or animals. Around 98% of the lead or cadmium
that is found in the atmosphere is produced from human activities. Cadmium and Pb
cause anemia, affect the central nervous system [9,10], cause liver damage, structure kidney
damage, bone tissue that affects calcium metabolism, and decrease the birth weight [11–15].

Several processes are used for the extraction of metal ions. Precipitation [16,17] and
solvent extraction [18–24] are applied for high concentrate solutions. Adsorption/ion
exchange [25–27] for a low concentrated solution, along with other common processes
were used as membrane technologies [28], and electrolytic techniques [29]. Bio-sorption
and biosorbents are easily functionalized by substitute reactive groups for increasing the
loading capacity, improving kinetics, and for more efficient recovery [30–32]. The presence
of amine and hydroxyl groups in the structure of these biopolymers facilitates the chemical
modification, while physical designing can be performed by dissolving and shaping beads,
fibers, and hollow fibers.

Chitosan (partially deacetylated chitin) is considered as one of the most abundant
biopolymers. Its properties are gained through the presence of amines and hydroxyl
groups in the polysaccharide moieties which are responsible for the hydrophilicity nature.
Protonation of amines in acidic medium gives possible solubility of the solids and makes
them easy to shape [33,34]. Coated chitosan with nano or microparticles of magnetite was
achieved and documented. Grafting of amines and amino acid moieties for improving the
efficient sorption, improving kinetics, selectivity, and stability was established [35–39].

Biosorbents based on algal biomass have been used in the last few decades for re-
covering rare metals and removal of hazardous ions. Carboxylic groups from alginate,
sulfonic groups in fucoidan, and amino groups in proteins are the most important groups
in these biopolymers. Conditioning as beads and foams for applications either in a column
or through batch process receive great attention in metal extraction [40–43].

Designing a new kind of hydrogel by different ratios of chitosan (C) and alginate
(A) (i.e., 1:2, 1:3, and 1:4 for C and A respectively) was performed. This composite was
produced by ionotropic gelation using CaCl2 in the presence of glutaraldehyde (GA)
as a crosslinking agent (colored part in Scheme 1). The produced sorbents were fully
characterized (FTIR, SEM-EDX, TGA, Textural properties (N2 adsorption), and XPS). The
sorption was tested toward Cd(II) and Pb(II) before being treated on the contaminated
water sample. The sorption characterization was considered by the effect of pH, kinetics,
isotherms, recycling through series of sorption desorption cycles, selectivity in the presence
of associated elements and finally was tested for decontamination of water. All sorption
investigations were performed twice, and the average was calculated; the deviation from
each experiment did not exceed 2.5%.
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Scheme 1. Synthetic route of the prepared hydrogel composite (the introduced color is referred to as the crosslinking of 
glutaraldehyde (GA) with chitosan and the ionotropic gelation of Ca2+ on alginate moieties). 
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(with 90.5% deacetylation degree), glutaraldehyde (50 wt.% in H2O), and alginate were 
supplied from Sigma-Aldrich, (Merck, Darmstadt, Germany). Magnesium chloride hex-
ahydrate (≥98.0%), sodium chloride (≥99.5%), and aluminum chloride anhydrous 
(99.999%) were purchased from Guangdong Sci-Tech Co., Ltd., (Guangzhou, China). A 
stock solution of 1000 ppm was prepared for each element and a freshly diluted solution 
was prepared by deionized water to the desired concentration of the experiment. All 
other reagents are the Prolabo products—Morillons, France. 

2.2. Synthesis of the Sorbents 
Different ratios of chitosan/alginate were prepared by the following method—one 
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kept at room temperature for 7 days, then the solution was added drop-wise to 500 mL of 
(1%, W/V) CaCl2 with 5 mL Glutaraldehyde (50%, W/W) for ionotropic gelation and 
crosslinking of the alginate and chitosan. The precipitated hydrogel was subjected to 
stirring for 24 h at 30 °C before decantation and washed several times with ethanol/water 
then dried at 50 °C for 10 h. The expected structure of the functionalized sorbent was 
designed in Scheme 1 with the proposed synthetic steps. 

Scheme 1. Synthetic route of the prepared hydrogel composite (the introduced color is referred to as the crosslinking of
glutaraldehyde (GA) with chitosan and the ionotropic gelation of Ca2+ on alginate moieties).

2. Data and Methods
2.1. Data

All chemicals are fine products. Lead (II) chloride (98%) and cadmium (II) chloride
(anhydrous, 99.999%) salts (i.e., CdCl2 and PbCl2, for the synthetic solution), Chitosan (with
90.5% deacetylation degree), glutaraldehyde (50 wt.% in H2O), and alginate were supplied
from Sigma-Aldrich, (Merck, Darmstadt, Germany). Magnesium chloride hexahydrate
(≥98.0%), sodium chloride (≥99.5%), and aluminum chloride anhydrous (99.999%) were
purchased from Guangdong Sci-Tech Co., Ltd., (Guangzhou, China). A stock solution of
1000 ppm was prepared for each element and a freshly diluted solution was prepared by
deionized water to the desired concentration of the experiment. All other reagents are the
Prolabo products—Morillons, France.

2.2. Synthesis of the Sorbents

Different ratios of chitosan/alginate were prepared by the following method—one
gram of chitosan was dissolved in 25 mL of 1% (W/V) acetic acid solution (prepared three
separate times in different flasks). Addition of 2, 3, and 4 g of alginate powder to the
chitosan solution with continuous stirring till dissolve (for 1:2, 1:3, and 1:4 of Chitosan:
Alginate respectively, so-called CA#2, CA#3, and CA#4). The prepared solutions were
kept at room temperature for 7 days, then the solution was added drop-wise to 500 mL
of (1%, W/V) CaCl2 with 5 mL Glutaraldehyde (50%, W/W) for ionotropic gelation and
crosslinking of the alginate and chitosan. The precipitated hydrogel was subjected to
stirring for 24 h at 30 ◦C before decantation and washed several times with ethanol/water
then dried at 50 ◦C for 10 h. The expected structure of the functionalized sorbent was
designed in Scheme 1 with the proposed synthetic steps.
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2.3. Characterization

Several tools were used for specifying the functional groups as well as elucidating the
chemical structure. FT-IR spectrometry of dried samples after grinding with (1%, W/W)
anhydrous KBr was performed using Shimadzu IRTracer-100 (Shimadzu, Tokyo, Japan).
Carbon, N, O, and H were measured quantitatively by an element analyzer (EA) (2400 Se-
ries II Perkin-Elmer, Waltham, MA, USA). The morphology of the surface was characterized
by a scanning electron microscope (SEM) and semi-quantitative surface analyses were
performed on (Phenom ProX, scanning electron microscope (SEM), Thermo Fisher Scien-
tific, Eindhoven, The Netherlands), while the elemental composition of the structure was
chemically investigated using energy dispersive X-ray (EDX). Thermal decomposition of
the prepared data was performed on TGA-DTA under nitrogen atmosphere using (Netzsch
STA 449 F3 Jupiter, NETZSCH-Gerätebau HGmbh, Selb, Germany), the temperature ramp:
10 ◦C/min, under nitrogen atmosphere. Textural properties (N2 adsorption) were used
by Micromeritics TriStarII (Norcross, GA, USA) at 77 K, the sample was firstly degassed
in nitrogen gas for 5 h at 100 ◦C. The pH-drift method [44] was used for pHPZC investi-
gation (corresponding to pH0 = pHeq), a 50 mg of sorbent stirred with 30 mL of 0.1 M
NaCl solution for 48 h at different pH values (pH0 (initial pH) = 1–14 values). ESCALAB
250XI+ instrument (Thermo Fischer Scientific, Inc., Waltham, MA, USA) instrument used
for the XPS spectra connected with monochromatic X-ray Al Kα radiation (1486.6 eV). The
pressure was adjusted to 10−8 mbar., while the energy calibrated with Ag3d5/2 and C 1s
signals at ∆BE: 0.45 eV and 0.82 eV) respectively. in which the full and narrow-spectrum
pass energies were 50 eV and 20 eV, respectively. The pH (at initial or after equilibrium)
was measured by S220 Seven Compact pH/Ionometer.

