Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido(2,6-dipyrazol-1-ylpyridine)zinc(II)

Zhong Nian Yang^a* and Ting Ting Sun^b

^aDepartment of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China, and ^bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China Correspondence e-mail: yangzhongnian1978@yahoo.com.cn

Received 20 September 2008; accepted 26 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.078; data-to-parameter ratio = 16.5.

In the title complex, $[ZnCl_2(C_{11}H_9N_5)]$, the Zn^{II} ion assumes a trigonal-bipyramidal ZnN₃Cl₂ coordination distorted geometry [Zn-N = 2.1397 (16)-2.2117 (17) Å, Zn-Cl =2.2470 (6) and 2.2564 (6) Å]. The crystal packing exhibits π - π stacking interactions between the 2,6-dipyrazol-1-ylpyridine ligands of neighbouring molecules.

Related literature

For the related crystal structure of dichlorido[2,6-bis-(pyrazolylmethyl)pyridine]zinc(II), see Balamurugan et al. (2004).

Experimental

Crystal data

 $[ZnCl_2(C_{11}H_9N_5)]$ V = 1313.0 (4) Å³ $M_r = 347.50$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 10.9630 (17) Å $\mu = 2.27 \text{ mm}^{-1}$ b = 8.0263 (13) Å T = 298 (2) K c = 14.943 (2) Å $0.48 \times 0.42 \times 0.29 \text{ mm}$ $\beta = 93.079(2)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.409, T_{\rm max} = 0.559$ (expected range = 0.379–0.518)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	173 parameters
$wR(F^2) = 0.078$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
2848 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

7375 measured reflections

 $R_{\rm int} = 0.030$

2848 independent reflections

2431 reflections with $I > 2\sigma(I)$

Table 1

Selected interatomic distances (Å).

Cg1, Cg2 and Cg3 are the centroids of the C4/N1/N4/N5/Zn1, C1-C3/N4/N5 and C4-C8/N1 rings, respectively.

$Cg1 \cdots Cg2^{i}$		3.4087 (12)	$Cg2 \cdots Cg3^{i}$	3.6253 (13)

Symmetry code: (i) -x + 1, -y, -z.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

This work was supported by the Doctor's Foundation of Binzhou University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2454).

References

Balamurugan, V., Hundal, M. S. & Mukherjee, R. (2004). Chem. Eur. J. 10, 1683-1690.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, m1374 [doi:10.1107/S1600536808031152]

Dichlorido(2,6-dipyrazol-1-ylpyridine)zinc(II)

Z. N. Yang and T. T. Sun

Comment

2,6-Dipyrazol-1-ylpyridine and the relevant homologues as a tridentate ligand play an important role in modern coordination chemistry (Balamurugan *et al.*, 2004), and the interest in complexes with 2,6-dipyrazol-1-ylpyridine ligand stimulted us to prepare the title complex, (I). Herein we report its crystal structure.

In (I) (Fig. 1), each Zn^{II} ion has a distorted trigonal-bipyramidal coordination environment. In the crystal, there exist π - π stacking interactions involving symmetry related 2,6-dipyrazol-1-ylpyridine ligands (Talbe 1).

Experimental

15 ml me thanol solution containing 2,6-dipyrazol-1-ylpyridine (0.0522 g, 0.247 mmol) and pyrazine-1,4-dioxide (0.0414 g, 0.369 mmol) was added into 5 ml H₂O solution of ZnCl₂ (0.0783 g, 0.575 mmol), and the mixed solution was stirred for a few minutes. Colorless single crystals were obtained after the filtrate was allowed to stand at room temperature for 40 days.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

Dichlorido(2,6-dipyrazol-1-ylpyridine)zinc(II)

Crystal data $[ZnCl_2(C_{11}H_9N_5)]$ $M_r = 347.50$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.9630 (17) Å

 $F_{000} = 696$ $D_x = 1.758 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3889 reflections $\theta = 2.4-28.2^{\circ}$

b = 8.0263 (13) Å	$\mu = 2.27 \text{ mm}^{-1}$
<i>c</i> = 14.943 (2) Å	T = 298 (2) K
$\beta = 93.079 \ (2)^{\circ}$	Block, colourless
$V = 1313.0 (4) \text{ Å}^3$	$0.48\times0.42\times0.29~mm$
Z = 4	

