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Background: Maternal over- and undernutrition in pregnancy plays a critical role in fetal
brain development and function. The effects of different maternal diet compositions on
intrauterine programing of the fetal brain is a lesser-explored area. The goal of this study
was to investigate the impact of two chowmaternal diets on fetal brain gene expression
signatures, fetal/neonatal growth, and neonatal and adult behavior in a mouse model.

Methods: Throughout pregnancy and lactation, female C57Bl/6J mice were fed one of
two standard, commercially available chow diets (pellet versus powder). The powdered
chow diet was relatively deficient in micronutrients and enriched for carbohydrates
and n-3 long-chain polyunsaturated fatty acids compared to the pelleted chow. RNA
was extracted from embryonic day 15.5 forebrains and hybridized to whole genome
expression microarrays (N = 5/maternal diet group). Functional analyses of significantly
differentially expressed fetal brain genes were performed using Ingenuity Pathways
Analysis and Gene Set Enrichment Analysis. Neonatal behavior was assessed using a
validated scale (N = 62 pellet-exposed and 31 powder-exposed). Hippocampal learning,
locomotor behavior, and motor coordination were assessed in a subset of adults using
fear conditioning, open field testing, and Rotarod tests (N = 16 pellet-exposed, 14
powder-exposed).

Results: Comparing powdered to pelleted chow diets, neither maternal weight
trajectory in pregnancy nor embryo size differed. Maternal powdered chow diet was
associated with 1647 differentially expressed fetal brain genes. Functional analyses
identified significant upregulation of canonical pathways and upstream regulators
involved in cell cycle regulation, synaptic plasticity, and sensory nervous system
development in the fetal brain, and significant downregulation of pathways related to
cell and embryo death. Pathways related to DNA damage response, brain immune
response, amino acid and fatty acid transport, and dopaminergic signaling were
significantly dysregulated. Powdered chow-exposed neonates were significantly longer
but not heavier than pelleted chow-exposed counterparts. On neonatal behavioral
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testing, powdered chow-exposed neonates achieved coordination- and strength-
related milestones significantly earlier, but sensory maturation reflexes significantly later.
On adult behavioral testing, powdered chow-exposed offspring exhibited hyperactivity
and hippocampal learning deficits.

Conclusion: In wild-type offspring, two diets that differed primarily with respect to
micronutrient composition had significant effects on the fetal brain transcriptome,
neonatal and adult behavior. These effects did not appear to be mediated by alterations
in gross maternal nutritional status nor fetal/neonatal weight. Maternal dietary content
is an important variable to consider for investigators evaluating fetal brain development
and offspring behavior.

Keywords: maternal diet, fetal brain, transcriptome, strength, coordination, sensory, micronutrient, fatty acid

INTRODUCTION

In both human epidemiologic and animal model studies,
maternal under- and overnutrition in pregnancy has been
well-demonstrated to have a deleterious impact on fetal brain
development and offspring behavior (Tozuka et al., 2009, 2010;
White et al., 2009; Antonow-Schlorke et al., 2011; Brion et al.,
2011; Krakowiak et al., 2012; Kang et al., 2014; Edlow et al.,
2016a,b; Li et al., 2016; van der Burg et al., 2016; Veena et al., 2016;
Edlow, 2017; Winther et al., 2018). The impact of maternal dietary
micronutrient composition on the developing fetal brain has
not been as well-characterized. Dietary micronutrient deficiency
may have broader relevance to conditions such as maternal
obesity, in which a relative micronutrient deficiency has been
proposed due to poor maternal dietary quality (Pinhas-Hamiel
et al., 2003; Kimmons et al., 2006; Laraia et al., 2007; Darnton-
Hill and Mkparu, 2015; Jones et al., 2016; Scholing et al., 2018).
The relative contribution of maternal micronutrient deficiency
compared to maternal pre-pregnancy obesity or maternal high-
fat diet in mediating some of the deleterious effects of maternal
obesity on the developing brain is unknown. Similarly, to
what extent the deleterious impact of maternal undernutrition
in pregnancy on the developing fetal brain may be mediated
by micronutrient versus macronutrient deficiency in the diet
remains to be elucidated.

While the impact of maternal macronutrient and
micronutrient intake in pregnancy has been examined in
several human observational studies, these focus primarily on
the impact of maternal intake on pregnancy outcomes such as
preeclampsia and preterm birth, on fetal growth trajectory, and
on neonatal outcomes such as small- and large-for-gestational
age, and incidence of congenital anomalies (Mousa et al., 2019).
Fewer studies have focused directly on the impact of maternal
pregnancy and lactational nutrition on fetal brain development
and offspring behavior (Prado and Dewey, 2014; Li et al., 2019).
There remains a knowledge gap regarding the impact of maternal
micro- and macronutrient intake specifically on fetal brain
development and offspring behavior.

We sought to address this knowledge gap by evaluating
the impact of maternal dietary composition in pregnancy and
lactation on fetal brain development and offspring behavior,

in the absence of maternal pre-pregnancy obesity or maternal
over- or under-nutrition, using two standard commercially
available chow diets that differed significantly with respect to
their micronutrient content (including vitamins and minerals),
and differed in macronutrient content only with respect
to carbohydrate. Our objective was to evaluate the impact
of maternal pregnancy diet on fetal brain gene expression,
neonatal behavior, neonatal growth trajectory, and adult offspring
behavior. If standard maternal chow diets themselves have an
impact on fetal brain development, the choice of chow diet
may be an important variable to consider for neuroscience
researchers investigating the impact of maternal exposures on the
developing brain.

MATERIALS AND METHODS

Mouse Strain, Breeding, Pregnancy and
Lactation Diets
This study was part of a larger research program examining
the impact of maternal nutrient supplementation in pregnancy
on fetal and offspring brain development in mouse models
of Down syndrome compared to wild-type (Guedj et al.,
2018). Female C57Bl/6J mice (Jackson Laboratory, Bar Harbor,
ME, United States) were crossed with Ts1Cje males [B6
T(12:16)1Cje/CjeDnJ], to generate pregnancies in which
approximately half of the fetuses were affected with Down
syndrome and half were wild-type. Only outcomes from
wild-type fetuses and offspring (exposed to the intrauterine
environment of a wild-type/C57Bl/6J dam) were examined.
Breeder pairs received either a standard commercially available
pelleted chow (Teklad 2918), or a standard commercially
available purified powdered chow diet (Bioserv F3197). The
content of each diet is depicted in Table 1.

The rationale was to determine the effects of different
chow diets on wild-type fetal brain development and offspring
behavior, in order to select an optimal control diet for a
subsequent set of experiments focused on the impact of
isoflavone supplementation during pregnancy on fetal brain
development and offspring behavior in Down syndrome (Guedj
et al., 2018). The powdered chow was specifically selected for
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TABLE 1 | Maternal diet composition.

Class Component Powder chow
Bioserv F3197

Regular chow
Teklad 2918

Isoflavone Daidzein, genistein Not present 150–250 mg/kg

macronutrients Crude protein 18.1% 18.6%

Fat 7.1% 6.2%

Carbohydrate 59.3% 44.2%

Crude fiber 4.8% 3.5%

Nutral detergent
fiber

Not present 14.7%

Ash 2.2% 5.3%

Caloric profile Protein 0.72 Kcal/g 0.74 Kcal/g

Fat 0.64 Kcal/g 0.56 Kcal/g

Carbohydrates 2.37 Kcal/g 1.20 Kcal/g

Total 3.74 Kcal/g 3.1 Kcal/g

Micronutrients-
Minerals

Calcium 5.1 g/kg 10 g/kg

Phosphorus 2.8 g/kg 7 g/kg

Sodium 1.03 g/kg 2 g/kg

Potassium 3.6 g/kg 6 g/kg

Chloride 1.6 g/kg 4 g/kg

Magnesium 0.51 g/kg 2 g/kg

Zinc 37.7 mg/kg 70 mg/kg

Manganese 10.5 mg/kg 100 mg/kg

Copper 6.0 mg/kg 15 mg/kg

Iodine 0.21 mg/kg 15 mg/kg

Iron 37.2 mg/kg 200 mg/kg

Selenium 0.17 mg/kg 0.23 mg/kg

Chromium 1 mg/Kg Not present

Fluoride 1 mg/kg Not present

Sulfur 301 mg/kg Not present

Micronutrients-
Vitamins

Vit A 4.14 IU/g 15 IU/g

Vit D3 1 IU/g 1.5 IU/g

Vit E 0.083 IU/g 110 IU/g

Vit K3 Not present 50 mg/kg

Vit B1 6 mg/kg 17 mg/kg

Vit B2 6 mg/kg 15 mg/kg

Niacin 30 mg/kg 70 mg/kg

Vit B6 5.8 mg/kg 18 mg/kg

Pantothenic acid 14.7 mg/kg 33 mg/kg

Vit B12 0.025 mg/kg 0.08 mg/kg

Biotin 0.2 mg/kg 0.4 mg/kg

Folate 2 mg/kg 4 mg/kg

Choline 1028 mg/kg 1200 mg/kg

Vit K1 0.88 mg/kg Not present

Amino acids Alanine 4.6 g/kg 11 g/kg

Arginine 6.4 g/kg 10 g/kg

Aspartic acid 11.2 g/kg 14 g/kg

Cystine 3.5 g/kg 3 g/kg

Glutamic acid 35.6 g/kg 34 g/kg

Glycine 4.3 g/kg 8 g/kg

Histidine 4.8 g/kg 4 g/kg

Isoleucine 9.6 g/kg 8 g/kg

Leucine 14.6 g/kg 18 g/kg

Lysine 13.0 g/kg 9 g/kg

(Continued)

TABLE 1 | Continued

Class Component Powder chow
Bioserv F3197

Regular chow
Teklad 2918

Methionine 4.5 g/kg 4 g/kg

Phenylalanine 7.8 g/kg 10 g/kg

Proline 18.0 g/kg 16 g/kg

Serine 10.0 g/kg 11 g/kg

Threonine 7.7 g/kg 7 g/kg

Tryptophan 2 g/kg 2 g/kg

Tyrosine 10 g/kg 6 g/kg

Valine 11.4 g/kg 9 g/kg

Fatty acids C16: o Palmetic Not present 7 g/kg%

C18: o Stearic Not present 2 g/kg

C18: 1ω9 Oleic Not present 12 g/kg

C18:2ω6 (n-6
LC-PUFA or linoleic
acid, LA)

35.7 g/kg 31 g/kg

C18:3ω3 (n-3
LC-PUFA
α-linolenic acid or
ALA)

4.8 g/kg 3 g/kg

Total saturated 11 g/kg 9 g/kg

Total
monounsaturated

15.9 g/kg 13 g/kg

Total
polyunsaturated

40.4 g/kg 34 g/kg

interrogation given the absence of added isoflavones. The absence
of isoflavone supplementation at baseline in the powdered chow
diet was of interest because this study was a precursor to
an intervention study investigating the benefits of maternal
dietary supplementation with apigenin, an isoflavone, on brain
development in offspring with Down syndrome (Guedj et al.,
2018). It was therefore important to examine the effects of a diet
that could be supplemented with apigenin and did not already
contain other isoflavones that could confound the evaluation of
apigenin’s effect.

All fetuses and offspring reported here are wild-type fetuses
exposed to the intrauterine environment of wild-type/C57Bl/6J
dams that consumed one of two diets during pregnancy
without additional isoflavone supplementation. A subsequent
study compared brain development in mouse models of Down
syndrome versus their wild-type littermates with and without
isoflavone (apigenin) supplementation using only powdered
chow (Guedj et al., 2018).

