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Abstract

Human brain structure traits have been hypothesized to be broad endophenotypes

for neuropsychiatric disorders, implying that brain structure traits are comparatively

“closer to the underlying biology.” Genome-wide association studies from large sam-

ple sizes allow for the comparison of common variant genetic architectures between

traits to test the evidence supporting this claim. Endophenotypes, compared to neuro-

psychiatric disorders, are hypothesized to have less polygenicity, with greater effect

size of each susceptible SNP, requiring smaller sample sizes to discover them. Here,

we compare polygenicity and discoverability of brain structure traits, neuropsychiatric

disorders, and other traits (91 in total) to directly test this hypothesis. We found

reduced polygenicity (FDR = 0.01) and increased discoverability (FDR = 3.68 × 10−9)

of cortical brain structure traits, as compared to aggregated estimates of multiple neu-

ropsychiatric disorders. We predict that �8 M individuals will be required to explain

the full heritability of cortical surface area by genome-wide significant SNPs, whereas

sample sizes over 20 M will be required to explain the full heritability of depression. In

conclusion, our findings are consistent with brain structure satisfying the higher

power criterion of endophenotypes.
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1 | INTRODUCTION

Human brain structure traits have been posited to be broad endo-

phenotypes for neuropsychiatric disorders (Almasy & Blangero, 2001;

Bigos & Weinberger, 2010; Flint & Munafò, 2007; Meyer-

Lindenberg & Weinberger, 2006). Endophenotypes have two attrac-

tive properties for genetic search (Le & Stein, 2019): First, higher

power, because precisely measured endophenotypes are “closer to the

underlying biology” than heterogeneous, clinically defined disorders,

smaller sample sizes are needed to detect endophenotype effects.

Second, mechanistic insight, because those variants associated with an

endophenotype also influence risk for neuropsychiatric disorders,

endophenotype associations are informative about the mechanisms

leading to risk for neuropsychiatric disorders. Genome-wide associa-

tion studies (GWAS) have identified common genetic variants associ-

ated with many traits, including brain structure (Adams et al., 2016;

Elliott et al., 2018; Grasby et al., 2020; Hibar et al., 2015; Hibar

et al., 2017; Satizabal et al., 2019; Stein et al., 2012; Zhao et al., 2020)

and risk for neuropsychiatric disorders (Demontis et al., 2019; Howard

et al., 2019; Matoba et al., 2020; Pardiñas et al., 2018; Stahl

et al., 2019). GWAS results from large sample sizes allow for the

comparison of common variant genetic architectures between traits

(Watanabe et al., 2019) and the direct evaluation of these end-

ophenotype properties.
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Genetic architecture can be summarized by several parameters

(Holland et al., 2020; Zhang, Qi, Park, & Chatterjee, 2018): (a) heritability

(h2): the overall amount of trait variance explained by genetics;

(b) polygenicity (πc): the proportion of susceptibility SNPs (sSNPs), LD-

independent loci associated with a trait that are not necessarily genome-

wide significant, relative to the total number of LD-independent SNPs in

the genome (M); and (c) discoverability (σ): the distribution of effect sizes

of sSNPs on a trait. Higher polygenicity of a trait indicates more sSNPs

that are associated with that trait (Figure 1). Higher polygenicity is gen-

erally associated with lower effect size of each sSNP, requiring higher

sample sizes to discover them (Watanabe et al., 2019). Endophenotypes,

compared to neuropsychiatric disorders, are hypothesized to have less

polygenicity, with greater effect size of each sSNP, requiring lower sam-

ple sizes to discover them.

Here, we directly tested whether brain structure traits satisfy the

higher power property of endophenotypes using summary statistics from

existing GWAS. We applied GENESIS (Zhang et al., 2018), a mixture

model algorithm that performs soft-clustering of LD-independent SNPs

into either null SNPs, those that have no detectable effect on a trait,

or sSNPs, those that have a detectable influence without requiring

genome-wide significance. We found reduced polygenicity and increased

discoverability of cortical surface area traits as compared to both cortical

thickness and subcortical volumes. Additionally, we found reduced poly-

genicity and increased discoverability of cortical brain structure traits, as

compared to aggregated estimates of multiple neuropsychiatric disorders

and anthropometric traits. We therefore project that, as additional

GWAS are completed in the future, studies will find more explained heri-

tability of cortical structure traits compared to equivalently sized studies

of neuropsychiatric disorders. These findings support cortical brain struc-

ture traits as satisfying the higher power criterion of an endophenotype.