2.4. Sorption Tests

Captions of the tables and figures were systematic including the specific conditions.
The charts show the mean average after duplicating each experiment twice. The overall
deviation of each experiment does not exceed 2.5%, indicating the real reproducibility of the
experiments. A fixed amount of sorbent (mg) was mixed with a specific volume of bearing
metal solution. Solutions of 0.1/1 N HCl or NaOH were used for controlling the pH values
for Pb(II) and Cd(II) also for the equimolar solutions. The pH value is not fixed during the
adsorption process that record at the end of the experiment. Samples were collected from
the loading experiments were firstly filtered using a filter membrane with pore size 1.1 µm,
before measuring by ICP-AES (JY Activa M, Horiba/Jobin-Yvon, Longjumeau, France).
Sorption isotherms were performed using the fixed weight of sorbent (m, g), contacted with
the solution (V, L) of different concentrations (10:500 mg L−1) for 48 h. The sorbent dosage
for pH experiments, isotherms, selectivity, and recycling was set to 1g L−1 while fixed to
0.3 g L−1 for the kinetics experiments. Sorption capacity qeq (mmol g−1) and removing
efficiency (R%) in the natural sample experiments were determined using the mass balance
equations qeq = (C0 − Ceq) × V/m, and R% = (C0− Ceq)/C0 × 100, respectively, where
C0 and Ceq (mmol L−1) are the metal ions concentrations initially and at equilibrium, V
and m are the volumes of the solution (L) and the mass of the sorbent (mg) respectively.
The temperature of sorption experiments, pH, uptake kinetics, sorption isotherms were
performed at room temperature (22 (±2) ◦C).

2.5. Describing of Sorption Isotherms and Uptake Kinetics

The sorption isotherms and uptake kinetics in this study were modeled using the
pseudo-first (PFORE) and the pseudo-second-order rate equations (PSORE [45]) for sorp-
tion kinetics. The Freundlich, Langmuir, and Sips [46,47] models were used for the sorp-
tion isotherms. Tables S2 and S3 (see Supplementary Materials) report the parameters of
the equation.
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2.6. Treatment of Real Metal-Containing Groundwater

Nile Delta is considered one of the most populated areas in the world, it contains
more than 50 million people [48]. The collected contaminated water sample from Abu
Zaabal Lake was enriched with Cd and Pb with a concentration of 1.96 mg Cd L−1 and
2.03 mg Pb L−1. These concentrations were higher than the maximum contaminant levels
(MCL) by 653 and 203 times respectively, Hg and Al also increased by 415 and 629 times
respectively than the MCL, while Cu, Zn, and Ni increased with little extend (i.e., 3.2,
1.47 and 31.143 times respectively). The water depth of the studied sample ranged from
around 3 m to 16 m. The high salinity (ranged around 3905 mg L−1) is due to the dissolved
sodium salts of either chloride and sulfate [49,50]. High contamination was reached by
sewage wastewater. Besides this, the Abu Zaabal area is famous for several industries
such as cement factories, chemicals, and fertilizers factories which assist increasing the
possibility of pollution level in the adjacent water, soil, and air environments. The sorption
was investigated at 3 different pH values, i.e., 5.8 (original pH of the taken sample), 4 (the
optimum pH for sorption from the synthetic solution), and pH 2 (acidic pH). The batch
method was used for 5 h of contact, while SD was fixed in all experiments at 1 g L−1.
The MCL was detected for the studied sample comparing to what was reported by the
organizations. This was achieved by analyzing the metal ions in the effluents after sorption;
Table S4 shows the composition of interesting elements in the water sample and the relation
with the MCL.

3. Results and Discussion
3.1. Characterization
3.1.1. Fourier Transform Infrared Analysis

Figure 1A shows the FTIR spectra of the prepared sorbents at different ratios of chi-
tosan and alginate (CA#2, CA#3, and CA#4). Figure 1B shows the characterization of CA#3
(the most effective sorbent), after metal sorption and after desorption for five cycles. On the
other hand, Figure S1 (see Supplementary Materials) shows the sorption characterization
of CA#2 and CA#4, after metal sorption and after five cycles of sorption desorption.

From these figures, a series of peaks with different resolve efficiency was observed,
confirming the chemical modification and the effectiveness of additives. Peaks at 1035 cm−1

and 1093 cm−1 in CA#2, 1035 cm−1, and 1060 cm−1 in CA#3 and strong resolved band at
1022 cm−1 for CA#4 are assigned to C (-C,-O, and -N) stretch [51,52]. Different intensities
(broad to sharp) of the peaks at 1384 (for CA#2 and CA#3) and 1428 cm−1 are attributed
to carboxylate salt of alginate. The intensities and broadness of these peaks are related
to the alginate ratio, indicating the incorporation of COO− for binding with chitosan
as well as quantitatively synthesis of the sorbents. Peaks at 1619 cm−1, 1621 cm−1, and
1600 cm−1 with high broadness and sharpness are related to (i) NH of chitosan (ii) C=O of
alginate, (iii) C=N from the crosslinking reagent (GA with amines) [51,53–55]. These bands
are related to the effect of carboxylate functions (1610–1550/1420–1300 cm−1) [51] from
alginate and NH (1650–1590 cm−1) [51] of chitosan, while the intensities of these peaks
are controlled by the ratio of alginate, and also related to the effect of GA with amines.
Wei et al. study the effect of carboxylate (from methacrylic monomer) on the sorption of
Sr, in which the intensity of carboxylate peaks is gradually increased by quantitatively
additive of the methacrylic moiety [56]. Again, broad peaks at 3500 cm−1, 3399 cm−1, and
3197 cm−1 of these sorbents respectively are assigned to OH overlapped with NH [57]
from the polysaccharide of either chitosan and alginate.