Data collection

Bruker SMART APEX CCD diffractometer	2848 independent reflections
Radiation source: fine-focus sealed tube	2431 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 298(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 14$
$T_{\min} = 0.409, \ T_{\max} = 0.559$	$k = -9 \rightarrow 10$
7375 measured reflections	$l = -16 \rightarrow 18$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2) + (0.0445P)^2 + 0.0869P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.078$	$(\Delta/\sigma)_{\text{max}} = 0.002$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
2848 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
173 parameters	Extinction correction: SHELXTL (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0 0167 (11)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.47097 (18)	0.3058 (2)	0.04770 (16)	0.0447 (5)
H1	0.4465	0.3525	0.1008	0.054*
C2	0.40961 (19)	0.3275 (3)	-0.03549 (17)	0.0478 (5)
H2	0.3389	0.3891	-0.0481	0.057*
C3	0.47479 (18)	0.2396 (2)	-0.09475 (16)	0.0440 (5)
Н3	0.4572	0.2292	-0.1561	0.053*
C4	0.66172 (17)	0.0609 (2)	-0.07399 (13)	0.0349 (4)
C5	0.66885 (19)	0.0026 (3)	-0.16015 (14)	0.0448 (5)
Н5	0.6147	0.0387	-0.2062	0.054*
C6	0.7591 (2)	-0.1111 (3)	-0.17553 (16)	0.0487 (5)
Н6	0.7663	-0.1533	-0.2330	0.058*
C7	0.8394 (2)	-0.1637 (3)	-0.10659 (15)	0.0442 (5)
H7	0.8998	-0.2423	-0.1160	0.053*
C8	0.82578 (17)	-0.0944 (2)	-0.02369 (14)	0.0357 (4)
C9	0.99689 (18)	-0.2410 (2)	0.06325 (16)	0.0454 (5)
Н9	1.0275	-0.3088	0.0192	0.054*
C10	1.0387 (2)	-0.2314 (3)	0.14943 (17)	0.0502 (6)
H10	1.1036	-0.2903	0.1767	0.060*
C11	0.9647 (2)	-0.1152 (3)	0.18931 (17)	0.0491 (6)
H11	0.9730	-0.0837	0.2492	0.059*
Cl1	0.65199 (5)	0.06053 (7)	0.25184 (4)	0.05045 (17)
Cl2	0.83525 (5)	0.37392 (6)	0.12155 (4)	0.04545 (15)
N1	0.74008 (13)	0.01621 (18)	-0.00710 (10)	0.0327 (3)
N2	0.90163 (15)	-0.13336 (19)	0.05243 (12)	0.0374 (4)
N3	0.88095 (15)	-0.0554 (2)	0.13084 (11)	0.0417 (4)
N4	0.57069 (14)	0.1699 (2)	-0.04655 (11)	0.0366 (4)
N5	0.56823 (14)	0.2105 (2)	0.04169 (11)	0.0385 (4)
Zn1	0.73202 (2)	0.13073 (3)	0.121755 (15)	0.03696 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0377 (11)	0.0347 (10)	0.0624 (14)	-0.0040 (8)	0.0090 (10)	-0.0009 (10)
C2	0.0347 (10)	0.0363 (10)	0.0721 (16)	-0.0005 (9)	-0.0004 (10)	0.0102 (10)
C3	0.0360 (10)	0.0439 (11)	0.0512 (13)	-0.0045 (9)	-0.0066 (9)	0.0124 (9)
C4	0.0329 (10)	0.0332 (9)	0.0386 (11)	-0.0072 (7)	0.0014 (8)	0.0020 (8)
C5	0.0441 (11)	0.0538 (12)	0.0361 (11)	-0.0052 (10)	-0.0025 (9)	0.0023 (9)
C6	0.0539 (13)	0.0570 (13)	0.0357 (12)	-0.0052 (10)	0.0062 (10)	-0.0076 (10)
C7	0.0428 (12)	0.0470 (11)	0.0435 (12)	0.0032 (9)	0.0071 (9)	-0.0029 (9)
C8	0.0338 (10)	0.0337 (9)	0.0400 (11)	-0.0062 (8)	0.0054 (8)	0.0026 (8)
C9	0.0392 (11)	0.0374 (11)	0.0599 (15)	0.0031 (9)	0.0064 (10)	0.0053 (9)
C10	0.0414 (11)	0.0469 (12)	0.0613 (15)	0.0030 (9)	-0.0047 (10)	0.0154 (11)
C11	0.0458 (12)	0.0549 (13)	0.0460 (14)	0.0010 (10)	-0.0036 (10)	0.0090 (10)
Cl1	0.0523 (3)	0.0611 (4)	0.0389 (3)	-0.0069 (2)	0.0112 (2)	-0.0012 (2)