2 | METHODS

2.1 | GWAS summary statistics

We obtained GWAS summary statistics for 91 complex traits and dis-

orders. Summary statistics for brain structure traits including cortical

surface area (n = 35), thickness (n = 35) (Grasby et al., 2020), and sub-

cortical volumes (n = 7) (Hibar et al., 2017; Satizabal et al., 2019) were

obtained from the Enhancing NeuroImaging Genetics through Meta

Analysis (ENIGMA) consortium (http://enigma.ini.usc.edu/research/

download-enigma-gwas-results/). From the Psychiatric Genomics Con-

sortium (PGC) (https://www.med.unc.edu/pgc/download-results/), sum-

mary statistics for three psychiatric disorders (schizophrenia (Ripke

et al., 2013; Schizophrenia Working Group of the Psychiatric Genomics

Consortium, 2014), bipolar disorder (Stahl et al., 2019), depression

(Howard et al., 2019; Wray et al., 2018) [including major depression

[MDD] and broad depression, excluding 23andMe participants]) were

obtained. We additionally downloaded summary statistics for schizo-

phrenia (Pardiñas et al., 2018) from https://walters.psycm.cf.ac.uk/. Sum-

mary statistics for Attention deficit/hyperactivity disorder (ADHD)

(European population) (Demontis et al., 2019) were obtained from the

Integrative Psychiatric Research (iPSYCH) website (https://ipsych.dk/en/

research/downloads/). Summary statistics for Autism Spectrum Disorder

(ASD) were generated in our previous study (Matoba et al., 2020).

Summary statistics for addiction (cigarettes per day [CPD] and drinks

per week [DPW]) (Liu et al., 2019) were downloaded from the GWAS

& Sequencing Consortium of Alcohol and Nicotine use (https://

conservancy.umn.edu/handle/11299/201564). Summary statistics for

cognitive function (intelligence (Savage et al., 2018) and reaction

time (Watanabe et al., 2019)) were obtained from https://ctg.cncr.nl/

software/summary_statistics and https://atlas.ctglab.nl/ukb2_sumstats/f.

20023.0.0_res.EUR.sumstats.MACfilt.txt.gz, respectively. Summary sta-

tistics for neurodegenerative disorders (Parkinson's disease (Nalls et al.,

2019) [excluding 23andMe] and Alzheimer's diseases) were obtained

from https://drive.google.com/file/d/1FZ9UL99LAqyWnyNBxxlx6qOU

lfAnublN/view or the International Genomics of Alzheimer's Project

(IGAP) http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.

php, respectively. Summary statistics for anthropometric measurements

(height and bodymass index [BMI]) (Yengo et al., 2018) were obtained from

the Genetic Investigation of ANthropometric Traits (GIANT) consortium

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_

consortium_data_files#BMI_and_Height_GIANT_and_UK_BioBank_Meta-

analysis_Summary_Statistics). Summary statistics for three categories

of depression from the UKBB population were obtained from

https://datashare.is.ed.ac.uk/bitstream/handle/10283/3083/mdd_broad_

probable_icd.zip. Summary statistics of cortical structures for UKBB

was obtained from UK Biobank Brain Imaging webpage (https://www.

fmrib.ox.ac.uk/ukbiobank/) (Smith et al., 2020), and other UKBB

traits were obtained from https://atlas.ctglab.nl/ukb2_sumstats/f.*.0.

0_res.EUR.sumstats.MACfilt.txt.gz (* was replaced with 50; 21,001;
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F IGURE 1 Illustration of polygenicity and discoverability. For traits with higher polygenicity, more variants (LD-independent susceptibility
SNPs indicated as stars, left) are associated with the trait, each at lower effect size which leads to lower discoverability (right)
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20,016; and 2,887 to select height, BMI, intelligence, and CPD, respec-

tively (Watanabe et al., 2019)) and https://www.dropbox.com/s/

7hjxdhlxlwa482n/DRINKS_PER_WEEK_GWAS.txt for DPW Linnér

et al. (2019). Further information is summarized in Supplementary

Table S1.