As metal ions were adsorbed, the broadening, resolve of bands, and shifts of peaks
were recorded [58]. The mainly observed bands are assigned for OH and NH which shifts
from 3399 cm−1 and 3419 cm−1 to 3364 cm−1 with decreasing the intensity (for Pb loaded
sorbent), or disappearing of the band (in Cd loaded sorbent). The resolved intensities of
N-O and C-O were decreased and shift from 1060 cm−1 and 1035 cm−1 in the unloaded
sorbent to 1026 cm−1 and 1033 cm−1 for Cd (II) and Pb(II) loaded sorbent respectively.
Sharp peaks of C=O (1621 cm−1) and COO− (1384 cm−1) in the CA#3 were shifted to
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1593 cm−1 and disappearing of carboxylate was assigned to the peak after Cd adsorption,
while after Pb adsorption, these peaks are observed at 1633 cm−1 and 1384 cm−1 with a
decrease in the T%. The shoulder at 615 cm−1 (-CH and -OH bending) was completely
disappeared with metal sorption.
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Figure 1. FTIR spectra of CA#2, CA#3 and CA#4 (A) and CA#3, after loading with Cd and Pb, and
after five cycles of sorption desorption (B) (wavenumber: 4000–400 (cm−1)).

This indicates the contribution of NH, OH, N-O, and the C=X (N or O) in metal binding
sorbent due to the change of the chemical environment of these groups. Additionally, the
expected tautomerization of C=O with neighboring atoms assisting the binding of metals
and shift/or decreasing the resolution of this peak. The most marked binding was observed
by Cd than Pb ions, indicating the efficiency of this metal binding.

After desorption, most of these groups were restored, confirming the chemical stability
of these sorbents even after five cycles of sorption desorption. Figure S1 (see Supplementary
Materials) shows the FTIR spectra for CA#2 and CA#4 before and after sorption and after
five cycles of sorption desorption processes. These spectra showed the change of the
environments (shifts and disappearing) of some peaks that respond for binding, while the
relative stability of these sorbents was shown after five cycles as discussed for CA#3.
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3.1.2. Thermogravimetric Analysis and Textural Properties (N2 Adsorption)

Different profiles of decomposition plateaus were shown for the three sorbents. The
total loss was recorded to around (60–65%) as shown in Figure S2a (see Supplementary
Materials). This means that the remains are mainly carbon and calcium ions from the
organic matrices and ionotropic gelation, respectively. CA#3 and CA#4 show relatively
identical weight loss profiles in the first stage attained to the surface and internal water loss
(12.8–14.5% respectively) which is assigned at 173.58 ◦C (18.62–173.58 ◦C) and 195.78 ◦C
(43.08–195.78 ◦C), respectively. For CA#2, a different profile is detected, it shows more
splitting marked profiles. Two stages were found (first at 100.56 ◦C (42.47–100.56 ◦C) and
the second at 190.69 ◦C (100.56–190.69 ◦C)) with a more extensive loss (22.72%). The next
step is the same profile for all, the maximum rate was observed at 293.8 ◦C, 298.7 ◦C,
and 297.9 ◦C for CA#2, CA#3, and CA#4 respectively with loss percent around 21.34%,
30.51%, and 25% respectively. This stage is assigned to depolymerization, cleavage of the
crosslinking bonds (i.e., around 120 ◦C), and degradation of functional groups (i.e., amines
and hydroxyls)(around 180 ◦C) [59,60].

The final step of decomposition shows a relatively similar profile. The loss at this
stage is recorded to 15.64%, 21.44%, and 21.97% for CA#2, CA#3, and CA#4, respectively.
The temperature of this stage was in the range of (293.85–690.84), (298.78–694.08), and
(297.96–690.29) respectively. This is related to char decomposition. Different waves were
observed from dTGA, Figure S2b (see Supplementary Materials). Further, 3, 5, and 4 waves
were observed for CA#2, CA#3, and CA#4, respectively. Sharp wave at 99.98 ◦C for
CA#2 compare with low intensity for the others (at 71.54 ◦C and 96.63 ◦C for CA#3 and
4 respectively). These peaks are related to releasing of water sorbed sorbent. Peaks at
190.69 ◦C for CA#2, 173.59 ◦C and 205.68 ◦C for CA#3 and 206.05 ◦C for CA#4 are assigned
to cleavage of the crosslinking types and depolymerization process. Peaks at 293.35 ◦C,
292.56 ◦C (strong), and 297.96 ◦C were assigned to degradation of functional groups and
polymer chain. CA#2 seems to be completely degradable after this stage. While others
show smaller peaks at 422.32 ◦C and 408.46 ◦C for CA#3 and CA#4 respectively, these are
assigned mainly to the decomposition of the polymer and emphasizing the relation of the
thermal stability with alginate additives.

The surface area of CA#2, CA#3, and CA#4 are reached around 39.765, 45.0725,
and 46.546 m2 g−1 respectively, while the pore volume is reached around 13.6 cm3 g−1,
19.05 cm3 g−1, and 20.13 cm3 g−1 respectively, indicating the additive of alginate improve
the pore size and consequently the pore volume especially by comparison of 1:2 and 1:3
while 1:4 do not effective so much comparing to 1:3 ratio. The high surface area of the
polymer is the main reason for the high sorption and fast kinetics.

3.1.3. Determination of pHPZC

The pHPZC of chitosan with different incorporation ratios of alginate shows a remark-
able difference. The pHpzc is close to 6.614, 4.88, and 4.42 for CA#2, CA#3, and CA#4
respectively, as shown in Figure S3 (see Supplementary Materials). Various functional
groups used for controlling the behavior of the polymer, i.e., amines from chitosan, with
pKa close to 4.5, 6.7, and 11.6 for 1◦, 2◦, and 3◦ amines respectively, this is the main factor
for increasing the pHpzc values (support the alkalinity), the function as carboxylic from
alginate (two kinds of carboxylic acid; mannuronic (pKa, 3.38) and guluronic acid (pKa,
3.65)) contributes decreasing this ratio (acidic character). Hamza et al. [53] report the variety
in the pHpzc values is mainly depending on the grafted or modified additive functional
groups. From these results, it was shown that the sorbents below the pHpzc values are
partial to completely protonated. The capacity of loading is depending on the species of
metal ions and the pH of the solution, which may bound by electrostatic attraction/or
ionic exchange on the partially protonated atoms. While after these pH values, the sor-
bents become completely deprotonated and bounded with positively charged atoms by
non-electrostatic attraction.
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3.1.4. XPS Characterization