Dams were started on the study diet at the time of
initial breeding with a sire, in order to isolate the impact of
maternal dietary intake in pregnancy and lactation on fetal brain
development and offspring behavior. The dams continued on
the diet throughout pregnancy and lactation. Offspring were
weaned to the same diet they were exposed to during pregnancy
and lactation. With respect to the breeding strategy, females
were bred with males overnight. Vaginal plugs were checked
by 9 am the next day, with the presence of a vaginal plug
defined as embryonic day 0.5 (E0.5). To exclude the possibility
of daytime mating, males were separated from females during
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the day. Male sires were consistently fed the same single diet
as per their initial breeding pair. Females were weighed at
embryonic days 0 (day of mating), 10, and 15.5, just prior to
euthanasia. Greater than or equal to 10% weight gain at E10 was
used to confirm pregnancy (Johnson et al., 2010). Animals were
housed in cages with standard bedding and nestlets. Animals
were given ad libitum access to chow and water. The colony was
maintained on a standard 12:12 light-dark cycle, with lights on
at 07:00. All experiments were approved by the Tufts Medical
Center Institutional Animal Care and Use Committee (IACUC,
protocol #B2013-20).

Maternal Diet Composition Differences
Table 1 demonstrates the components of the two different chow
diets. They differ significantly in several respects. The powdered
chow was relatively enriched for carbohydrates compared to the
pelleted diet. The powdered chow also contained significantly
higher concentrations of n-3 long-chain polyunsaturated fatty
acids (LC-PUFAs, linolenic acid) compared to pelleted chow,
with a more favorable n-6/n-3 LC-PUFA ratio (7.4 for powdered
versus 10.3 for pelleted chow, with an n-6/n-3 ratio of <10
recommended for infant and adult nutrition) (Gerster, 1998;
Abedi and Sahari, 2014). The remainder of differences between
the two diets favored enrichment of the pelleted diet over the
powdered. Compared to the powdered chow, the pelleted chow
was enriched for: (1) The isoflavones daidzein and genistein
(phytoestrogens known to cross the blood-brain barrier and
exert antioxidant effects) (Bang et al., 2004; Zeng et al., 2004);
(2) the macroelements calcium, phosphorus, sodium, potassium,
chloride, and magnesium (all two- to approximately four-
fold higher in pelleted chow); (3) the amino acids alanine,
arginine and glycine (all approximately two-fold higher in the
pelleted chow); (4) micronutrients zinc, manganese, copper,
iodine, iron, and selenium (all higher in pelleted chow, ranging
from approximately 2-fold to as high as 70-fold) and vitamin

content, with the pelleted chow containing universally higher
vitamin concentrations than the powdered chow. With respect
to micronutrients, manganese, iodine, and iron have the greatest
fold differences between the two diets (9. 5-, 71-, and 5.4-
fold higher in pelleted chow, respectively). With respect to
vitamins, the difference between the two diets was most
notable for Vitamin E (more than 1,000-fold higher in the
pelleted chow). Vitamins A, B1, B2, Niacin, B6, pantothenic
acid, B12, Biotin, and folate were all two- to four-fold higher
in the pelleted chow. In summary, the powdered chow was
relatively enriched for carbohydrate content and favorable LC-
PUFAs compared to pelleted chow, but was relatively deficient
in macroelements, specific amino acids, and micronutrients
(including all vitamins and most minerals), compared to
the pelleted chow. The experimental paradigm is depicted
in Figure 1.

Tissue Collection
On embryonic day 15.5 (E15.5), pregnant dams were euthanized
with isoflurane followed by decapitation. Embryos were rapidly
dissected from the uterine horns and placed in ice-cold 1X
phosphate-buffered saline (PBS) containing RNA preservative
(RNALater, Qiagen). Theiler staging was performed to confirm
the gestational age of E15.5 (Theiler, 1989, accessed April, 2018).
On a cold platform, embryonic brains were rapidly removed
from skulls, and forebrain was isolated and snap frozen in liquid
nitrogen, prior to storage at −80◦C. Tail snips were obtained for
Ts1Cje and sex genotyping. Only mice that had the wild-type
genotype were used for analysis here.

Fetal Brain Gene Expression Studies
Total RNA was isolated from embryonic forebrains using
the NucleoSpin II RNA/protein kits (Machery-Nagel, Duren,
Germany) per the manufacturer’s instructions. The isolation
included an on-column DNase digestion step to remove genomic

FIGURE 1 | Experimental timeline. e, Embryonic day; P, Postnatal day.
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DNA. RNA purity, integrity and quantity were assessed using the
NanoDrop ND-800 (NanoDrop, Wilmington, DE, United States)
and the Bioanalyzer system (Agilent 2100; Agilent Technologies
Inc., Palo Alto, CA, United States). RNA was processed and
hybridized to Mouse gene 1.0 ST Arrays (Affymetrix, Santa Clara,
CA, United States) as previously described (Edlow et al., 2016a;
Guedj et al., 2016). Five arrays per experimental group were
used, with each array corresponding to one embryonic brain.
One embryo per litter from five different litters per diet group
was included in microarray analyses, to minimize litter effects.
Five biological replicates per group has been demonstrated to be
sufficient to detect global gene expression changes in microarray
studies (Allison et al., 2006; Tarca et al., 2006).

Normalization was performed using the robust multichip
average algorithm (RMA) and the MBNI custom CDF1 version
#15 for the Mouse Gene 1.0 ST array. Output consisted of data
for 21,225 probe sets each corresponding to unique Entrez Gene
IDs. Statistical analyses were performed using R software (version
3.1.2 or later). Fetal brain gene expression data from day 15.5
embryos of dams eating pelleted chow were compared to those
from day 15.5 embryos of dams eating powdered chow.

Statistical Analyses: Gene Expression
Student’s t-test was used to identify differentially-expressed
genes (DEGs) between the two diet groups. P-values were jointly
corrected for multiple testing by calculating the Benjamini–
Hochberg false discovery rate (FDR) (Benjamini, 1995).
Differentially expressed genes between groups were defined
as those with a raw p-value of <0.001, an adjusted p-value
(FDR) of <0.01, and an absolute fold-change value of >1.5.
Gene expression changes were further visualized by Principal
Component Analyses (PCA) using R. The pelleted chow
group was selected as the referent group; upregulated genes
are more highly expressed in the brains of powdered-chow
exposed embryos compared to pelleted-chow exposed embryos,
downregulated genes are more lowly expressed in the brains of
powdered-chow exposed embryos compared to those exposed to
pelleted-chow.

Functional analysis was performed on the differentially
expressed genes using Ingenuity Pathway Analysis (IPA)
(Qiagen, Redwood, CA, United States). The working file for
the IPA analysis may be found in Supplementary File 1.
Statistical significance within IPA was defined as p < 0.05,
and activation state was predicted based on Z-scores ≥ 2
(activated) or≤−2 (inhibited), in accordance with recommended
thresholds (Kramer et al., 2014; Ingenuity Systems, 2019a,b
[accessed April 12, 2019]). Only pathways including three or
more differentially expressed genes were considered. We also
performed whole transcriptome analysis of functional gene
set regulation using Gene Set Enrichment Analysis (GSEA)
(Subramanian et al., 2005), with a developmentally focused
annotation (the Developmental Functional Annotation at Tufts
or DFLAT) (Wick et al., 2014; Edlow et al., 2015). Gene sets with
an FDR q < 0.05 were considered significantly dysregulated.

1http://brainarray.mbni.med.umich.edu/

Offspring Biometry and Neurobehavioral
Analyses
Neonatal Biometry and Developmental Milestone
Assessment
For neonatal evaluations, 62 offspring exposed to pelleted chow
in utero and during lactation and 31 offspring exposed to the
maternal powdered chow diet were evaluated, with 1–2 offspring
per sex per litter evaluated to avoid litter effects (n = 17 pelleted
chow litters, n = 9 powdered chow litters). There were 15 females
and 16 males in the powdered chow group, and 38 females and
24 males in the pelleted chow group. Biometry was performed on
neonates from both diet groups daily from postnatal day 3 (P3)
through P21 (weights), or P3-P15 (length measurements, only
performed until eye opening due to limited accuracy secondary
to pup movement after eye opening), to establish growth
trajectories. Neonatal behavior was evaluated daily from P3 to
either P15 when eye opening occurred (if this would confound
the behavioral test) or P21 (weaning). Behavioral assessments
started on P3 to avoid maternal stress and subsequent pup neglect
or cannibalism that could impact neonatal survival and behavior.
The amount of time (latency) needed to complete each test was
recorded and analyzed. The neurobehavioral test protocols have
been described in detail in previous publications (Hill et al.,
2008; Guedj et al., 2015; Goodliffe et al., 2016). All behavioral
experiments were conducted in the light phase, between 08:00
and 13:00. Test apparati were thoroughly cleaned with Sani-Cloth
Plus wipes or 70% ethanol spray between mice, to minimize
olfactory cues from previous trials. Mice were acclimated in
the testing room in their home cages for at least 1 h prior to
evaluation. For neonatal behavioral testing, pups were placed
with nesting material in a bowl heated to 37◦C. An investigator
with extensive experience in neonatal developmental milestones
performed all neonatal biometry and behavioral testing (Guedj).

A modified Fox scale (Hill et al., 2008) was used to evaluate
developmental milestones in wild-type offspring exposed to
powdered versus pelleted chow in utero and during lactation.
This validated battery of behavioral tests evaluates body righting
mechanisms, coordination and strength (surface righting and
negative geotaxis), strength and coordination (cliff aversion and
forelimb grasp), sensory system maturation (auditory startle, ear
twitch, and eye opening), labyrinthine reflex (air righting), and
the developmental transition from rotatory locomotion behavior
to straight-line walking, reflecting the rostrocaudal development
of limb coordination (open field) (Fox, 1965; Hill et al., 2008;
Guedj et al., 2015, 2016; Goodliffe et al., 2016). The day of
achievement of a developmental milestone was defined as the day
at which the pup performed the task successfully for 2 days in
a row. The time to achieve a developmental milestone (latency)
and the presence or absence of a reflex was evaluated by a single
investigator as stated above.

Adult Neurobehavioral Studies
Adult behavioral testing was performed on a subset of
male offspring at 3 months of age, including 16 offspring
exposed to pelleted chow in utero and during lactation, and
14 offspring exposed to maternal powdered chow diet. The
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open field test was used to evaluate locomotor activity and
exploratory behavior, contextual fear conditioning was used to
evaluate hippocampal learning and memory, and Rotarod test
was used to evaluate motor coordination. Testing paradigms
have been detailed in prior publications (Aziz et al., 2018;
Guedj et al., 2018).

As previously described, open field testing utilized a 60-min
trial paradigm in a 40 cm × 40 cm × 40 cm opaque plastic box,
with animal tracking performed by the Ethovision 10.5 system
(Noldus, Leesburg, VA, United States). The fear conditioning
test was performed in a sound-attenuating cubicle with exhaust
fan and stainless-steel grid floor (Med Associates, Fairfax, VT,
United States), with a 5-min day one training session involving
two mild foot shocks (0.5 mA for 2 s) administered at 180 and
240 s. On day two (the testing session), the mice were placed into
the identical conditioning chamber for 5 min with no foot shocks,
and mice were monitored for freezing (fear) behavior. Reduced
freezing on day 2 was evaluated as a measure of hippocampal
learning/memory deficit (failure to remember receiving a shock
in the same environment on the day prior). Data were analyzed
using the Freeze View software (Med Associates, Fairfax, VT,
United States). Motor coordination was investigated using the
rotarod test (Med Associates, Fairfax, VT, United States) using
a 16 RPM, 24 RPM, and 32 RPM fixed speed protocol with
two 120 s trials at each speed, separated by a 15 min inter-
trial interval, as described previously (Aziz et al., 2018; Guedj
et al., 2018). The latency to fall was recorded in seconds and
analyzed for each mouse.