2.2 | Data preparation for GENESIS

The proportion of sSNPs for 91 traits and diseases and their effect

size distributions were estimated using GENetic Effect-size distribu-

tion Inference from Summary-level data (GENESIS; v1.0) (https://

github.com/yandorazhang/GENESIS) (Zhang et al., 2018). GENESIS is

a tool that distinguishes sSNPs from null SNPs using a mixture model

of effect sizes from GWAS summary statistics in order to estimate

parameters describing the genetic architecture of a trait. As the soft-

ware requires rsID, Z score, and effective sample size of GWAS study

as inputs, we calculated Z scores using effect sizes (beta or log(OR))

and SEs. If the downloaded summary statistics did not provide the

sample numbers for individual SNPs, we used the total number of

enrolled participants (# of cases and controls for case–control studies).

For case–control studies, effective sample sizes were further esti-

mated by 4/(1/cases +1/controls) (Willer, Li, & Abecasis, 2010). Using

the SNP QC function (preprocessing) implemented in GENESIS, SNPs

with a low effective sample size (<0.67 × 90th percentile of sample

size), or very large effect size (Z2 > 80) were removed. This function

also removed SNPs within the major histocompatibility complex

region. Only those SNPs in HapMap3 (The International HapMap

3 Consortium, 2010) with MAF ≥0.05 in European population from

the 1,000 Genome project Phase 3 (1KG) (The 1000 Genomes Project

Consortium, 2015) were retained. We used precomputed LD-scores,

which were also estimated from common SNPs in HapMap 3 using

LD from 1KG European population as described in the original GENE-

SIS paper (Zhang et al., 2018).

2.3 | Model selection

We ran the genesis() function with default options (LDcutoff [r2] = .1,

LDwindow = 1 Mb, M = 1,070,777 total number of reference SNPs).

GENESIS implements two models (the two-component model, M2; and

the three-component model, M3), which assumes that the distribution

of effects for non-null SNPs follows either a single normal distribution or

mixture of two normal distributions (allowing two distinct sSNP groups

based on effect size). Variance parameters for the M3 model were esti-

mated using output from the M2 model as recommended in the GENE-

SIS documentation. To select the best fit model, we used the modified

Bayesian information criterion (BIC), also implemented in GENESIS

(Zhang et al., 2018) as well as the ratio of variance estimates from the

M3 model. We used M2 if the ratio of two variance estimates (σ21/σ22)

from M3 was less than 5 or if the BIC for M2 was less than M3.

(Supplementary Figures S1–S5, Supplementary Table S2). QQ plots were

generated to evaluate goodness of model fit by comparing p-values from

the GWAS summary statistics with the fit model estimates. Expected

p-values from the fit models and 80% confidence intervals (CIs) were

internally generated in genesis().

2.4 | Estimation of polygenicity and effect-size
distributions

After selecting the best model, we then estimated the parameters of

genetic architecture: polygenicity and discoverability. The mixture model

provides the proportion of non-null SNPs (sSNPs) for each trait, which is

the polygenicity (πc). The total number of sSNPs was estimated by

πc ×M ð1Þ

where πc is the proportion of sSNPs obtained by genesis() and M is

the number of SNPs in the reference panel (M = 1,070,777). The num-

ber of sSNPs in the cluster with larger variance component for M3

was estimated by multiplying the proportion of sSNPs in that cluster

(Supplementary Table 3). Then, 95% CIs for number of sSNPs were also

calculated by adding and subtracting 1.96 times the SE for πc and plug-

ging in these interval endpoints into formula (1). We note the SE of πc
for cuneus thickness was not able to be estimated by genesis, so we

could not estimate the 95% CI of πc and number of sSNPs for this trait.

In order to compare effect size distributions across traits (dis-

coverability), regardless of whether the traits were modeled with M2

or M3, we selected one quantity from the distribution: the 50th per-

centile of ranked sSNPs absolute effect size. In other words, the

predicted effect size of an sSNP where half of all sSNPs have larger

effect size in absolute value. In order to estimate this quantity, we

used the distribution and quantile functions in R-3.5.0. For pheno-

types with M2, we used

qnorm 0:25,sd = sqrt σ2
� �

, lower:tail = FALSE
� � ð2Þ

where σ2 is variance estimated by GENESIS.

For phenotypes with M3, we found the smallest value “x” via grid

search such that

2� prop�pnorm x, sd = sqrt σ21
� �

, lower:tail = F
� ��

+ 1−propð Þ�pnorm x, sd = sqrt σ22
� �

, lower:tail = F
� ��

<0:5 ð3Þ

where prop is the proportion of sSNPs in cluster 1 with larger effect

sizes, σ21 is the variance in cluster 1, σ22 is variance in cluster 2 with

smaller effect sizes, and s = seq(0, 0.02, length = 200).