XPS analysis was used to confirm (i) the chemical modifications of the synthesized
material and (ii) investigate the type of bonding for the loaded sorbent through changes
in the chemical environment of atoms after metal sorption (i.e., Cd(II) and Pb(II)). The
results of deconvoluting of the main peaks and shifts after sorption were summarized in
Table S5a,b (see Supplementary Materials). Figure 2 shows the XPS survey spectra of CA#3
(the most effective sorbent), and after loading with Cd and Pb metal ions. The prepared
hydrogel was characterized by C 1s, O, (1s, 2s, OKL1 and OKL2 (weak)), N 1s, and Ca 2p.
The loaded sorbent is characterized by the disappearance of Ca 2p, which confirms use in
the ion exchange process with Cd2+ and Pb2+ from the solution. Cd2+ ion was confirmed
by Cd (4s, 3d3, 3d5, 3p1 and 3s), while Pb found in the loaded sorbent as Pb (3d3, 3d5,
4f7, 4f5, and 4p3). Other ions are appeared in the loaded sorbent as Cl 2p either from
medium (chloride medium) or metal-binding chloride species; which indicated that used
in the sorption process. The high-resolution spectra (HRES) of some selected bands (as
well as their deconvolution) with the assignment of the FWHM and BE were reported in
Table S5a,b (see Supplementary Materials).
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A remarkable change of the C 1s is demonstrated in the loading of metal ions. The
increase in the FWHM for C (=O, -O, Ntert) comparing with the raw material from 1.52 eV
to 1.98 eV and 1.72 eV for raw composite, Pb and Cd loaded sorbents respectively, with
increasing the At% from 8.06% (for unloaded sorbents) to 37.9% and 20.28% respectively,
indicated using of these groups in the binding mechanisms. This is accompanied decreasing
of C (C, H, N) peak from 1.67 eV (FWHM) and 44.56% (At%) on the unloaded material
to 0.86 eV (31.14%) and 1.1 eV (22.81%) respectively. This confirms using of primary and
secondary amines for binding with metal ions. Four deconvoluting peaks were observed for
the unloaded sorbent for C=C, C (C, N), C-(O, =C), and C(=O, O-C, and Ntert) at 283.93 eV,
284.35 eV, 285.82 eV, and 286.81 eV respectively. The C=C peak was disappeared for Pb
loaded sorbent, while others remarkably appeared at 284.17 eV, 285.14 eV, and 287.05 eV
respectively, this is confirming the expected tautomerization of C=C with carbonyl and
amid groups [61,62].

The N 1s deconvolution shows an increasing number of the splitting peaks, this is
related to the metal binding effect. The unloaded sorbent was deconvoluted into two
peaks for N(C, =C, H) and Ntert at 398.64 eV and 400.66 eV respectively. As metal-binding
proceed, new peaks have appeared as well as shifts of the original peaks were observed,
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i.e, 398.68 eV and 401.06 eV for N(C, =C, H) and Ntert respectively with the formation of
the other two peaks at 404.57 eV and 405.59 eV which assigned to O−N+, N(Pb), and NO2
respectively. Again, shifts on Cd loaded sorbent with a new peak for N+(Cd) has appeared
at 400.71 eV [35,63,64]. Displacements of the C=N confirm participation in the binding
mechanism which is accompanied by the change of the group environment [65,66].

The O 1s show a remarkable change in the signals as metal sorbed with varies of
FWHM and At%. Two deconvoluting peaks were observed for the CA#3 (i.e., C=O and
O (C, H) at 530.24 eV and 531.51 eV respectively) [61,67]. A new peak was found for
Pb-O at 528.47 eV, this confirms direct interaction with Oligand. Changes in the C (C, H)
environment were observed by little shifts to 531.5 eV and increasing in the At% to 88.12%.
Another peak has appeared at 532.32 eV, which is related to CO (C, OH) with low FWHM
and At% (i.e., 0.7 and 3.22% respectively). This behavior, is not the same as in the case of
Cd, increasing the FWHM and At% of the C=O signal to 1.5 and 26.83% respectively, and
decreasing for O (C, H) to 2.02%, and 60.14% respectively with a new peak at 232.09 eV
indicates the high affinity of Cd(II) to O atoms than Pb (II) (Table S5b) [68,69].

Cadmium (II) sorption is confirmed by Cd 3d which splitting to four individual
peaks at 405.29 eV and 409.48 eV for Cd 3d5/2 while peaks at 412.84 eV and 416.83 eV
for Cd 3d1/2 [68,70]. This confirms that the O and N ligands are participating in Cd ions
sorption. Other BE was detected for Cd 3p at Cd 3p1/2 with several internal peaks (i.e.,
636.61 eV, 641.01 eV, 644.28 eV and 648.74 eV). Additionally, the Cd 4d has two peaks at
4.43 eV and 8.95 eV. These results confirm the high tendency of Cd for N and O ligands.
Pb 4f was deconvoluted into two peaks at 143 eV and 138 eV for Pb 4f5/2 and Pb 4f7/2
respectively [71], while Pb 5d appeared at 18.23 eV confirming the binding with O and
N atoms.

3.1.5. Elemental Analysis

C, N, O, and H% were analyzed for the prepared sorbents. As expected, the alginate
moiety increases of the O and C contents compared with the N fraction from chitosan.
The N% decreased from 4.52 mmol g−1 to 3.73 mmol g−1 and 2.99 mmol g−1 for CA#2,
CA#3, and CA#4 respectively, Table S6 (see Supplementary Materials). On the other hand,
increasing the mole fraction of O for CA#2 to CA#4 indicating the efficient quantitative
synthesis by alginate (source of carboxylic).

3.1.6. SEM-EDX Analysis

Figure S4 (see Supplementary Materials) shows the SEM-EDX analysis of the synthe-
sized sorbents. From the SEM pictures, it was shown a dense and little porous surface
structure. The surfaces become denser as the ratio of alginate increases and progressively
become a more porous structure. These results were identical with the surface area (N2
adsorption) information. This is an indication of the successive modifications which con-
tribute to increasing the heterogeneities properties through polarities and affected the
porous network. From the EDX analysis, the decrease in the N content (from chitosan)
from 5.6 mmol g−1 to 4.8 mmol g−1 and 2.9 mmol g−1 for CA#2, CA#3, and CA#4 respec-
tively, with increasing of O and C, confirms the successive modification and designing. By
comparing the molar fraction of N and O from elemental analysis and the EDX analysis, a
little increase of the EDX analysis for the CA#2 and CA#3, while the CA#4. On the other
hand, increasing the Ca% with alginate ratio gives evidence for the successive ionotropic
gelation of the carboxylic groups.

3.2. Sorption Properties
3.2.1. pH Effect

Figure 3 identifies the pH effect of Cd(II) and Pb(II) sorption capacities on CA#2, CA#3,
and CA#4 sorbents. As pH increased, the amines and hydroxyl groups are progressively
deprotonations, causing reducing the repulsion effect of cationic metal species (from the
solution) and protons (from the sorbent), which causes an improvement of the sorption
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efficiency. It was shown that Pb(II) and Cd (II) follow the same behavior until equilibrium.
The pH of equilibrium (pHeq) is close to 4 for the three sorbents (pHin = 5). The sorbents
show different sorption capacities depending on the alginate ratio. CA#3 shows the highest
sorption capacities for both elements, the mean average of repeated experiments are closed
to (92.43 mg Cd g−1/ 0.822 mmol Cd g−1, and 87.02 mg Pb g−1/ 0.42 mmol Pb g−1),
compared to other sorbents (i.e., CA#2; 0.6 mmol Cd g−1 and 0.323 mmol Pb g−1 while
CA#4; 0.627 mmol Cd g−1 and 0.37 mmol Pb g−1). This indicates the efficient addition
of alginate to chitosan and its relation to enhancing the sorption capacity. The presence
of carboxylic groups supports the chelation properties of the sorbent toward positively
charged metal ions. As pH increased above 5, the sorption capacity slightly increased.
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Figure 3. pH effect on Pb(II) (a) and Cd(II) (b) sorption using CA#2, CA#3 and CA#4 (C0: 0.958 mmol
Cd L−1 for 1st Series and 0.967 mmol Cd L−1 for 2nd Series; C0: 0.48 mmol Pb L−1 for1st Series and
0.51 mmol Pb L−1 for 2nd Series; sorbent dosage, SD: 1 g L−1; temperature, T: 23 (±3) ◦C; time: 48 h;
agitation speed: 170 (±3) rpm).