Statistical analyses: behavior
The Kolmogorov–Smirnov normality test and the Fisher variance
equality test were performed on behavioral and biometric data
to determine appropriate subsequent statistical tests. Significant
differences between groups in biometry and in latency to
developmental milestone achievement were evaluated via Mann–
Whitney tests for single measures, or Wilcoxon signed-rank tests
for repeated measures. Significant differences between groups
were defined as p < 0.05 and p-values were corrected for multiple
comparisons. Two-way ANOVA (maternal diet × offspring
sex) was used to evaluate for the presence of significant
interactions between maternal pregnancy diet and offspring sex
on achievement of neonatal milestones.

Genotyping
Genotype and sex of embryos and offspring were determined
via multiplex PCR amplification of DNA extracted from tail
snips (embryos) or ear punches (neonates). Cite-F/Cite R primers
targeting the neomycin cassette (present only in Ts1Cje mice)
were used to determine Ts1Cje or wild-type status. Sry-F/Sry-
R primers directed against the Sry gene (present only in males)
was used to determine fetal/neonatal sex. For each reaction,
Fez-F/Fez-R primers were used as endogenous controls. DNA
extraction and purification methods, PCR conditions, and primer
information and amplicon sizes have been described in detail
in previous publications (Guedj et al., 2015, 2018; Ferres et al.,
2016). Only wild-type embryos and offspring were evaluated in
these experiments.

RESULTS

Pelleted Versus Powdered Chow Does
Not Significantly Impact Dam Weight
Gain During Pregnancy Nor Embryo Size
There were no significant differences between maternal diet
groups with respect to dam weight trajectories in pregnancy
(Figure 2A). Maternal pelleted versus powdered chow diet did
not have a significant impact on embryo weights or crown rump
lengths at E15.5 (Figure 2B).

Embryonic Day 15.5 Brain Gene
Expression Profile Is Significantly
Impacted by Maternal Pregnancy Diet
Composition
There were 1647 differentially-expressed genes (DEGs) in the
embryonic brain exposed to maternal powdered chow diet
compared to maternal pelleted chow diet. Principal component
analysis demonstrated strong clustering of fetal brain gene
expression by maternal pregnancy diet, with PC1 (indicating
maternal pregnancy diet) accounting for 63% of the variation
in fetal brain gene expression (Figure 3). Supplementary File 2
contains the list of significant DEGs including the Entrez Gene
ID, gene name, chromosome location, fold change value, raw p-
and BH-p values for expression levels between powdered chow-
exposed embryonic brain compared to pelleted chow-exposed
embryonic brain. Two-way ANOVA model (maternal diet× fetal
sex) found no significant interaction effects between maternal
diet and fetal sex on fetal brain gene expression, and no overlap
between the genes affected by diet and those affected by sex.

Pathways Analyses
Ingenuity pathways analysis
Pathway analyses performed in IPA suggested significant
potential biological impact of the dysregulated brain gene
expression due to different maternal diet composition. The
canonical pathway Mitotic Roles of Polo-Like Kinase was
significantly upregulated in the brains of powdered-chow
exposed embryos (Z-score 2.4, key in cell cycle regulation).
Other canonical pathways that were significantly affected with
an adjusted p-value of <0.05 but for which a definite up- or
down-regulation could not be determined based on the pattern
of gene expression included: (1) Protein Ubiquitination Pathway,
(2) Oxidative Phosphorylation Pathway, (3) Ataxia Telangiectasia
Mutated Protein (ATM) Pathway (a canonical pathway key in
regulation of the cell cycle and response to cellular stress and
injury), and (4) Sirtuin Signaling Pathway (canonical pathway key
in regulating metabolism and energy homeostasis by controlling
lipid and glucose metabolism, ketone body synthesis, urea
cycle and insulin secretion). Significantly dysregulated Canonical
Pathways and their constituent differentially expressed genes in
the embryonic brain exposed to powdered versus pelleted chow
in utero are depicted in Table 2.

Significant activation and inhibition of several transcriptional
factors and other regulatory elements of interest was predicted
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FIGURE 2 | Dam weight trajectories in pregnancy, embryo weights and crown-rump lengths at embryonic day 15.5 (e15.5). There are no differences between
pelleted and powdered chow for (A): dam weight gain in pregnancy at pregnancy day 0 (P0, day of mating), P10 and P15 or (B): embryonic (e15.5) weight (g) and
crown-rump length (mm). N = 14 powdered chow and 14 pelleted chow litters for maternal weight gain and embryo size analyses.

by the Upstream Regulator analysis within IPA (bias-corrected
Z-score of ≥2.0 or ≤−2.0 predict significant activation or
inhibition of a specific upstream regulator as described in Section
“Fetal Brain Gene Expression Studies” (Ingenuity Systems,
2019a,b [accessed April 12, 2019]). Significantly activated
upstream regulators in fetal brains exposed to powdered chow
in utero included transcriptional regulators and G-protein
coupled receptors implicated in negative regulation of apoptosis,
regulation of the cell cycle, synaptic plasticity, brain immune and
inflammatory response, sensory nervous system development,
and circadian rhythm regulation. Significantly inhibited
upstream regulators included transcriptional regulators, growth
factors, peptidases and cytokines implicated in cognition and
learning, mitochondrial apoptosis, maintenance of vascular
integrity, and vasoprotection and neuroprotection in the setting
of hypoxic stimuli. Significantly activated or inhibited upstream
regulators and their downstream differentially expressed genes in
the embryonic brain exposed to powdered versus pelleted chow
in utero are depicted in Table 3.

Within the Downstream Effect Analysis, 56 Molecular,
Cellular, and Physiological System Development Functions met
criteria for significant dysregulation in the brains of powdered-
chow exposed embryos compared to pelleted (p-value < 0.05
and involving three or more genes in the dataset). Many
pathways related to cell cycle regulation were significantly
dysregulated, including pathways related to the G1/S Phase, G2
Phase, G2/M transition, Mitosis, Interphase, formation of mitotic
spindle, segregation of chromosomes, centrosome duplication,
and cytokinesis. The function “segregation of chromosomes”
within the Cell Cycle category was predicted to be significantly
increased (activation Z-score 2.2, p = 0.003). Many terms related
to DNA damage response were also significantly dysregulated.
Other themes that emerged from the IPA Downstream Effects
pathways analyses included dysregulation of pathways related
to cell death (predicted to be decreased, activation Z-score
-3.53, p < 0.001) and neuronal survival; to brain innate
immune response (pathways related to microglia, macrophage
phagocytic activity, and natural killer cell production); to synaptic
transmission and plasticity (transmission in the hippocampal
region was highlighted twice); to dopaminergic neuron firing and

morphology; to amino acid transport (predicted to be decreased,
activation Z-score −2.9, p = 0.03); and to fatty acid transport
and lipid storage. All significantly dysregulated pathways and
biofunctions identified by IPA in embryonic brains exposed to
powdered compared to pelleted chow in utero are described in
Supplementary File 3.

Gene set enrichment analysis with a development-specific
annotation (GSEA/DFLAT)
Two hundred sixty-one gene sets were significantly dysregulated
(FDR q < 0.05) in the fetal brain exposed to powdered
compared to pelleted chow in utero (215 sets upregulated and
46 downregulated). A complete list of significantly dysregulated
gene sets may be found in Supplementary File 4. GSEA/DFLAT
identified many of the same dysregulated biological processes as
IPA, with cell cycle dysregulation, DNA damage response, brain
immune function, amino acid transport, and neurotransmitter
regulation again figuring prominently.

Cell cycle regulation was the most disrupted biofunction
in powdered-chow exposed brains, with more than half of
the upregulated gene sets relating to cell cycle function and
regulation. Representative dysregulated gene sets related to
the cell cycle include chromatin assembly and disassembly,
spindle formation, mitotic spindle assembly checkpoint,
centromere complex assembly, regulation of chromosome
segregation (and many similar gene sets), cell cycle regulation
by ubiquitin-protein ligase, regulation of the metaphase
to anaphase transition, M/G1 transition, sister chromatid
cohesion, G2/M transition, and many others. DNA damage
response and DNA processing were the second most affected
biofunctions based on the number of dysregulated gene sets
(double-stranded break repair, signal transduction in response
to DNA damage, DNA integrity checkpoint regulation, K63-
linked polyubiquitin binding, telomere maintenance, telomere
organization, recombinational repair, replication fork, double-
strand break repair via homologous recombination, DNA
packaging and other similar), followed by RNA processing
(mRNA splicing via spliceosome/multiple spliceosome-related
gene sets, RNA splicing via transesterification reactions, mRNA
transport and localization, ribosomal RNA metabolism and
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FIGURE 3 | Principal component analysis (PCA) of embryonic day 15.5 brain
gene expression profiles. Fetal brain gene expression clusters strongly by
maternal pregnancy diet, with principal component or PC 1 (maternal
pregnancy diet), accounting for 63% of the variation in fetal brain gene
expression.

processing, mRNA export from nucleus and other similar).
Immune function (both humoral and innate) was another
area in which many gene sets were upregulated, including
production of molecular mediators of immune response,
immunoglobulin production and diversification of immune
receptors, immunoglobulin-mediated immune response,
somatic recombination of immunoglobulin gene segments,
B cell activation involved in immune response and other
similar. Multiple gene sets related to protein synthesis
and function were dysregulated (primarily downregulated)
including ribosome biogenesis, translational initiation and
termination, downregulation of amino acid transport/amino
acid transmembrane transporter activity, glutamine amino
acid metabolic process, and multiple sets related to carboxylic
and organic acid transporter activity. Downregulation of gene
sets related to neuronal apoptosis and cell death was also
noted, as were gene sets related to neurotransmitter transport,
neurotransmitter regulation, and neurotransmitter receptor
activity. Regulation of cAMP biosynthesis and metabolism,
and adenylate cyclase activity were also downregulated in the
powdered-chow exposed brains, as were gene sets related to
membrane lipid metabolism, endoplasmic reticulum function,
and potassium and calcium ion transport.

Maternal Dietary Composition Has a
Significant Impact on Neonatal Biometry
and Behavior
Neonatal Biometry
Biometric analyses were performed on 31 powder-chow exposed
and 62 pelleted-chow exposed neonates. These included 15

females and 16 males in the powdered chow group and 38
females and 24 males in the pelleted chow group. There
was no significant difference between the two maternal diet
groups with respect to offspring weight trajectory, which
was true when male and female offspring were grouped
and when they were examined in a sex-stratified fashion
(Figure 4A). The powdered chow-exposed offspring were
significantly longer at every postnatal day than pelleted chow-
exposed counterparts, which was true both for grouped and
sex-stratified analyses (Figure 4B).

Body Righting, Strength and Coordination
Powdered-chow exposed neonates achieved the body righting,
strength, and coordination-related milestones significantly
faster than the pelleted-chow exposed neonates. The negative
geotaxis task was used to evaluate body righting mechanisms,
strength, and coordination. The powdered-chow neonates had
a significantly shorter daily latency on the negative geotaxis task
and achieved that milestone an average of 1.7 days sooner than
the pelleted-chow neonates (p = 0.0002, Figure 5A). Two-way
ANOVA demonstrated no significant interaction terms between
maternal diet and offspring sex, and no significant main effects of
offspring sex on achievement of the negative geotaxis milestone
[F(1,88) = 0.65 p = 0.42 for interaction term, F(1,88) = 0.14,
p = 0.71 for offspring sex].

The forelimb grasp task was used to evaluate strength.
Powdered chow-exposed offspring had significantly shorter daily
latency on the forelimb grasp task, in addition to a faster overall
acquisition of the forelimb grasp milestone (approximately
0.5 days earlier, p = 0.01, Figure 5B). Two-way ANOVA
demonstrated no significant interaction terms between maternal
diet and offspring sex, and no significant main effects of
offspring sex on achievement of the forelimb grasp milestone
[F(1,88) = 0.87, p = 0.35 for interaction term, F(1,88) = 0.04,
p = 0.85 for offspring sex].