supplementary materials

Cl2	0.0431 (3)	0.0428 (3)	0.0500 (3)	-0.0086 (2)	-0.0017 (2)	-0.0035 (2)
N1	0.0309 (8)	0.0332 (8)	0.0338 (9)	-0.0042 (6)	0.0000 (7)	0.0014 (7)
N2	0.0348 (9)	0.0376 (9)	0.0400 (10)	0.0006 (6)	0.0034 (7)	0.0025 (7)
N3	0.0413 (9)	0.0486 (10)	0.0351 (9)	0.0030 (8)	0.0022 (7)	0.0011 (7)
N4	0.0316 (8)	0.0370 (8)	0.0407 (10)	-0.0038 (7)	-0.0015 (7)	0.0037 (7)
N5	0.0359 (9)	0.0376 (9)	0.0419 (10)	-0.0029 (7)	0.0022 (7)	-0.0007 (7)
Zn1	0.03632 (16)	0.04045 (17)	0.03418 (17)	-0.00377 (9)	0.00263 (10)	-0.00260 (9)
Geometric paran	neters (Å, °)					
C1—N5		1.319 (3)	C8—N	1	1.325	(2)
C1—C2		1.392 (3)	C8—N	2	1.408 (3)	
C1—H1		0.9300	С9—С	10	1.346 (3)	
C2—C3		1.364 (3)	C9—N	2	1.358 (2)	
С2—Н2		0.9300	С9—Н	9	0.9300)
C3—N4		1.362 (2)	C10—	C11	1.391	(3)
С3—Н3		0.9300	C10—1	H10	0.9300)
C4—N1		1.332 (2)	C11—1	N3	1.323 (3)	
C4—C5		1.376 (3)	C11—1	H11	0.9300	
C4—N4		1.405 (2)	Cl1—2	Zn1	2.2470 (6)	
C5—C6		1.374 (3)	Cl2—7	Zn1	2.2564 (6)	
С5—Н5		0.9300	N1—Z	n1	2.1397 (16)	
С6—С7		1.385 (3)	N2—N	3	1.358 (2)	
С6—Н6		0.9300	N3—Z	n1	2.2117 (17)	
С7—С8		1.374 (3)	N4—N	5	1.360 (2)	
С7—Н7		0.9300	N5—Zn1		2.1988	8 (16)
$Cg1 \cdots Cg2^i$		3.4087 (12)	Cg2…C	Cg3 ⁱ	3.6253	3 (13)
N5-C1-C2		111.4 (2)	C11—	С10—Н10	127.1	
N5—C1—H1		124.3	N3—C	11—C10	111.1 (2)	
C2—C1—H1		124.3	N3—C	11—H11	124.4	
C3—C2—C1		105.67 (19)	C10—C11—H11		124.4	
С3—С2—Н2		127.2	C8—N	1—C4	118.37 (17)	
C1—C2—H2		127.2	C8—N	1—Zn1	121.33 (13)	
N4—C3—C2		106.6 (2)	C4—N	1—Zn1	120.23 (13)	
N4—C3—H3		126.7	C9—N	2—N3	110.69 (17)	
С2—С3—Н3		126.7	C9—N	2—С8	130.90	0 (18)
N1-C4-C5		122.93 (18)	N3—N	2—С8	118.41 (16)	
N1-C4-N4		112.86 (17)	C11—1	-N3—N2 105.09 (1		9 (18)
C5-C4-N4		124.19 (18)	C11—N3—Zn1		140.30 (16)	
C6—C5—C4		117.4 (2)	N2—N3—Zn1		N3—Zn1 114.53 (12	
С6—С5—Н5		121.3	N5—N	N5—N4—C3 111.07 (1		7 (17)
С4—С5—Н5		121.3	N5—N	4—C4	118.92	2 (16)
C5—C6—C7		120.8 (2)	C3—N	4—C4	129.90	0 (18)
С5—С6—Н6		119.6	C1—N	C1—N5—N4 105.25 (1		5 (17)
С7—С6—Н6		119.6	C1—N	C1—N5—Zn1 140.46 (15)		5 (15)
C8—C7—C6		116.84 (19)	N4—N	5—Zn1	113.56	5(11)
С8—С7—Н7		121.6	N1—Z	n1—N5	72.99	(6)
С6—С7—Н7		121.6	N1—Z	n1—N3	72.49	(6)