Figure S5 (see Supplementary Materials) shows the variation of pH during sorption.
It has a little difference (i.e., ∆pH around 0.4 unit). The sorption shows three sections
(a) acidic (i.e., pH 1), the relative limit of sorption (below 0.18 mmol Cd g−1 and 0.03 mmol
Pb g−1), at this pH, the sorbent is strongly protonated (low pH values), (b) in the range
of pH 2–5; steep increase in the loading properties to pH 5 (as pH increase the amine and
hydroxyl groups become deprotonated) for enhancing the sorption capacity, (c) the relative
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stabilization part after pH 5 with little or neglected sorption of both metals. The difference
in the sorption of the two elements may regard the radius of hydrated species for each
metal ion or softness. The ionic radius (Å) of hydrated species for Cd (II) and Pb(II) is
around 0.95–0.96 Å [72] and 1.20 Å [73] respectively, while the softness of both metals
ranged about +0.58 and +0.41 respectively. Other details about the diffusivity in water
were shown in Table S7 [74]. Figure S6 (see Supplementary Materials) shows the SEM-EDX
analysis of the sorbent (CA#3) after sorption by Cd(II) and Pb(II) at pH 5.

Cadmium and lead show relative stability with chloride form, which presents in
the acidic solution as neutral or cationic species. This is the main reason for decreasing
the sorption in the acidic medium (mainly MCl+, (i.e., M = Cd or Pb)), repulsion of the
positively charged metal ions with protonated groups on the sorbent has happened. As
pH increased, the possibility of deprotonation of amines and hydroxyl groups become
increases, and the possibility of electron pairs to bound with the positively charged ions
(i.e., Cd2+ and Pb2+ (predominate) or CdCl+ and PbCl+ (minor)) through chelation was
performed. This gives evidence for the presence of chloride ions in the EDX and XPS
analyses. The metal ions may bind as M2+ or in chloride form.

3.2.2. Sorption Kinetics

The uptake kinetics were investigated toward Cd(II) and Pb(II) sorption. The exper-
imental condition was set to (C0: 100 (±5) mg L−1; SD: 250 mg L−1, and pH0: 5). The
sorption is fast, depending on the sorbent kind and the metal ions used. One-hour contacts
are sufficient for Cd sorption on CA#2 and CA#4, while CA#3 needs 50 min contact for
saturation. Sorption passed through two phases, (a) sorption on the surface through the ex-
ternal functional groups, this kind of sorption was characterized by fast and instantaneous,
(b) sorption through the reactive groups in the internal parts through the pores. For Pb ion,
the saturation time seems to be close with Cd for CA#2 and CA#3, while CA#4 required
more time for around 90 min. This is due to the effect of amines and carboxylic groups
that grafted on the sorbent. The mass transfer was expected for this sorbent due to micron
size. Otherwise, we expect a reduction of the intraparticle diffusion, and the sorption was
controlled by resistances to diffusion (through film, and bulk) as well as the rate of reaction.
Different reaction rates were detected for kinetics, PFORE and PSORE models [45] fit the
kinetic profiles (Table S2, see Supplementary Materials). Figure 4 and Table 1 compare
the PFORE and PSORE modeling profiles, Figure S7a,b (see Supplementary Materials).
The PFORE fits the sorption profiles for both elements. The closer values of calculated
and experimental results and the correlation coefficients are the main parameters for the
priority of one profile over the other.
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Table 1. Parameters of the kinetic models for Cd(II) and Pb(II) of using CA#2–4.

C0: (mmol M L−1)
C0 (mmol Cd L−1) C0 (mmol Pb L−1)

0.902 0.4997

Model Parameter CA#2 CA#3 CA#4 CA#2 CA#3 CA#4

Exp. qeq (mmol g−1) 0.564 0.828 0.664 0.338 0.445 0.393

PFORE

qeq,1 (mmol g−1) 0.554 0.842 0.641 0.319 0.452 0.386
k1 × 102 (min−1) 4.449 4.56 4.19 3.592 5.38 6.353

R2 0.985 0.974 0.973 0.946 0.987 0.963
EV × 104 5.4 4.6 5.7 0.233 0.896 0.177

AIC −109.55 −85.88 −92.79 −98.84 −69.16 −72.67

PSORE

qeq,2 (mmol g−1) 0.605 0.88 0.696 0.312 0.473 0.379
k2 × 102 (L mmol−1 min−1) 9.31 11.26 13.52 22.7 32.43 46.26

R2 0.973 0.883 0.879 0.928 0.889 0.835
EV × 104 5.39 9.8 12.6 3.635 3.75 5.16

AIC −110.79 −78.74 −68.72 −86.45 −73.32 −58.15

q: Sorption capacity (mmol g−1); k1: Apparent PFORE rate coefficient (min−1); k2 (apparent PSORE rate coefficient (L mmol−1 min−1);
AIC: Akaike information criterion (eqS 1) [75]; R2: determination coefficients: EV; estimated variance.

3.2.3. Sorption Isotherms

Sorption isotherms for the three sorbents were measured at pH0 5 (Figure 5 and
Figure S8a,b, see Supplementary Materials). The sorbents show a steep initial slope before
equilibrium plateau for both elements, in which CA#3 is steeper than CA#4 and CA#2. The
residual metal concentration for both Cd(II) and Pb(II) is close to 2.5 (±0.4) mmol Cd L−1

and 1.5 (±0.3) mmol Pb L−1 respectively. On the other hand, the sorption capacity (maxi-
mum) is 1.42, 1.89, and 1.61 mmol Cd L−1 for CA#2, CA#3, and CA#4 respectively, while
close to 0.75, 1.054, and 0.87 mmol Pb L−1 respectively. The difference in the sorption
for both elements may be related to Pearson’s rules [76], hard and soft (H&S) acid–base
theory. Yang and Alexandratos [77] reported about a series of different functionalized
sorbents grafted by donor atoms for lanthanides extraction based on Soft Acid and Base
theory. Other parameters that influence the interaction of ligands and metal ions were
investigated, this includes the coordination effect, ligand protonation, and hydration. The
polarizability of Cd(II) and Pb(II) [74] makes preferential binding to N and O donor atoms.
Giraldo et al. [34] show the high sorption of lead by gelatin activated carbon sorbent beads
over Zn(II), Cd(II), and Cu(II) metal ions which are related to the ionic radius. Polystyrene
grafted by thiourea is used for investigating the sorption affinity and shows high loading
capacity for Pb(II) than Cu(II) and Cd(II). The difference in the hydrated radius [78] of
Cd and Pb explains the difference in the sorption affinity of Cd over Pb (i.e., 0.9 Å, and
1.20 Å for Cd(II), and Pb(II) respectively), see Table S7. Figure 5 shows the most fitted
model toward Cd and Pb (Langmuir and Sips). The parameters of each model (Langmuir,
Freundlich, and Sips) are reported in Table 2. By comparing the theoretical capacity and
determination coefficients (R2), it was shown that the Freundlich model (power-type) is the
worse fit model for both elements, Figure S8a,b (difficult matching of both experimental
data and fitted curves profile). On the other hand Cd(II) and Pb(II) for the three sorbents
were fitted with Langmuir (mechanistic equation) and Sips models, (the Langmuir is more
close for Cd(II)) while the Sips equation fits the Pb(II) sorption isotherm closer than Lang-
muir. The qm of the monolayer saturation for Pb(II) is overestimated than that for Cd(II)
of the experimental values. Additionally, the affinity coefficients (bL) are assigned to be
the highest initial slope for Cd than Pb, this is not the same as that of the Sips equation
(Table 2).
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Table 2. Parameters of fitted models for Cd(II) sorption isotherms by using CA#2–4 sorbents.