Surface righting task was used to evaluate body righting
mechanisms, strength and coordination. The powdered-chow
neonates did not have a significantly shorter latency on
the surface righting task on any specific day, but achieved
the surface righting milestone significantly earlier than
the pelleted chow neonates (PND 7 versus 8, p = 0.007,
Figure 5C). Two-way ANOVA demonstrated no significant
interaction terms between maternal diet and offspring
sex, and no significant main effects of offspring sex on
achievement of the surface righting milestone [F(1,88) = 0.65,
p = 0.42 for interaction term, F(1,88) = 1.31, p = 0.26
for offspring sex].

The cliff aversion test was used to evaluate strength and
coordination. Powdered chow-exposed neonates achieved the
cliff aversion milestone a mean of 0.6 days earlier than
pelleted chow-exposed, but this finding did not achieve
statistical significance (p = 0.11, Figure 5D). Two-way ANOVA
demonstrated no significant interaction terms between maternal
diet and offspring sex, and no significant main effects of
offspring sex on achievement of the cliff aversion milestone
[F(1,88) = 0.03, p = 0.87 for interaction term, F(1,88) = 1.18,
p = 0.28 for offspring sex].
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TABLE 2 | Significantly dysregulated canonical pathways in powdered chow-exposed fetal brain.

Pathway and
constituent genes

Gene name Entrez gene
ID (mouse)

Expr log ratio Expr false
discovery rate

(q-value)

Location Type(s)

Mitotic Polo-Like Kinase Pathway p = 7.01 × 10ˆ−7 23 of 61 molecules in pathway dysregulated, Z-score 2.50 (upregulated)

ANAPC4 Anaphase promoting complex
subunit 4

52206 0.603 1.60E–04 Nucleus Enzyme

ANAPC5 Anaphase promoting complex
subunit 5

59008 0.817 3.53E–06 Nucleus Other

ANAPC13 Anaphase promoting complex
subunit 13

69010 1.682 7.13E–06 Nucleus Other

CDC7 Cell division cycle 7 12545 0.929 4.89E–05 Nucleus Kinase

CDC16 Cell division cycle 16 69957 0.739 6.44E–05 Nucleus Other

CDC26 Cell division cycle 26 66440 0.784 6.28E–05 Nucleus Other

CDC25C Cell division cycle 25C 12532 0.916 9.78E–04 Nucleus Phosphatase

FBXO5 F-box protein 5 67141 0.911 1.06E–04 Nucleus Enzyme

KIF11 Kinesin family member 11 16551 0.953 1.21E–03 Nucleus Other

KIF23 Kinesin family member 23 71819 0.641 1.94E–03 Cytoplasm Other

PLK2 Polo like kinase 2 20620 0.751 2.12E–04 Nucleus Kinase

PLK3 Polo like kinase 3 12795 −0.649 1.33E–03 Nucleus Kinase

PPP2R2A Protein phosphatase 2 regulatory
subunit B alpha

71978 0.64 4.54E–05 Cytoplasm Phosphatase

PPP2R2C Protein phosphatase 2 regulatory
subunit B gamma

269643 −0.606 7.46E–05 Nucleus Phosphatase

PPP2R3A Protein phosphatase 2 regulatory
subunit B alpha

235542 0.589 2.94E–05 Nucleus Phosphatase

PPP2R5B Protein phosphatase 2 regulatory
subunit B beta

225849 −0.63 2.40E–05 Cytoplasm Phosphatase

PPP2R5E Protein phosphatase 2 regulatory
subunit B epsilon

26932 0.684 1.05E–04 Cytoplasm Phosphatase

PRC1 Protein regulator of cytokinesis 1 233406 1.286 6.32E–04 Nucleus Other

PTTG1 Pituitary tumor-transforming 1 30939 −0.645 3.78E–03 Nucleus Transcription regulator

SLK STE20 like kinase 20874 0.642 5.30E–05 Nucleus Kinase

SMC3 Structural maintenance of
chromosomes 3

13006 1.111 2.99E–05 Nucleus Other

SMC1A Structural maintenance of
chromosomes 1A

24061 0.905 5.41E–05 Nucleus Transporter

STAG2 Stromal antigen 2 20843 0.838 1.03E–04 Nucleus Transcription regulator

Protein Ubiquitination Pathway p = 7.9 × 10ˆ−4, 46 of 249 molecules dysregulated, Z-score NA

ANAPC4 Anaphase promoting complex
subunit 4

52206 0.603 1.60E–04 Nucleus Enzyme

ANAPC5 Anaphase promoting complex
subunit 5

59008 0.817 3.53E–06 Nucleus Other

B2M Beta-2-microglobulin 12010 −1.193 4.03E–05 Plasma Membrane Transmembrane receptor

BAP1 BRCA1 associated protein 1 104416 −0.799 3.53E–06 Nucleus Peptidase

BIRC2 Baculoviral IAP repeat containing 2 11797 0.764 6.38E–04 Cytoplasm Enzyme

CUL1 Cullin 1 26965 0.768 8.98E–05 Nucleus Enzyme

DNAJC1 DnaJ heat shock protein family
(Hsp40) member C1

13418 0.877 2.00E–05 Cytoplasm Transcription regulator

DNAJC2 DnaJ heat shock protein family
(Hsp40) member C2

22791 0.925 3.10E–05 Nucleus Transcription regulator

DNAJC3 DnaJ heat shock protein family
(Hsp40) member C3

100037258 0.7 8.26E–05 Cytoplasm Other

DNAJC7 DnaJ heat shock protein family
(Hsp40) member C7

56354 0.692 3.40E–05 Cytoplasm Other

DNAJC8 DnaJ heat shock protein family
(Hsp40) member C8

68598 0.903 1.09E–03 Nucleus Other

DNAJC9 DnaJ heat shock protein family
(Hsp40) member C9

108671 0.772 2.55E–04 Nucleus Other

(Continued)
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TABLE 2 | Continued

Pathway and
constituent genes

Gene name Entrez gene
ID (mouse)

Expr log ratio Expr false
discovery rate

(q-value)

Location Type(s)

DNAJC10 DnaJ heat shock protein family
(Hsp40) member C10

66861 0.81 4.67E–05 Cytoplasm Enzyme

DNAJC14 DnaJ heat shock protein family
(Hsp40) member C14

74330 −0.965 1.52E–05 Cytoplasm Other

DNAJC19 DnaJ heat shock protein family
(Hsp40) member C19

100503724 0.667 1.26E–03 Cytoplasm Other

DNAJC21 DnaJ heat shock protein family
(Hsp40) member C21

78244 1.18 2.94E–05 Other Other

DNAJC30 DnaJ heat shock protein family
(Hsp40) member C30

66114 −0.81 6.44E–04 Cytoplasm Other

ELOC elongin C 67923 −0.674 2.48E–04 Nucleus Transcription regulator

FBXW7 F-box and WD repeat domain
containing 7

50754 0.637 2.65E–05 Nucleus Enzyme

HSPA4L Heat shock protein family A (Hsp70)
member 4 like

18415 0.794 7.77E–05 Cytoplasm Other

MDM2 MDM2 proto-oncogene 17246 0.628 1.08E–04 Nucleus Transcription regulator

PSMA2 Proteasome subunit alpha 2 19166 0.789 2.18E–05 Cytoplasm Peptidase

PSMA4 Proteasome subunit alpha 4 26441 1.429 1.36E–05 Cytoplasm Peptidase

PSMA7 Proteasome subunit alpha 7 26444 2.048 4.96E–06 Cytoplasm Peptidase

PSMB1 Proteasome subunit beta 1 19170 0.828 2.49E–05 Cytoplasm Peptidase

PSMB2 Proteasome subunit beta 2 26445 −0.729 1.78E–04 Cytoplasm Peptidase

PSMB3 Proteasome subunit beta 3 26446 −1.71 1.15E–06 Cytoplasm Peptidase

PSMB4 Proteasome subunit beta 4 19172 −0.756 2.91E–03 Cytoplasm Peptidase

PSMB6 Proteasome subunit beta 6 19175 1.201 5.89E–05 Nucleus Peptidase

PSMC1 Proteasome 26S subunit, ATPase 1 19179 0.732 1.05E–04 Nucleus Peptidase

PSMC2 Proteasome 26S subunit, ATPase 2 19181 0.945 5.53E–05 Nucleus Peptidase

PSMC5 Proteasome 26S subunit, ATPase 5 19184 0.636 1.38E–03 Nucleus Transcription regulator

PSMC6 Proteasome 26S subunit, ATPase 6 67089 0.646 4.40E–04 Nucleus Peptidase

PSMD7 Proteasome 26S subunit,
non-ATPase 7

17463 0.589 6.59E–04 Cytoplasm Other

PSMD11 Proteasome 26S subunit,
non-ATPase 11

69077 1.09 1.99E–05 Cytoplasm Other

PSMD12 Proteasome 26S subunit,
non-ATPase 12

66997 0.636 3.26E–04 Cytoplasm Other

PSME1 Proteasome activator subunit 1 19186 0.89 3.19E–05 Cytoplasm Other

PSME2 Proteasome activator subunit 2 19188 −0.639 3.67E–04 Cytoplasm Peptidase

SUGT1 SGT1 homolog, MIS12 kinetochore
complex assembly cochaperone

67955 0.662 6.36E–04 Nucleus Other

UBE2L3 Ubiquitin conjugating enzyme E2 L3 22195 −0.726 2.08E–05 Nucleus Enzyme

UBE2V1 ubiquitin conjugating enzyme E2 V1 66589 1.141 4.21E–04 Nucleus Transcription regulator

UBE2V2 Ubiquitin conjugating enzyme E2
V2

70620 −0.929 7.41E–05 Cytoplasm Enzyme

UBE2Z Ubiquitin conjugating enzyme E2 Z 268470 −0.627 2.56E–05 Nucleus Enzyme

UCHL5 Ubiquitin C-terminal hydrolase L5 56207 0.752 1.28E–04 Cytoplasm Peptidase

USP25 Ubiquitin specific peptidase 25 30940 0.769 3.59E–05 Cytoplasm Peptidase

USP47 Ubiquitin specific peptidase 47 74996 0.82 3.64E–05 Cytoplasm Peptidase

Oxidative Phosphorylation Pathway p-value 0.01, 21 of 92 molecules dysregulated, Z-score 0.22

ATP5F1C ATP synthase F1 subunit gamma 11949 0.775 1.50E–03 Cytoplasm Transporter

ATP5F1D ATP synthase F1 subunit delta 66043 −1.576 4.29E–05 Cytoplasm Transporter

COX11 Cytochrome c oxidase copper
chaperone COX11

69802 −0.958 3.03E–05 Cytoplasm Enzyme

COX17 Cytochrome c oxidase copper
chaperone COX17

12856 1.965 2.95E–06 Cytoplasm Enzyme

COX6A1 Cytochrome c oxidase subunit 6A1 12861 0.804 3.30E–05 Cytoplasm Enzyme

(Continued)
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TABLE 2 | Continued

Pathway and
constituent genes

Gene name Entrez gene
ID (mouse)

Expr log ratio Expr false
discovery rate

(q-value)

Location Type(s)