N1—C8—C7	123.55 (19)	N5—Zn1—N3	143.97 (6)
N1—C8—N2	113.06 (17)	N1—Zn1—Cl1	135.05 (4)
C7—C8—N2	123.38 (18)	N5—Zn1—Cl1	101.44 (5)
C10-C9-N2	107.3 (2)	N3—Zn1—Cl1	95.67 (5)
С10—С9—Н9	126.3	N1—Zn1—Cl2	108.99 (4)
N2—C9—H9	126.3	N5—Zn1—Cl2	98.18 (5)
C9—C10—C11	105.8 (2)	N3—Zn1—Cl2	102.45 (5)
С9—С10—Н10	127.1	Cl1—Zn1—Cl2	115.93 (2)
N5-C1-C2-C3	-0.1 (2)	C5—C4—N4—N5	175.69 (18)
C1—C2—C3—N4	-0.1 (2)	N1—C4—N4—C3	-178.85 (18)
N1-C4-C5-C6	2.3 (3)	C5-C4-N4-C3	-0.2 (3)
N4—C4—C5—C6	-176.27 (18)	C2-C1-N5-N4	0.2 (2)
C4—C5—C6—C7	-0.2 (3)	C2-C1-N5-Zn1	169.07 (15)
C5—C6—C7—C8	-1.3 (3)	C3—N4—N5—C1	-0.3 (2)
C6—C7—C8—N1	0.9 (3)	C4—N4—N5—C1	-176.86 (16)
C6—C7—C8—N2	-178.97 (18)	C3—N4—N5—Zn1	-172.54 (12)
N2-C9-C10-C11	0.3 (2)	C4—N4—N5—Zn1	10.85 (19)
C9—C10—C11—N3	0.0 (3)	C8—N1—Zn1—N5	-173.52 (14)
C7—C8—N1—C4	1.0 (3)	C4—N1—Zn1—N5	9.64 (13)
N2-C8-N1-C4	-179.07 (15)	C8—N1—Zn1—N3	-4.01 (13)
C7—C8—N1—Zn1	-175.88 (15)	C4—N1—Zn1—N3	179.15 (15)
N2—C8—N1—Zn1	4.0 (2)	C8—N1—Zn1—Cl1	-84.26 (14)
C5-C4-N1-C8	-2.7 (3)	C4—N1—Zn1—Cl1	98.90 (13)
N4—C4—N1—C8	176.00 (15)	C8—N1—Zn1—Cl2	93.49 (13)
C5—C4—N1—Zn1	174.24 (14)	C4—N1—Zn1—Cl2	-83.35 (13)
N4—C4—N1—Zn1	-7.1 (2)	C1—N5—Zn1—N1	-178.6 (2)
C10-C9-N2-N3	-0.4 (2)	N4—N5—Zn1—N1	-10.30 (11)
C10-C9-N2-C8	179.88 (19)	C1—N5—Zn1—N3	164.27 (19)
N1—C8—N2—C9	178.77 (18)	N4—N5—Zn1—N3	-27.46 (18)
C7—C8—N2—C9	-1.3 (3)	C1—N5—Zn1—Cl1	47.6 (2)
N1—C8—N2—N3	-0.9 (2)	N4—N5—Zn1—Cl1	-144.18 (11)
C7—C8—N2—N3	179.04 (18)	C1—N5—Zn1—Cl2	-71.1 (2)
C10-C11-N3-N2	-0.3 (2)	N4—N5—Zn1—Cl2	97.15 (12)
C10-C11-N3-Zn1	-176.68 (16)	C11—N3—Zn1—N1	179.3 (2)
C9—N2—N3—C11	0.4 (2)	N2—N3—Zn1—N1	3.17 (12)
C8—N2—N3—C11	-179.84 (17)	C11—N3—Zn1—N5	-163.4 (2)
C9—N2—N3—Zn1	177.92 (12)	N2—N3—Zn1—N5	20.38 (19)
C8—N2—N3—Zn1	-2.4 (2)	C11—N3—Zn1—Cl1	-45.1 (2)
C2—C3—N4—N5	0.2 (2)	N2—N3—Zn1—Cl1	138.76 (12)
C2—C3—N4—C4	176.33 (18)	C11—N3—Zn1—Cl2	73.1 (2)
N1—C4—N4—N5	-3.0 (2)	N2—N3—Zn1—Cl2	-103.08 (12)
Symmetry codes: (i) $-x+1, -y, -z$.			