Model Parameter
Cd(II) Pb(II)

CA#2 CA#3 CA#4 CA#2 CA#3 CA#4

Exp. qm (mmol g−1) 1.42 1.894 1.616 0.754 1.054 0.877

Langmuir

qm,L (mmol g−1) 1.505 1.926 1.717 0.799 1.248 0.994
bL (L mmol−1) 3.264 4.835 3.998 3.929 4.303 3.798

R2 0.96 0.913 0.983 0.901 0.913 0.935
AIC −0.495 −11.01 −23.48 −10.96 −35.61 −35.14

Freundlich

kF 1.097 1.664 1.222 0.639 0.994 0.777
nF 3.955 4.529 3.982 2.454 4.675 3.079
R2 0.781 0.734 0.906 0.982 0.899 0.971

AIC −0.285 −12.01 −26.32 −15.85 −26.44 −39.84

Sips

qm,S(mmol g−1) 1.407 1.948 1.744 0.777 1.118 0.908
bS (L mmol−1) 4.485 4.434 4.994 4.347 4.989 5.988

nS 0.755 0.999 0.754 0.939 0.994 0.795
R2 0.916 0.896 0.919 0.958 0.939 0.971

AIC −3.36 −15.42 −24.9 −7.88 −26.36 −29.67
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Table 3 reports a comparison of sorption capacities of different sorbents for Cd(II)
and Pb(II). From the first point of view, the synthesized sorbents have a high capacity and
relatively fast sorption kinetics to cite this sorbent as one of the most efficient for Cd(II) and
Pb(II). Some sorbents show a relatively high capacity than CA#X (x = 2, 3, and 4) sorbents, as
cationic resin (001 × 7), and HAHZ-MG-CH sorbent, while the sorption kinetic (i.e., 120 min
and 60 min) of these sorbents are saturated in much longer time than the CA#X sorbents
(maximum saturation time less than 50 min). Mercaptoamine on silica-coated magnetic
nano-sorbent, gelatin/activated on carbon beads, tripolyphosphate functionalized chitosan
and HA-MG-CH showed high capacity than the CA#X toward Pb(II), but as discussed on
the Cd, the main advantage of this sorbent concerns the saturation time (around 40–50 min)
while the other sorbents were saturated in around (180 to 60 min).

Table 3. Comparison of the sorption properties (qm, mmol g−1) for Cd(II) and Pb(II) with other alternative sorbents.

M Sorbent pH Equilibrium Time (min) qm
(mmol g−1) Ref.

Cd
(II)

Rice husk biomatrix 6 90 0.149 [79]
Carboxylated grafted corn stalk 5.8 60 0.42 [68]
EDTA Saccharomyces cerevisiae 5 60 0.29 [80]

alginate beads 6 480 0.28 [81]
Alginate beads with Fucus vesiculosus 6 480 0.58 [81]
HEMA-PGMA functionalized DETA 5 50 0.32 [82]

PS-Methylphosphonic sorbent 5 180 0.34 [83]
Amberlite IR−120 4–8 300 0.9 [84]

Polyaminophosphonate crosslinked polymer 4 240 0.48 [85]
Duolite ES 467 4.8 90 0.15 [86]

Cationic resin (001 × 7) 4–5 120 3.16 [87]
Amine chelating fibers on porous anion

exchange resin 3 60 1.12 [88]

HAHZ-MG-CH sorbent 5 60 2.67 [70]
Thiophene-furan-β-ketoenol grafted on silica 6.0 30 0.75 [89]

CA#2 5 50 1.42 This work
CA#3 5 50 1.89 Thiswork
CA#4 5 50 1.616 This work

Pb
(II)

Rice husk biomatrix 6 90 0.28 [79]
Magnetic oak bark biochar 5.0 60 0.146 [90]

Sugarcane bagasse 5.0 60 0.005 [91]
Beet pulp 5.0 60 0.009 [91]

Mercaptoamine on silica-coated
magnetic nanosorbent 6–7 120 1.41 [92]

Thiamine on silica microparticles 5.0 120 0.19 [93]
Schiff base resin 10 120 0.50 [94]

Purolite C100 sorbent 5–6 1440 0.046 [95]
Di (2-ethylhexyl) phosphate

functionalized resin 4.0 80 0.172 [96]

Gelatin/activated on carbon beads 5.0 60 1.79 [97]
Formaldehyde/salicylic acid/catechol

sorbent 6.0 240 0.931 [98]

Tripolyphosphate functionalized Chitosan 5.0 1080 1.21 [34]
Azido chelating fiber 6.0 1440 1.50 [99]

HA-MG-CH 5.0 60 2.51 [35]
Magnetic iron oxide-silica shell

nanocomposites 6 90 0.0719 [100]

CA#2 5.0 50 0.75 This work
CA#3 5.0 50 1.05 This work
CA#4 5.0 50 0.87 This work
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3.2.4. Expected Binding Scheme

We summarize the data mentioned in the XPS survey, FTIR analysis, the effect of sorp-
tion as a function of pH, the pHPZC, and the semi-quantitative EDX analyses. We expected
different interaction modes of the reactive groups present on the designed hydrogel and
the metal ions in the solution. The material consists of multi-functional groups as amines
(1◦, 2◦, and 3◦ amines) from chitosan moiety, hydroxyl groups from the polysaccharide
of chitosan and alginate, and carboxylic groups from alginate. These groups are symmet-
rically arranged for binding with the metal ions. The functional groups in the sorbent
are completely deprotonated (see the pHpzc analysis). Participating are the amines and
hydroxyls (decreasing the intensities of OH and NH in the FTIR), tautomerization of C=O
with the neighboring groups for bending (decreasing and shifts of the assigned peak in the
FTIR and XPS analyses), also chelation with carboxylic groups as well as ionic exchange
mechanism with the Ca2+ ions from the ionotropic gelation (disappearing of Ca2+ ions
from the loaded sorbent in the XPS analysis, and also shifts of the C=O and COO− of
the carboxylate salts in the FTIR analysis). The metal ions are found in the form of free
metal cations (M2+) or as monovalent chloride form (as assigned from the XPS analysis), as
summarized in Scheme 2.
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3.2.5. Metal Desorption and Sorbent Recycling

Figure S9 (see Supplementary Materials) shows the comparable desorption properties
of the synthesized sorbents toward Cd(II) and Pb(II) using 0.2 M HCl. Different behavior
of desorption was observed, i.e., the time that was taken for complete desorption. This
eluent reagent is sufficient for completely eluting the adsorbed metal ions.