Cox6c Cytochrome c oxidase subunit 6C 12864 −0.6 2.13E–04 Cytoplasm Enzyme

COX7A2L Cytochrome c oxidase subunit 7A2
like

20463 2.175 1.32E–06 Cytoplasm Enzyme

COX8A Cytochrome c oxidase subunit 8A 12868 −0.819 5.82E–05 Cytoplasm Enzyme

CYB5A Cytochrome b5 type A 109672 −0.586 3.74E–04 Cytoplasm Enzyme

CYC1 Cytochrome c1 66445 −1.226 1.10E–04 Cytoplasm Enzyme

NDUFA1 NADH:ubiquinone oxidoreductase
subunit A1

54405 1.593 2.91E–05 Cytoplasm Enzyme

NDUFA4 NDUFA4, mitochondrial complex
associated

17992 1.402 8.33E–06 Cytoplasm Enzyme

NDUFA6 NADH:ubiquinone oxidoreductase
subunit A6

67130 0.774 1.86E–04 Cytoplasm Enzyme

NDUFB2 NADH:ubiquinone oxidoreductase
subunit B2

68198 0.751 5.90E–04 Cytoplasm Enzyme

NDUFB6 NADH:ubiquinone oxidoreductase
subunit B6

230075 −0.899 3.84E–03 Cytoplasm Enzyme

NDUFB9 NADH:ubiquinone oxidoreductase
subunit B9

66218 1.305 3.93E–06 Cytoplasm Enzyme

NDUFB11 NADH:ubiquinone oxidoreductase
subunit B11

104130 −0.749 2.27E–04 Cytoplasm Enzyme

NDUFS4 NADH:ubiquinone oxidoreductase
subunit S4

17993 −0.801 8.94E–05 Cytoplasm Enzyme

NDUFS6 NADH:ubiquinone oxidoreductase
subunit S6

407785 0.609 1.67E–03 Cytoplasm Enzyme

NDUFS7 NADH:ubiquinone oxidoreductase
core subunit S7

75406 −1.177 1.01E–05 Cytoplasm Enzyme

UQCRFS1 Ubiquinol-cytochrome c reductase,
Rieske iron-sulfur polypeptide 1

66694 0.704 2.81E–05 Cytoplasm Enzyme

Ataxia Telangiectasia Mutated Protein Pathway p-value 0.02, 20 of 89 molecules dysregulated, Z-score 0.24

CDC25C Cell division cycle 25C 12532 0.916 9.78E–04 Nucleus Phosphatase

CDK2 Cyclin dependent kinase 2 12566 0.678 6.59E–04 Nucleus Kinase

GADD45A Growth arrest and DNA damage
inducible alpha

13197 0.682 6.13E–05 Nucleus Other

GADD45G Growth arrest and DNA damage
inducible gamma

23882 0.827 3.22E–04 Nucleus Other

MDM2 MDM2 proto-oncogene 17246 0.628 1.08E–04 Nucleus Transcription regulator

PPM1D Protein phosphatase,
Mg2 + Mn2 + dependent 1D

53892 −0.588 5.01E–05 Cytoplasm Phosphatase

PPP2R2A Protein phosphatase 2 regulatory
subunit Balpha

71978 0.64 4.54E–05 Cytoplasm Phosphatase

PPP2R2C Protein phosphatase 2 regulatory
subunit Bgamma

269643 −0.606 7.46E–05 Nucleus Phosphatase

PPP2R3A Protein phosphatase 2 regulatory
subunit B”alpha

235542 0.589 2.94E–05 Nucleus Phosphatase

PPP2R5B Protein phosphatase 2 regulatory
subunit B’beta

225849 −0.63 2.40E–05 Cytoplasm Phosphatase

PPP2R5E Protein phosphatase 2 regulatory
subunit B’epsilon

26932 0.684 1.05E–04 Cytoplasm Phosphatase

RAD50 RAD50 double strand break repair
protein

19360 0.626 6.95E–04 Nucleus Enzyme

RAD51 RAD51 recombinase 19361 0.72 9.83E–04 Nucleus Enzyme

RNF8 Ring finger protein 8 58230 0.66 7.22E–05 Nucleus Enzyme

SMC2 Structural maintenance of
chromosomes 2

14211 0.644 6.72E–04 Nucleus Transporter

SMC3 Structural maintenance of
chromosomes 3

13006 1.111 2.99E–05 Nucleus Other

(Continued)
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TABLE 2 | Continued

Pathway and
constituent genes

Gene name Entrez gene
ID (mouse)

Expr log ratio Expr false
discovery rate

(q-value)

Location Type(s)

SMC1A Structural maintenance of
chromosomes 1A

24061 0.905 5.41E–05 Nucleus Transporter

SUV39H1 Suppressor of variegation 3-9
homolog 1

20937 −0.598 2.77E–05 Nucleus Enzyme

TLK1 Tousled like kinase 1 228012 0.803 2.21E–04 Nucleus Kinase

TLK2 Tousled like kinase 2 24086 0.767 1.88E–04 Cytoplasm Kinase

Sirtuin Signaling Pathway p-value 0.04, 40 of 251 molecules dysregulated, Z = −0.76

ATG13 Autophagy related 13 51897 −0.765 7.34E–05 Cytoplasm Other

ATP5F1C ATP synthase F1 subunit gamma 11949 0.775 1.50E–03 Cytoplasm Transporter

ATP5F1D ATP synthase F1 subunit delta 66043 −1.576 4.29E–05 Cytoplasm Transporter

BPGM Bisphosphoglycerate mutase 12183 1.425 2.29E–05 Extracellular Space Phosphatase

CYC1 Cytochrome c1 66445 −1.226 1.10E–04 Cytoplasm Enzyme

GABARAPL1 GABA type A receptor associated
protein like 1

57436 −0.756 7.58E–05 Cytoplasm Other

GABPA GA binding protein transcription
factor subunit alpha

14390 0.632 8.98E–04 Nucleus Transcription regulator

GADD45A Growth arrest and DNA damage
inducible alpha

13197 0.682 6.13E–05 Nucleus Other

GADD45G Growth arrest and DNA damage
inducible gamma

23882 0.827 3.22E–04 Nucleus Other

H1FX H1 histone family member X 243529 −0.828 3.19E–05 Nucleus Other

HIST1H1C Histone cluster 1 H1 family member
c

50708 −0.686 1.03E–03 Nucleus Other

MAPK3 Mitogen-activated protein kinase 3 26417 −0.752 1.89E–04 Cytoplasm Kinase

MAPK15 Mitogen-activated protein kinase 15 332110 −0.699 8.98E–04 Cytoplasm Kinase

NDUFA1 NADH:ubiquinone oxidoreductase
subunit A1

54405 1.593 2.91E–05 Cytoplasm Enzyme

NDUFA4 NDUFA4, mitochondrial complex
associated

17992 1.402 8.33E–06 Cytoplasm Enzyme

NDUFA6 NADH:ubiquinone oxidoreductase
subunit A6

67130 0.774 1.86E–04 Cytoplasm Enzyme

NDUFB2 NADH:ubiquinone oxidoreductase
subunit B2

68198 0.751 5.90E–04 Cytoplasm Enzyme

NDUFB6 NADH:ubiquinone oxidoreductase
subunit B6

230075 −0.899 3.84E–03 Cytoplasm Enzyme

NDUFB9 NADH:ubiquinone oxidoreductase
subunit B9

66218 1.305 3.93E–06 Cytoplasm Enzyme

NDUFB11 NADH:ubiquinone oxidoreductase
subunit B11

104130 −0.749 2.27E–04 Cytoplasm Enzyme

NDUFS4 NADH:ubiquinone oxidoreductase
subunit S4

17993 −0.801 8.94E–05 Cytoplasm Enzyme

NDUFS6 NADH:ubiquinone oxidoreductase
subunit S6

407785 0.609 1.67E–03 Cytoplasm Enzyme

NDUFS7 NADH:ubiquinone oxidoreductase
core subunit S7

75406 −1.177 1.01E–05 Cytoplasm Enzyme

POLR1B RNA polymerase I subunit B 20017 −0.696 2.49E–04 Nucleus Enzyme

POLR1D RNA polymerase I and III subunit D 20018 0.738 1.55E–04 Nucleus Enzyme

POLR2F RNA polymerase II subunit F 69833 −1.462 7.63E–06 Nucleus Enzyme

PPIF Peptidylprolyl isomerase F 105675 −0.614 2.65E–04 Cytoplasm Enzyme

SIRT3 Sirtuin 3 64384 −0.596 1.30E–04 Cytoplasm Enzyme

SIRT6 Sirtuin 6 50721 −1.22 8.33E–06 Nucleus Enzyme

SLC25A4 Solute carrier family 25 member 4 11739 0.819 3.35E–05 Cytoplasm Transporter

SMARCA5 SWISNF related, matrix associated,
actin dependent regulator of
chromatin, subfamily a, member 5

93762 1.405 1.36E–04 Nucleus Transcription regulator

(Continued)
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TABLE 2 | Continued

Pathway and
constituent genes

Gene name Entrez gene
ID (mouse)

Expr log ratio Expr false
discovery rate

(q-value)

Location Type(s)

SOD2 Superoxide dismutase 2 20656 −0.601 6.71E–05 Cytoplasm Enzyme

SUV39H1 Suppressor of variegation 3-9
homolog 1

20937 −0.598 2.77E–05 Nucleus Enzyme

TIMM44 Translocase of inner mitochondrial
membrane 44

21856 0.69 2.08E–05 Cytoplasm Transporter

TIMM17A Translocase of inner mitochondrial
membrane 17A

21854 0.604 8.33E–06 Cytoplasm Transporter

TOMM6 Translocase of outer mitochondrial
membrane 6

66119 −0.93 2.99E–05 Cytoplasm Other

TOMM70 Translocase of outer mitochondrial
membrane 70

28185 0.896 4.80E–05 Cytoplasm Transporter

TUBA4A Tubulin alpha 4a 22145 −0.708 2.79E–03 Cytoplasm Other

UQCRFS1 Ubiquinol-cytochrome c reductase,
Rieske iron-sulfur polypeptide 1

66694 0.704 2.81E–05 Cytoplasm Enzyme

ZIC2 Zic family member 2 22772 −0.645 1.52E–04 Nucleus Transcription regulator

Transition From Rotatory/Pivoting Locomotion
Behavior to Straight-Line Walking
There were no significant differences between powdered-chow
and pelleted-chow neonates with respect to daily time spent
ambulating in a rotatory fashion and latency to achieve the
extinction of rotatory behavior on open field testing (∼day 13
for both groups, Figure 6A). Two-way ANOVA demonstrated no
significant interaction terms between maternal diet and offspring
sex, and no significant main effects of offspring sex on extinction
of rotatory behavior [F(1,88) = 0.43, p = 0.51 for interaction term,
F(1,88) = 0.15, p = 0.69 for offspring sex].

Sensory Maturation
Unlike the body strength and coordination tasks, powdered
chow-exposed neonates were significantly delayed in
achievement of the sensory maturation reflexes compared
to their pelleted chow counterparts. Powdered chow exposed
neonates were delayed by 1.5 days in achieving the air righting
reflex (evaluates the labyrinthine reflex initiated by the vestibular
system, in addition to body righting and coordination) compared
to pelleted chow-exposed neonates (p < 0.0001, Figure 6B).
Two-way ANOVA demonstrated no significant interaction terms
between maternal diet and offspring sex, and no significant
main effects of offspring sex on achievement of the air righting
milestone [F(1,88) = 1.45, p = 0.23 for interaction term,
F(1,88) = 0.71, p = 0.40 for offspring sex]. Powdered chow
offspring were 2 days delayed in achieving the ear twitch
(tactile reflex, p < 0.0001), 3 days delayed in auditory startle
(auditory reflex, p < 0.0001), and 0.4 days delayed in eye
opening (p = 0.06), compared to their pelleted chow-exposed
counterparts. Similar to the other neonatal milestones, two-way
ANOVA demonstrated no significant interactions between
maternal diet and offspring sex and no significant main effects
of offspring sex on attainment of any sensory maturation
reflexes [ear twitch F(1,88) = 0.21, p = 0.65 for interaction
term, F(1,88) = 1.78, p = 0.19 for offspring sex; auditory startle

F(1,88) = 1.86, p = 0.18 for interaction term, F(1,88) = 0.02,
p = 0.88 for offspring sex; eye opening F(1,88) = 0.35, p = 0.55
for interaction term, F(1,88) = 1.48, p = 0.23 for offspring
sex]. Figures 6C–E depicts the day of milestone achievement
for powdered versus pelleted chow-exposed neonates for the
aforementioned sensory maturation reflexes.