Desorption seems faster than the adsorption profile; 15–40 min is sufficient for com-
plete desorption. CA#3 is the slowest sorbent for releasing the adsorbed metal ion, also
Pb(II) is more efficient than Cd(II) (40 min for Cd(II) and 30 min for Pb(II) for complete
desorption). The other sorbents required shorter time, i.e., 15 and 30 min was sufficient for
complete desorption of Cd from CA#2 and CA#4 respectively. On the other hand, 30 min
for Pb(II) appeared to be sufficient for completely desorbed metal ions.

The most efficient sorbent for either Cd and Pb is CA#3, which leads to further
experiments concerning sorption desorption cycles (stability). Table 4 reports the cycles
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of sorption and desorption. The sorbent shows stability for five cycles, the loss in the
sorption does not exceed 4% and around 5% for Cd and Pb respectively, while desorption
remains stable after the five cycles (or little decrease in the efficiency, up to 0.1% and 0.01%
respectively). The chemical stability was detected by FTIR analysis (Figure 1, Section 3.1.1)
which exhibits restoring of the function groups after five cycles.

Table 4. Cycles of sorption and desorption for Cd(II) and Pb(II) on CA#3 sorbent by 0.2M HCl.

Cycle

Cd(II) Pb(II)

Sorption (%) Desorption (%) Sorption (%) Desorption (%)

Average SD Average SD Average SD Average SD

#1 92.43 3.85 99.98 0.15 89.69 0.53 99.23 0.87
#2 91.09 3.07 100.40 0.5 89.03 0.75 99.79 0.83
#3 90.71 3.58 99.92 0.36 87.28 0.41 99.24 0.46
#4 90.05 4.38 99.85 0.1 85.59 0.42 99.49 0.55
#5 89.07 4.52 99.85 0.52 84.56 0.65 99.22 0.26

Loss @ Run
#5 (%) 3.36 0.1 5.1 0.01

3.2.6. Sorption Characteristic (Multi-Component Solution)

The sorption from equimolar multi-component ions was investigated for CA#3 at
different pH values. The choice of metal ions is based on the mainly presented in the
contaminated waste samples, especially that of the high salinity solution, among these
ions, Ca(II), Mg(II), and Al(III). This study focused on the selectivity of the grafted groups
(amine, amide, hydroxyl, and carboxylic groups) for Pb and Cd in comparison with other
associates. The grafted groups give broad flexibility for metal ions to bind through chelation,
especially at a low acidic solution as pH 5. Figure S10 (see Supplementary Materials) shows
the selectivity coefficients of Cd and Pb ions comparing to the other associates (SCCd/metal
and SCPb/metal). The selectivity coefficients were calculated from the below equation.

Selectivitycoefficient(SC) =
D(CdorPb)

Dmetal
=

qeq(CdorPb)× Ceq(metal)
Ceq(CdorPb)× qeq(metal)

(1)

The sorbent preferentially of Cd over Pb in the multi-component solution at a higher
pH value similar to the mono component solution experiment. The SC of SCCd/metal at
pH 2.43 ranged from 0.9–1.4 for Cd over other ions, while for Pb, it reached around 0.6
to 1.7. As pH increased, the efficiency toward Cd and Pb becomes preferentially than the
associated ions, and the selectivity coefficient accordingly increased. At pH 3.68 to 4.76,
the sorbent shows priority for Cd than other elements by around 1.7 to 6.7, 3.1 to 25.7, and
3.5 to 22 times respectively depending on the metal. The lowest selective properties were
obtained with Pb and the highest for Al ion. On the other hand, for Pb, the selectivity
arranged 0.56 to 3.8, 0.3 to 8.2, 0.2 to 6.3 times respectively. These data are arranged in
Table S8. The highest selectivity was reached at high pH values and arranged according to
Cd(II) > Pb(II) > Mg > Ca > Al.

3.3. Treatment of Contaminated Water

The Abu Zaabal site is a famous and highly contaminated area, Figure S11 (see
Supplementary Materials). The collected water sample from Abu Zaabal lake was enriched
with Cd and Pb at around 1.96 and 2.03 mg L−1 respectively, and other elements (i.e., Zn,
Cu, Al, and Fe) were detected. The sorption capacity of CA#3 was controlled as a function
of pH (i.e., 5.8 (original pH of the taken sample), 4.04 (the partially protonated sorbent
statement), and pH 2 (acidic pH)). The batch method was used for 5 h of contact, while the
SD was fixed in all experiments at 1.0 g L−1. The sorption capacity and the total recovery
for each element were determined using the mass balance equations as discussed before.
The sorption efficiency improved with pH (parallel to synthetic solution). The removal



Materials 2021, 14, 2189 17 of 23

efficiency was studied under the experimental condition and found to be around 85.48%,
98.31%, 96.95%, 91.14%, 82.27%, 99.44%, 99.21%, and 95.64% for Cu, Hg, Fe, Al, Zn, Cd,
Pb, and Ni respectively from the original pH value (5.8). The sorption efficiency varied
depending on the pH and metal ions. Table S9 reports the sorption capacity of each element
at different pH values, the original, as well as the residual (after treatment). The residual
concentrations are compared with the MCL (maximum contaminant level) for the drinking
water assignments according to the World Health Organization [1].

Some concentrations are still higher than the allowance for drinking water. Zinc(II)
has a high concentration in the MCL (5 mg L−1) and a lower concentration in the effluent
(1.31 mg Zn L−1). The high level for the livestock feeds is 0.05 mg Cd L−1, and 0.1 mg Pb
L−1, and 24 mg Zn L−1. Figure S12 (see Supplementary Materials) shows the selectivity
coefficient of Cd and Pb comparing to the other elements at the selected pH values. It was
shown that as pH increased, the loading capacity toward metal ions increased, showing
the main improvements achieved with Cd and Pb. The SCCd/metal at pH 5.8 reached 3.04,
8.07, 30.11, 5.58, 38.18, 17.23, 8471.51, and 1.41 times for Hg, Ni, Cu, Fe, Zn, Al, Na, and Pb
respectively, while the SCPb/metal at the same condition of pH value is about 5.74, 21.39,
3.96, 12.24, 6018.4, and 27.12 times respectively while reached around 0.71 for Cd. At the
neutral pH, the selected experimental conditions are suitable for the livestock feed. In all
cases, the final concentration can systematically be improved by increasing the SD. Data
represented in Figure 6 show comparable studies of the removal efficiencies after treatment
of water samples at different pH values. The maximum removal of metal ions was obtained
at high pH values of 5.8. The R% for the metal ions at pH 5.8 is about 85.48, 98.31, 96.95,
91.14, 82.27, 99.44, 99.21, and 95.64% for Cu, Hg, Fe, Al, Zn, Cd, Pb, and Ni respectively,
and these ratios decreased with decreasing the pH value to 69.08, 76.63, 93.38, 71.46, 54.67,
86.73, 72.41, and 50.92% respectively for pHin equivalent to 4. The poor recovery was
obtained for the acidic pH value that reached 20.04, 53.74, 55.87, 56.44, 6.49, 7.65, 9.85, and
4.54% respectively, in which Hg, Fe, and Al show the highest R% (around 55%) over the
others (less than 10% except for Cu around 20%).
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Figure 6. Comparative studies of the removal efficiencies after treatment of water samples (pHin,
2.07, 4.04 and 5.8; SD: 1 g L−1; T: 23 (±3) ◦C; time: 5 h; agitation speed: 170 (±3) rpm) at different
pH values.

4. Conclusions

A newly designed biopolymer member family of chitosan was prepared for enhancing
the sorption efficiency. The synthesized polymer was crosslinked by GA and ionotropic
gelation was done by CaCl2. The prepared sorbents were synthesized by different ratios
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of alginate to the fixed amount of the chitosan followed by crosslinking and ionotropic
gelation. Sorbents CA#2, CA#3, and CA#4 of 1:2, 1:3, and 1:4 of chitosan and alginate
respectively were synthesized. These eco-friendly and cost-effective sorbents were char-
acterized by different analytical tools; physical characterization (i.e., SEM, TGA, and N2
adsorption), chemical characterization (FTIR, EDX, titration, and XPS). The sorbents have
various reactive groups (hydroxyls, amines (from chitosan), carboxylic (from alginate),
amide and carbonyl groups (from the crosslinking agent)), and all of these groups combine
in good symmetry to enhance the sorption efficiency toward Cd(II) and Pb(II) as well as
improve the stability (no noticeable decreasing in the efficiency after five cycles of sorption
desorption). The optimum sorption of the different synthesized sorbents was recorded
at pH0 5. The mean average sorption capacity for CA#2, CA#3, and CA#4 is closed to
0.6 mmol Cd g−1, 0.822 mmol Cd g−1, and 0.627 mmol Cd g−1, respectively, as well as
0.323 mmol Pb g−1, 0.42 mmol Pb g−1, 0.37 mmol Pb g−1 respectively. More than 99% of
adsorbed ions were desorbed by 0.2M HCl with contact for 15 to 30 min. Loss of sorption
capacity was observed for around 4% from Cd and 6% from Pb by five cycles of sorption
desorption, while a negligible loss in desorption performances was obtained. Langmuir
and Sips’ equations fit the isotherm profile of both elements more than the Freundlich
equation. However, PFORE fits the kinetic profiles for both elements.

The sorbent (CA#3) was tested toward the multi-component solution of mono, di, and
trivalent metals and shows high affinity toward Cd and Pb especially at high pH values. At
the final step of this study, the sorbent (CA#3) is subjected to the removal of contaminant
from a real water sample in the industrial area collected from Egypt. The experiments were
performed at different pH values and compared to the final concentration of the water
samples produced after sorption by the MCL according to WHO and another organizer,
also by the maximum levels of the contaminants for livestock and irrigation of water. The
prepared sorbent shows high recovering of the contaminant even in a solution with low
concentrated metal ion as that found in the underground water and industrial samples that
applied for the water treatment technology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14092189/s1. Table S1. Maximum contaminant limits (MCL) and Recommended Maximum
Concentrations (RMC) of some heavy metals in drinking water, irrigation water, and livestock
drinking water. Table S2. Uptake kinetics modeling—PFORE (pseudo-first-order rate equation),
PSORE (pseudo-second-order rate equation), and RIDE (resistance to intraparticle diffusion equation—
Crank equation). Table S3. Sorption isotherm modeling (Foo and Hameed, 2010; Tien, 1994). Table S4.
Maximum contaminant limits (MCL) of some heavy metals in drinking water. Table S5a. XPS
analysis (HRES XPS peaks) of C 1s, N 1s, O 1s, Cl2p, M (M = Cd and Pb) for CA#3 sorbent before
and after metal sorption. Table S5b. Assignment peaks, BEs, FWHE, and atomic fractions (AF, %)
of C 1s, N 1s, O 1s, Cl 2p, M (M = Cd and Pb) for CA#3 sorbent before and after metal sorption.
Table S6. EA of CA#2, CA#3, and CA#4 sorbents for C, N, O, and H %. Table S7. Ionic properties
of selected metals. Table S8. Selectivity Coefficient (SC), Kd values, Co, Cf, and qeq of Cd and Pb
in an equi-molar solution containing Al, Ca, and Mg as a function of pH. Table S9. Comparison
of the metal concentration with the MCL (mg L−1) according to drinking water guides and the
removal efficiency at different pH values. Figure S1. FTIR analyses of CA#2 and CA#4 of loaded
metal ions (Cd (A) and Pb (B)), after desorption, and after 5 cycles of sorption desorption. Figure S2a.
TGA analysis of CA#2-(a), CA#3-(b), and CA#4-(c).sorbents. Figure S2b. DTG of the synthesized
CA#2-(a), CA#3-(b), and CA#4-(c) sorbents, Figure S3. pHpzc measurements of CA#2, CA#3, and
CA#4 sorbents (SD: 2 g L−1; time of agitation: 48 h; speed, 170 (±3) rpm; T: 23 (±3) ◦C). Figure S4.
SEM and EDX for the semi-quantitative analysis of CA#2, CA#3, and CA#4 sorbents. Figure S5.
pH variation for Cd(II)- -(a) and Pb(II) -(b) sorption using CA#2, CA#3, and CA#4 sorbents (C0:
0.958 mmol Cd L−1 for 1st Series and 0.967 mmol Cd L−1—2nd Series, C0: 0.48 mmol Pb L−1 for—1st
Series and 0.51 mmol Pb L−1—2nd Series; sorbent dosage, SD: 1 g L−1; temperature, T: 23 (±3) ◦C;
time: 48 h; agitation speed: 170 (±3) rpm). Figure S6. SEM-EDX analysis of sorbent (CA#3) after
loading with Cd(II) -(a) and Pb(II) -(b) ions. Figure S7. Sorption kinetics profile of the PSORE for
Cd(II) (a) and Pb(II) (b) (C0: 100 (±5) mg L−1; SD: 250 mg L−1, pH0: 5). Figure S8. Cd (II)- (a) and
Pb(II) -(b) sorption isotherms using CA#2, CA#3, and CA#4—Modeling with Freundlich equation (C0:
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10–500 mg M L−1; SD: 1 g L−1; T: 23 (±3) ◦C; time: 48 h; agitation speed: 170 (±3) rpm). Figure S9.
Desorption efficiencies for loaded sorbent (from kinetic experiments) for Cd(II) (a) and Pb(II) (b)-
using 0.2M HCl (SD: 1 g L−1; T: 23 (±3) ◦C; time: 24 h; agitation speed: 170 (±3) rpm). Figure S10.
Sorption of Cd (solid symbols/dotted lines) and Pb (open symbols/solid lines) comparing to other
elements in multi-component of mono, di, and trivalent cations (multi-component concentrations;
C0 (M): 1.0 mmol metal L−1; SD: 1 g L−1; time of agitation: 48 h; speed: 170 (±3) rpm; T: 23 ±3 ◦C).
Figure S11. Photos of the contaminant industrial areas. Figure S12. Sorption of Cd(II) (A) and
Pb(II)(B) in naturally contaminated water at different pH values (SD: 1 g L−1; time of agitation: 5 h;
speed: 170 (±3) rpm; T: 23 ± 3 ◦C).
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