Maternal Dietary Composition in
Pregnancy and Lactation Has a
Significant Impact on Adult Locomotor
Activity and Hippocampal Learning
Powdered chow-exposed adult offspring traveled a significantly
greater distance in the open field arena compared to pellet chow-
exposed adults, consistent with hyperactivity (23,296 ± 1019 cm
versus 18,853 ± 779.1 cm, p = 0.001, Figure 7A). Powdered
chow-exposed adults demonstrated significantly reduced freezing
on day 2 of fear conditioning at 60, 120, and 180 s,
consistent with a hippocampal learning/memory deficit (p = 0.01,
p = 0.017, and p = 0.039, respectively, Figure 7B). There
were no significant differences between powdered chow-exposed
and pellet chow-exposed adults on the rotarod test at any
speed (Figure 7C).

DISCUSSION

In this study, we demonstrated that maternal diet in pregnancy
has a significant impact on fetal brain gene expression
signatures and neonatal behavior, even in the absence of
overt maternal over- or undernutrition. Specifically, we found
that a maternal diet relatively enriched for carbohydrates
and n-3 long-chain polyunsaturated fatty acids, and relatively
deficient in micronutrients, antioxidants, macroelements, and the
amino acids alanine, alargine, and glycine, was associated with
differential expression of over 1600 fetal brain genes, significantly
increased neonatal length, earlier achievement of strength
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TABLE 3 | Significantly dysregulated upstream regulators and constituent downstream genes in powdered chow-exposed fetal brain.

Upstream
regulator

Entrez gene
name

Putative function Molecule
type

Predicted
activation
state

Bias-
corrected
Z-score

Target molecules in dataset

EP400 E1A binding
protein p400

Cell cycle regulation; chromatin
organization; histone H2A acetylation;
histone H4 acetylation

other Activated 2.063 CDCA3, CENPF, FBXO5,
INCENP, MCM3, SUV39H2
(direction of regulation predicts
EP400 activation in 6/6)

ISL1 ISL LIM
homeobox 1

Encodes a member of the
LIM/homeodomain family of transcription
factors. The encoded protein may play an
important role in regulating insulin gene
expression.

Transcription
regulator

Activated 2.009 CRABP1, NPY, NXPH4, OLIG1
(direction of expression predicts
ISL1 activation in 4/4)

PTGER2 Prostaglandin E
receptor 2

Encodes a receptor for prostaglandin E2, a
metabolite of arachidonic acid. Within the
brain, PGE2 receptors are involved in the
regulation of synaptic activity and plasticity,
in brain maturation, and are key mediators
of the brain’s response to inflammation.
This gene has been implicated in negative
regulation of the apoptotic process

G-protein
coupled
receptor

Activated 3.623 ARFGEF1, CENPE, CENPF,
CEP55, CKAP2L, ECT2, KIF11,
KIF15, KIF20A, KIF2C, MELK,
MKI67, NUF2, PRC1, STIL,
TPX2, TTK (direction of
expression predicts PTGER2
activation in 17/17)

POU4F1 POU class 4
homeobox 1

Encodes a member of the POU-IV class of
neural transcription factors. Implicated in
sensory nervous system development,
axonogenesis, and negative regulation of
central nervous system apoptosis

Transcription
regulator

Activated 2.013 CHRNA3, CRABP1, NECAB2,
NPY, NXPH4, OLIG1,
RTN4RL2, SSTR4 (direction of
expression predicts activation
of POU4F1 in 4/8)

CLOCK Clock circadian
regulator

Encodes a protein that is a key regulator of
circadian rhythms. Polymorphisms in this
gene are associated with obesity and
metabolic syndrome in certain populations.

Transcription
regulator

Activated 2.248 CADM2, CLIP1, CTGF, GCC2,
GTF2E1, ITM2C, LYPD6,
OPN3, OSTM1, PCGF5,
PIP4K2C, QSER1, THUMPD1,
TIMP4 (direction of expression
predicts CLOCK activation in
11/14 genes)

BDNF Brain derived
neurotrophic
factor

Encodes a member of the nerve growth
factor family of proteins. Inhibition of
expression is associated with cognitive
deficits and neurogenerative disorders such
as Alzheimer’s, Parkinson’s, and
Huntington’s disease.

Growth factor Inhibited −2.781 ALDH7A1, ANXA5, Cdkn1c,
DNAJC21, DRD2, EGR1,
HSD17B4, HSPA4L mir-10,
mir-154, NCDN, NPY, PCDH8,
RGS4, SCCPDH, SFR1,
TMED2, Tmsb4x, VAMP2, VGF
(direction of expression predicts
BDNF inhibition in 12/20)

IL33 Interleukin 33 Encodes a cytokine that binds to the
IL1RL1/ST2 receptor. Encoded protein is
involved in the maturation of Th2 cells and
the activation of mast cells, basophils,
eosinophils and natural killer cells. Gene
has been implicated in microglial activation
and the brain’s innate immune response.

cytokine Inhibited −3.102 ACAT1, ARRB1, CCL3L3,
ENO2, HACD3, NFKBIB,
PRPF4B, RAI14, RAMP3,
RASGRP1 (direction of
expression predicts IL33
inhibition in 8/12)

BNIP3L BCL2 interacting
protein 3 like

Encodes a protein that belongs to the
pro-apoptotic subfamily within the Bcl-2
family of proteins. The encoded protein
directly targets mitochondria and causes
apoptotic changes, including loss of
membrane potential and the release of
cytochrome c.

Other Inhibited −2.94 CCND3, CENPE, CENPF,
CKAP2, CST3, GADD45A,
GPSM2, KIF11, NT5C3A,
NUF2, PRIM1, RAD54L,
TOP2A (direction of expression
predicts inhibition in 12/13)

KLF3 Kruppel like
factor 3

Transcription factor that is a key regulator of
adipogenesis and B cell development.
KLF3 serves as a key regulator of neuronal
development, and dysregulation of
regulators in the KLF famiuly has been
linked to has been linked to various
neurological disorders. KLFs may play a key
role in brain vasoprotection and
neuroprotection in response to ischemic or
hypoxic stimuli.

Transcription
regulator

Inhibited −2.241 AGGF1, ANXA5, CEP63,
CHCHD10, CSNK1G3,
EEF1AKMT1, EPRS,
HNRNPH1, HYPK, IGF2BP3
(direction of expression predicts
inhibition in 25/35)

(Continued)
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TABLE 3 | Continued

Upstream
regulator

Entrez gene
name

Putative function Molecule
type

Predicted
activation
state

Bias-
corrected
Z-score

Target molecules in dataset

F2 Coagulation
Factor II;
Thrombin

Coagulation factor II is proteolytically
cleaved to form thrombin in the first step of
the coagulation cascade which ultimately
results in the stemming of blood loss. F2
also plays a role in maintaining vascular
integrity during development and postnatal
life.

Peptidase Inhibited −2.821 B4GALT1, BIRC2, CTGF,
DOK5, EGR1, F3, PPIF, RAC1,
RHOJ, SLC2A6 (direction of
expression predicts inhibition in
10/12)

C5 Complement 5 Encodes a component of the complement
system, part of the innate immune system
that plays an important role in inflammation,
host homeostasis, and host defense
against pathogens

Cytokine Inhibited −2.101 CCL3L3, EFNB2, EGR1, F3,
PLK3 (direction of expression
predicts inhibition in 4/5)

FIGURE 4 | Neonatal offspring weight and length trajectory. There were no significant differences in offspring weight (A) between maternal diet groups, both when
sexes were grouped (above) and in sex-stratified analyses (below). Powdered chow-exposed offspring were significantly longer at every postnatal day than pelleted
chow-exposed counterparts (B), both when sexes were grouped (above) and in sex-stratified analyses (below). N = 31 powder and 62 pelleted chow-exposed
neonates. ∗∗∗∗p < 0.0001.

and coordination-associated milestones, and delayed neonatal
sensory maturation. Importantly, these changes occurred in
the absence of any differences in maternal weight gain in
pregnancy or fetal weight/length changes at embryonic day
15.5, and in the absence of any neonatal weight differences,
suggesting that the differences in fetal brain gene expression and
neonatal behavior were not attributable to overt nutrient excess
or deficiency. We also found neurobehavioral changes persisting

into adult life in the offspring, with maternal powdered chow
diet in pregnancy and lactation associated with hyperactivity
of on open field testing, and hippocampal learning deficits
on contextual fear conditioning. Both diets were commercially
available “chow” diets, highlighting the critical importance of
selection of appropriate control diets for those examining the
impact of maternal dietary or other environmental manipulations
on fetal brain development and offspring behavior.
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FIGURE 5 | Neonatal performance on tests of coordination, strength and body righting. Powdered chow-exposed neonates achieved coordination, strength, and
body-righting milestones significantly earlier than pelleted-chow exposed neonates. Graphs on the left depict neonatal latency (mean ± SEM) to complete the
behavioral task by postnatal day. Graphs on the right depict differences between neonates from the two maternal diet groups in the day of developmental milestone
achievement (defined as the day at which the pup performed the task successfully for 2 days in a row). (A) Negative geotaxis test; (B) Forelimb grasp test;
(C) Surface righting test; (D) Cliff aversion test. N = 31 powder and N = 62 pellet-chow exposed neonates. ∗p < 0.05; ∗∗p < 0.01, ∗∗∗p < 0.001.
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FIGURE 6 | Neonatal extinction of rotatory behavior and acquisition of sensory maturation reflexes. Powdered chow-exposed neonates were significantly delayed in
their achievement of sensory maturation reflexes including air righting (B), ear twitch (C), and auditory startle (D), compared to pelleted chow-exposed neonates.
Eye opening (E) also trended toward delay in the powdered chow-exposed neonates. There were no significant differences in neonatal extinction of rotatory behavior
between maternal diet groups (evaluated by open field testing, A). N = 31 powder and N = 62 pellet-chow exposed neonates. ∗∗∗p < 0.001.
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FIGURE 7 | Adult offspring locomotor behavior, hippocampal learning, and motor coordination. Powdered chow-exposed adults demonstrated hyperactivity
(significantly greater distance traveled in the open field test, A) and hippocampal learning/memory deficits (significantly reduced freezing on day 2 of contextual fear
conditioning, B). There were no differences between groups in adult motor coordination (Rotarod testing, C). N = 14 powder and N = 16 pellet-chow exposed
adults, except for open field where N = 13 powder and 16 pellet-chow exposed adults. ∗p < 0.05; ∗∗p < 0.01.

Impact of Dietary Micro- and
Macronutrients on Brain and Organismal
Development
The powdered-chow diet was relatively deficient in manganese,
iodine, iron, zinc, and copper, which were 9.5-fold, 71-, 5.
4-, 2-, and 2.5-fold higher in pelleted chow, respectively.
These micronutrients have all been shown to influence
neurodevelopment in both human and animal model studies
(Beard and Connor, 2003; Armony-Sivan et al., 2004; Hirzel et al.,
2006; Corniola et al., 2008; Gao et al., 2009; Adamo and Oteiza,
2010; Gogia and Sachdev, 2012; Chung et al., 2015; Claus Henn
et al., 2017). Maternal supplementation of these micronutrients
has been demonstrated to improve neonatal and pregnancy
outcomes, including incidence of congenital anomalies, low
birth weight, low IQ or developmental delay, preterm birth,
preeclampsia, and preterm premature rupture of membranes
(Keats et al., 2019; Mousa et al., 2019).

It is important to note the limitations of available data
on the impact of particular micronutrients on fetal and
offspring brain development, particularly data from human
cohorts. Key limitations include: (1) Many of the associations
between maternal micronutrient deficiency and offspring
neurodevelopmental outcomes are based on small observational
studies that utilize maternal dietary report/recall (therefore are
subject to recall bias); (2) Deficiency of a particular micronutrient
is likely to co-occur with other nutrient deficiencies and
potentially other conditions which may also impact fetal and
offspring brain development, such as low socioeconomic
status/food insecurity, poor maternal health in general, and
prematurity (raising the potential for confounding). Thus,
data linking any single micronutrient deficiency to adverse
neurodevelopmental outcomes, particularly in observational
human cohorts, should be interpreted with caution.

Maternal manganese deficiency and manganese excess have
both been associated with worse performance on psychomotor
and mental development indexes in human cohorts (Chung et al.,
2015; Claus Henn et al., 2017). Zinc deficiency during brain
development is associated with adverse neurodevelopmental

outcomes in humans and in animal models, with deficits
including motor delay and impairments, impaired task attention,
engagement, and social behavior (Hirzel et al., 2006; Gogia and
Sachdev, 2012). In rodent models, zinc deficiency is associated
with cell cycle arrest, mediated in part through dysregulation
of the ERK1/2, p53, and NF-kappa B pathways, and zinc
deficiency during development is associated with both impaired
neuronal precursor cell proliferation and induction of apoptosis
(Corniola et al., 2008; Gao et al., 2009; Adamo and Oteiza,
2010). Iodine was the most discrepant micronutrient among
the two experimental diets, and has been demonstrated to
have a significant impact on neurodevelopment, with effects
likely mediated by thyroid hormone deficiency (Skeaff, 2011).
Iodine is required for neuronal growth, synapse formation,
and myelination during brain development (Prado and Dewey,
2014). Iron was also significantly different between the two diets
(relatively deficient in powdered chow), and has been shown to
be critical to early life brain development. Iron deficiency has
been associated with deficits in learning and memory in children,
as well as alterations in neuron energy metabolism, dopamine
signaling, and dendrite complexity in animal models (Beard
and Connor, 2003; Georgieff, 2007; Prado and Dewey, 2014;
Bastian et al., 2016). Particularly relevant to the deficits observed
on neonatal behavioral testing in the powdered chow-exposed
neonates, iron deficiency has been associated with abnormal
neonatal reflexes and impaired auditory processing and auditory
cortex development in human cohorts (Armony-Sivan et al.,
2004; Siddappa et al., 2004).

The powdered chow was also relatively deficient in all
vitamins, with vitamins A, B1, B2, Niacin, B6, pantothenic
acid, B12, biotin, and folate all two- to four-fold higher in
pelleted chow and Vitamin E 1000-fold higher in pelleted
chow. Vitamins A, E, B6, B12 and folic acid have all been
demonstrated to impact brain development, with deficiency
during key developmental windows associated in human
cohorts with adverse neurodevelopmental outcomes including
cognitive and motor deficits, as well as autism spectrum
disorder (Dias et al., 2013; Wachs et al., 2014; Altamimi, 2018;
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Mousa et al., 2019). Vitamin E, which was 1000-fold lower
in the powdered chow diet, is known to serve as an
antioxidant, with fetal neuroprotective effects demonstrated
primarily inrat and hamster models in the setting of maternal
toxic exposures and/or oxidative stress (Erdemli et al., 2016;
Sampayo-Reyes et al., 2017; Sakamoto et al., 2018; Zhang
Y. et al., 2018). Supraphysiologic/supra-nutritional maternal
vitamin E consumption has been demonstrated in rodent models
to induce enduring changes in hippocampal synaptic plasticity
of offspring, with increased synaptic density/reduced synaptic
pruning observed in the adult offspring hippocampus, and
associated cognitive/learning deficits (Betti et al., 2011; Salucci
et al., 2014). Thus, both Vitamin E deficiency and excess appear
to have deleterious impact on the developing fetal brain.

In addition to being deficient in the antioxidants Vitamin
A and E, the powdered chow lacked the isoflavones daidzein
and genistein. Studies in rodent models have demonstrated
an important effect of dietary soy-derived phytoestrogens on
learning and memory, and in mediating anti-inflammatory and
neuroprotective effects on the brain (Wang et al., 2013). Both
genistein and daidzein have been demonstrated to cross the
blood-brain barrier, and exert antioxidant and neuroprotective
effects by several mechanisms including mediation of programed
cell death and reduction of RAGE-related NF-kB activation
and neurovascular production of pro-inflammatory cytokines
(Zeng et al., 2004; Xi et al., 2013; Zhang Q. et al., 2018). Both
isoflavones have also been demonstrated to improve cognitive
function. One putative mechanism for this is upregulation of
brain-derived neurotrophic factors (Pan et al., 1999; Lund et al.,
2001). Daidzein has been demonstrated in rodent models to exert
neuroprotective and cell-proliferative effects in the context of
stroke, and in the setting of high-fat diet-induced apoptosis and
gliosis (Subedi et al., 2017).

While the powdered chow was deficient for micronutrients
and antioxidants, it was relatively enriched for omega-3 long-
chain polyunsaturated fatty acids (in particular the n-3 LC-
PUFA linolenic acid), which have been demonstrated to
influence neurodevelopment. The powdered chow contained
1.6-fold higher n-3 LC-PUFAs than pelleted chow, and had
a more favorable n-6/n-3 long-chain PUFA ratio than the
pelleted chow (Abedi and Sahari, 2014). LC-PUFAs are fatty
acids with at least 18–20 carbons, whose omega-6 (n-6)
or omega-3 (n-3) designations depend on the position of
the first double bond relative to the methyl end group of
the fatty acid (Venegas-Caleron et al., 2010). LC-PUFAs are
important in neurotransmitter synthesis and release, immune
system regulation, the clotting cascade, phospholipid membrane
structure in the brain and retina, and cholesterol metabolism
(Li and Hu, 2009; Abedi and Sahari, 2014). N-3 LC-PUFAs
are highly concentrated in the mammalian retina and brain,
and play a key role in normal visual and brain function
due to their involvement in neurotransmitter biosynthesis,
signal transduction, and monoamine neurotransmitter receptor
binding and activity (Li and Hu, 2009). The powdered chow also
had a higher content of carbohydrates when compared with the
pelleted chow. There is a dearth of information in the literature
about the impact of dietary carbohydrates on neurodevelopment,

although overall maternal dietary quality, one measure of which
includes total caloric consumption, has been demonstrated to
be associated with neurodevelopmental outcomes (Malin et al.,
2018). The slight increase in calories in the powdered chow
(3.7 kcal/g versus 3.1 kcal/g in the pelleted chow), which is
primarily attributable to the increased carbohydrate content,
could impact overall organismal development, including of the
developing brain.

Pathways Analysis of Fetal Brain
Transcriptome Data in Context
Key themes in the functional analyses of differentially expressed
fetal brain genes included dysregulation of the cell cycle, of DNA
damage response, and of apoptosis. Significant upregulation of
the canonical pathway Mitotic Roles of Polo-Like Kinase (key in
cell cycle regulation), and significant dysregulation of multiple
downstream pathways implicated in cell cycle regulation, was
noted in the powdered chow-exposed fetal brain. The polo-like
kinases are a highly conserved family of proteins identified in
yeast, Xenopus, C. elegans and mammals, playing a key regulatory
role for entry into and exit from mitosis, centrosome separation
and maturation, and promoting the onset of cytokinesis, among
other functions (Glover et al., 1998; Donaldson et al., 2001). Polo-
like kinases have been implicated in neurogenesis and synaptic
plasticity (Kauselmann et al., 1999; Sakai et al., 2012; Genin
et al., 2014), suggesting that activation of polo-like kinases might
reflect increased demand for new neural progenitor cells or
new neuronal connections. Whether the significant upregulation
of this canonical pathway means that there is increased flux
through the cell cycle in the brains of powdered chow-exposed
embryos, and if there is increased flux, whether this reflects
increased neurogenesis, increased cell death, or both, is beyond
the scope of these experiments to determine. These results
point to the need for additional experiments investigating the
impact of micronutrient deficiency on cellular proliferation and
death in the developing brain, specifically as these processes
relate to increased flux through the cell cycle mediated by
polo-like kinases.

DNA damage response was another key dysregulated
biological process in the functional analyses, and might be related
to the significant dysregulation of cell-cycle related biological
functions and canonical pathways. There are numerous examples
of micronutrient deficiencies associated with DNA damage
(Ames, 1999). In particular, iron is an essential cofactor for
proteins which regulate DNA replication, repair, and cell cycle
progression (Zhang, 2014; Jung et al., 2019). One such protein for
which iron is an essential cofactor is the enzyme GADD45, which
was noted to be significantly dysregulated in the powdered chow-
exposed embryonic brains, and is involved in cell cycle arrest after
DNA damage (Gao et al., 1999; Steegmann-Olmedillas, 2011).
Dietary zinc supplementation has also been linked with reduced
DNA strand breaks in human subjects; proteins involved in DNA
repair, antioxidant, and immune functions were restored after
dietary zinc was increased (Song et al., 2009; Zyba et al., 2017).

Negative regulation of apoptosis in the powdered chow-
exposed fetal brain was another key theme in the functional
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analyses, including activation of both upstream regulators
that downregulate apoptosis, and downstream pathways that
negatively regulate apoptosis. This finding is consistent with
gene expression patterns suggesting reduced apoptosis in the
human fetal brain exposed to maternal obesity, which may
itself be a state of relative micronutrient deficiency (Edlow
et al., 2014). Multiple micronutrients that are deficient in the
powdered chow diet have been linked to increased apoptosis
in animal models, including iodine, manganese, zinc, and
copper (Beard and Connor, 2003; Armony-Sivan et al., 2004;
Vanlandingham et al., 2005; Georgieff, 2007; Tamm et al.,
2008; Gao et al., 2009; Cui et al., 2018). Zinc deficiency, in
particular, is strongly associated with apoptosis and abnormal
neural progenitor regulation in the developing brain (Corniola
et al., 2008; Gao et al., 2009; Adamo and Oteiza, 2010).
Thus, downregulation of apoptosis-related pathways in the
powdered chow-exposed fetal brain could be compensatory.
Determining whether apoptosis is up- or down-regulated in
the powdered chow-exposed/relatively micronutrient-deficient
brain, and whether the downregulation of apoptosis seen on
pathways analysis is compensatory or causative are important
directions for future investigation.

Other key themes in both the IPA and GSEA/DFLAT analyses
included decreased amino acid transport in the powdered chow-
exposed fetal brain; dysregulated synaptic transmission and
plasticity; brain innate immune response (including pathways
related to microglia/macrophage phagocytic activity, as well as
killer cell activity); and dopaminergic signaling. The changes
in amino acid transport pathways could reflect the powdered
chow’s relative deficiency of multiple amino acids, especially
glycine, alanine and arginine. Several components deficient
in the powdered chow diet have been demonstrated to play
an important role in synaptic plasticity, in particular zinc
and iron (Beard and Connor, 2003; Jorgenson et al., 2005;
Georgieff, 2007). LC-PUFAs, which are relatively enriched in
the powdered chow diet, have also been demonstrated to play
an important role in synaptogenesis, learning and memory, and
synaptic plasticity (Georgieff and Innis, 2005; Georgieff, 2007;
Crupi et al., 2013). Deficiency of iron, zinc, and copper, and
reduced antioxidant capacity conferred by relative deficiency
of antioxidants (including the specific isoflavones daidzein
and genistein), have been associated with altered microglial
function and brain innate immune response (Cunningham-
Rundles et al., 2009; Ibrahim et al., 2010; Chinta et al.,
2013). Iron and copper deficiency (both relatively deficient
in the powdered-chow exposed diet) have been demonstrated
to impact dopamine synthesis, metabolism and release in the
striatum (Prohaska and Brokate, 2001; Beard and Connor, 2003;
Georgieff, 2007).

Contextualizing Neonatal Biometric
Parameters and Behavioral Testing
The multiple differences between the two diets preclude
attribution of neonatal growth changes or performance on any
particular behavioral test to relative excess or deficiency of a
particular dietary component. One possible interpretation of

the neonatal length and behavioral differences between diet
groups, however, is that the increased length and improved
attainment of strength-and coordination-related tasks in the
powdered chow-exposed pups may be attributable to aspects of
the diet that were relatively enriched in powdered chow, while
the delay in sensory milestone achievement might be attributable
to relative deficiencies in the powdered chow diet. Thus, the
relative enrichment of powdered chow for the n-3 LC-PUFA
linolenic acid and carbohydrates could be a driver for increased
length and improved strength and coordination in the pups,
while the relative deficiency in macroelements, micronutrients
and antioxidants could be a driver of the delays in sensory
maturation noted.

Although our study design does not permit the explicit
testing of these hypotheses, the existing literature suggests
there is biologic plausibility for both omega-3 LC-PUFAs
and carbohydrate enrichment increasing body length, and
for omega-3 LC-PUFA enrichment improving strength and
coordination. Prior studies have found an association between
omega-3:omega-6 maternal dietary ratios and neonatal length
in mice (Santillan et al., 2010). Maternal diet correlates with
neonatal length in humans, as well (Rodriguez-Bernal et al.,
2010; Hjertholm et al., 2018). Associations have also been noted
between maternal dietary carbohydrate content and offspring
body size, although weight and/or fat mass is more frequently
reported to be significantly increased in the setting of increased
carbohydrate consumption, compared to length (Renault et al.,
2015; Crume et al., 2016).

LC-PUFAs are highly transferred between mother and neonate
in breast milk and play a key role in synaptogenesis, synaptic
plasticity, and myelination (Georgieff, 2007; Crupi et al., 2013).
The majority of animal studies have demonstrated omega-
3 fatty acid supplementation is associated with improvement
in cognitive tasks, visual acuity, neurogenesis, and other
brain-development-related endpoints (Lauritzen et al., 2016).
Studies evaluating the benefit of maternal omega-3 fatty acid
supplementation on cognition in humans, however, have been
mixed. Inconsistent with our results demonstrating sensory
maturation deficits in powdered chow-exposed offspring, a study
in Turkish infants demonstrated that DHA-enriched formula was
associated with more rapid acquisition of brainstem auditory-
evoked potentials (Unay et al., 2004). Consistent with our
results demonstrating improved coordination in powdered-chow
exposed offspring, a small randomized trial found that omega-3
fatty acid supplementation was associated with improved hand-
eye coordination in 2.5-year-old children (Dunstan et al., 2008).
However, two comprehensive reviews, including one of nine
randomized controlled studies, found no consistent sustained
benefit of omega-3 supplementation for infant cognition or
visual development (Lo et al., 2012; Prado and Dewey, 2014).
Overall, studies evaluating the benefit of maternal omega-3 fatty
acid supplementation on offspring developmental outcomes have
demonstrated the most benefit in preterm infants (SanGiovanni
et al., 2000; O’Connor et al., 2001; Makrides et al., 2010).

With respect to strength, omega-3 LC-PUFAs have been
demonstrated to improve muscle contractility in rats (Patten
et al., 2002), and in humans when omega-3 fatty acid
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supplementation was combined with an exercise and resistance-
training regimen (Rodacki et al., 2012). This may be mediated
by enhanced sensitivity of the muscle to acetylcholine, a
neurotransmitter that stimulates muscle contraction (Jeromson
et al., 2015). Finally, it is possible that the increased body length
itself had a favorable impact on strength and coordination-related
neonatal behavioral tasks; this association has not been previously
reported, and may be an interesting direction for future study.

There is also biologic plausibility for micronutrient and
antioxidant deficiency impacting sensory maturation. In a guinea
pig model, mild maternal iron deficiency during pregnancy and
lactation was associated with abnormal auditory function in
postnatal day 24 offspring (Jougleux et al., 2011). Maternal iodine
deficiency, even if mild, has also been associated with disorders of
auditory processing in human offspring (Azizi et al., 1995; Hynes
et al., 2013), and in rodents, early postnatal iodine deficiency
and hypothyroidism resulted in decreased dendritic branching
in the visual and auditory cortex (Dussault and Ruel, 1987).
Maternal and neonatal zinc deficiency has also been associated in
multiple studies with abnormal development of brain regions that
play critical roles in processing sensory information (Hagmeyer
et al., 2014), and with neurosensory disorders in children (Prasad,
1996). Although maternal and perinatal zinc deficiency has more
classically been associated with deficits in offspring learning
and memory and social behavior (Golub et al., 1995; Hagmeyer
et al., 2014), the brain areas rich in zinc-containing glutamatergic
neurons (cerebral cortex and limbic structures) also play a
key role in sensory processing (Hagmeyer et al., 2014). With
respect to ways in which relative antioxidant deficiency may
contribute to deficits in sensory maturiation, early life oxidative
stress has been demonstrated to impair the development of
parvalbumin-expressing fast-spiking interneurons, leading to
deficits in sensory processing (Cabungcal et al., 2013).

Contextualizing Adult Offspring
Neurobehavioral Testing
With respect to the finding of hippocampal learning deficits
in powdered-chow exposed adult offspring, multiple human
studies have demonstrated relative micronutrient deficiency
negatively impacts offspring cognition, with micronutrient
supplementation of pregnant women and their infants/children
associated with improved child cognition (standardized reading
and math scores and information processing measures)
(Prado and Dewey, 2014). However, these data are limited
by concomitant increased caloric intake and/or improved
protein intake during the period of supplementation for
most studies, and lack of standardization of micronutrient
supplementation content. While nearly all the micronutrients
and antioxidants relatively deficient in the powdered-
chow diet have been linked to hippocampal development
and learning/memory, the strongest data in human and
animal model studies are for iron and iodine deficiency
in early development resulting in abnormal hippocampal
development and cognitive and learning deficits that endure
into adult life (Dussault and Ruel, 1987; Jorgenson et al.,
2003, 2005; Lozoff et al., 2006; Beard, 2007; de Escobar

et al., 2007; Walker et al., 2007; Fretham et al., 2011;
Prado and Dewey, 2014).

With respect to the finding of hyperactivity/increased
locomotion in powdered-chow exposed offspring, human studies
evaluating the impact of vitamin and micronutrient deficiencies
on offspring attention deficit hyperactivity disorder (ADHD)
risk have reported mixed results (Li et al., 2019). For example,
maternal multivitamin and folate intake were associated with a
lower risk of ADHD diagnosis and medication use in the Danish
National Birth Cohort, but not in a New Zealand birth cohort
(Virk et al., 2018; D’Souza et al., 2019). Deficiencies in B vitamins
and Vitamin D have also been linked to increased ADHD risk
in children (Morales et al., 2015; Altun et al., 2018; Fasihpour
et al., 2019; Kotsi et al., 2019), although some studies have failed
to find these associations (Gustafsson et al., 2015). Inconsistent
with our finding of hyperactivity in the powder-chow exposed
offspring, recent human and rodent studies have reported that
increased cord blood n-6/n-3 fatty acid ratio or relative maternal
deficiency of n-3 fatty acids is associated with increased risk
for ADHD in offspring (Fedorova and Salem, 2006; Sakayori
et al., 2016; Lopez-Vicente et al., 2019), A recent systematic
meta-analysis concluded that maternal omega-3 fatty acid intake
has not been consistently associated with offspring ADHD
risk, however (Li et al., 2019). Poor maternal dietary quality,
particularly diets high in sugar, fat and processed foods (which
may in some cases be a marker for micronutrient deficiency),
has been more consistently linked to ADHD risk in offspring
(Rijlaarsdam et al., 2017; Galera et al., 2018). Animal model
studies have demonstrated more consistent associations between
micronutrient deficiency during development and hyperactivity
of offspring, with relative deficiency of B vitamins and iron most
strongly implicated (Lalonde et al., 2008; LeBlanc et al., 2009;
Fiset et al., 2015).

Strengths, Limitations and Future
Directions
As one of the first studies to directly examine the impact
of maternal micronutrient and antioxidant deficiency on fetal
brain development and offspring behavior in the absence
of overt maternal over- or undernutrition, this study begins
to address a significant knowledge gap. Pathway analysis
of differentially expressed fetal brain genes provided unique
insights into biological processes that could be impacted by
the relative excess and deficient dietary components in the
powdered chow. We hope that the gene expression changes
and dysregulated pathways highlighted here can act as a
starting point for future studies designed to examine the
impact of specific combinations of maternal dietary components
on fetal neurodevelopment and offspring behavior. The use
of multiple pathways analysis tools, including a tool with
annotation specific to fetal development (DFLAT), provides the
most comprehensive picture of dysregulated biological processes
(Edlow et al., 2015). The use of a comprehensive and validated
battery of neonatal behavioral assessments performed by a single
experienced investigator is also a strength. The multiple dietary
components that differ between the study diets is a limitation,
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as it does not permit us to attribute specific gene expression
changes or putative biological functional changes to particular
macro- or micronutrient components, only to demonstrate
that “chow” diet composition has a profound impact on the
developing fetal brain and enduring consequences for offspring
behavior. However, as a recent publication notes, studies that
examine the impact of deficiency or enrichment for a single
micro- or macronutrient have limited “real world” applicability,
and to maximize translatability, studies should focus on the
neurodevelopmental impact of combinations of nutrients, given
that nutrients are actually ingested in combination (Malin et al.,
2018). Because offspring were weaned to the same diet they were
exposed to in utero and during lactation, we cannot determine
whether the adult behavioral differences were attributable solely
to the intrauterine and lactational environment, the postnatal diet
exposure, or a combination of the two. Although the study was
not designed to interrogate the contribution of paternal diet, a
strength of the study design is that male sires were exposed to the
same diet as the dams, and male sires were kept on a powdered or
pelleted chow diet throughout the duration of the study, with no
crossover of male sires between maternal diet groups.

The relatively small number of microarrays per maternal
diet group could be viewed as a potential limitation, but five
biological replicates per group is sufficient in microarray studies
to detect differences in global gene expression (Allison et al.,
2006; Tarca et al., 2006). While this number of microarrays is
sufficient to interrogate the impact of maternal diet on fetal
brain gene expression, the study was not specifically designed or
powered to evaluate sex differences in fetal brain gene expression
in the setting of this maternal exposure. Therefore, the lack of a
significant sex-diet interaction on two-way ANOVA modeling of
the differentially expressed brain genes should be interpreted with
caution. One piece of evidence in favor of no actual fetal sex effect
is the additional lack of a significant effect of offspring sex in the
neonatal behavioral analyses. The large number of offspring per
sex in the neonatal behavioral experiments (15–37/sex/maternal
diet group) suggests that in the context of this particular maternal
dietary exposure, fetal and offspring sex truly may not be a
significant modifier. Additional studies designed and powered
specifically to look at the impact of fetal sex in the setting of these
maternal dietary exposures are necessary to definitively exclude
fetal sex as an effect modifier. Other future directions include
specific enrichment or depletion of maternal diet for only one
or a small combination of micro- or macronutrients to explicitly
test some of the hypotheses put forward here regarding the
impact of LC-PUFA and carbohydrate enrichment on neonatal
length, strength and coordination, and the impact of relative
micronutrient and antioxidant deficiency on neonatal sensory
maturation. In addition, specific evaluation of the mother’s milk
for particular dietary components would be a useful adjunct
to future studies.

SUMMARY

In this study, we demonstrate the important role of maternal diet
composition in fetal brain development and offspring behavior,

even in the absence of maternal over- or undernutrition. We show
that commercially available chow diets are not interchangeable,
and the content of maternal chow diet significantly impacts
embryonic brain gene expression, neonatal behavior, and adult
behavior in mice. These findings underscore the importance
of selecting a maternal chow diet matched for macro- and
micronutrients when investigating fetal and offspring brain
development and behavior.
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