Then, 95% CI for each parameter were calculated by adding and

subtracting 1.96 times the SE for each parameter (σ21, σ22, prop) out-

put from GENESIS, and plugging in these interval endpoints into the

formula above (Equation (2) or (3) based on best fit model). For some

traits, the range of CIs were outside possible values, so we limited

them as follows: (a) if the lower bound of σ21 or σ22 was <0, we set its

value to 0; (b) if the lower bound of proportion of sSNPs in cluster

1 was <0, we set its value to 0 (meaning that the sSNPs were consid-

ered to belong to cluster 2); and (c) if the upper bound of prop was

>1, we set its value to 1.
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2.5 | Prediction of sample sizes needed to attain
complete heritability

We estimated the predicted heritability explained by genome-wide

significance (GWS) SNPs (GVpercentage) with a given sample size

from 50,000 to 200,000,000 (interval = 50,000) by applying the pro-

jection() function in GENESIS. We defined the sample size needed to

achieve complete heritability as the sample size required for the

GVpercentage to pass 99%. We computed this prediction with the

best fit model for each phenotype. If the GVpercentage did not pass

99% at a sample size of 200,000,000, we showed the GVpercentage

achieved at that sample size.

2.6 | Comparison of estimates across categories

The implementation of GENESIS does not have functions that directly

compare the polygenicity or discoverability across traits or groups

of traits. In order to compare these values across traits, it is necessary

to take into account the SE of each parameter estimate. After SEs were

calculated, the heterogeneity (I2 statistic) between groups of traits

was calculated based on a fixed effect model implemented in metagen

function in Meta package (v4.12-0) (Schwarzer, Carpenter, & Rücker,

2015), and specifying the argument byvar = group. Because the SE of

πc for cuneus thickness was not able to be estimated by GENESIS

(see above in estimation of polygenicity and effect-size distributions

section), we excluded cuneus thickness and cuneus surface area to

avoid potential biases in comparisons (Figure 2). The FDR-adjusted

p-values (Benjamini & Hochberg, 1995) (FDR < 0.05) of heterogeneity

across seven pairs of trait groups was used to determine the significance.

The outputs from metagen were further used to generate a forest plot.

2.7 | Linkage disequilibrium score regression
analysis

To estimate the effect of population stratification on our findings,

we performed LD Score regression (LDSC) (v1.0.0) (Bulik-Sullivan

et al., 2015). For each set of summary statistics, only SNPs in the

HapMap 3 reference panel (The International HapMap 3 Consortium,

2010) were extracted. Precomputed LD Scores for Europeans were

obtained from https://data.broadinstitute.org/alkesgroup/LDSCORE/

eur_w_ld_chr.tar.bz2. The correlation between LDSC intercept and

polygenicity was calculated using Pearson's correlation.

2.8 | Correlation between measurement error
of MRI phenotypes and polygenicity/discoverability

Test–retest correlations (TRCs), the similarity between MRI segmenta-

tions from two scans of the same individual for subjects that passed

visual inspection, were obtained from (Iscan et al., 2015). TRC was cor-

related with polygenicity and discoverability via Pearson's correlation to

determine how measurement error impacts these estimates of genetic

architecture.

3 | RESULTS

We first obtained GWAS summary statistics of various traits including

cortical (Grasby et al., 2020) and subcortical brain structure (Hibar

et al., 2017; Satizabal et al., 2019), neuropsychiatric disorders (Demontis

et al., 2019; Howard et al., 2019; Matoba et al., 2020; Pardiñas

et al., 2018; Ripke et al., 2013; Schizophrenia Working Group of the

Psychiatric Genomics Consortium, 2014; Stahl et al., 2019; Wray et al.,

2018), neurodegenerative disorders (Lambert et al., 2013; Nalls et al.,

2019), cognitive phenotypes (Savage et al., 2018; Watanabe et al.,

2019), addiction relevant traits (Liu et al., 2019), and anthropometric

measurements (Yengo et al., 2018) (Supplementary Table S1). All of the

GWASs were performed in European ancestries. Effective sample size

ranged from 29,235 individuals for brain stem volume to 795,640 indi-

viduals for BMI. In order to quantify parameters of genetic architecture

for each of these traits, we applied GENetic Effect-Size distribution

Inference from Summary-level data (GENESIS) (Zhang et al., 2018) to

those GWAS summary statistics (Supplementary Table S1). Using GEN-

ESIS, for each trait, we estimated several parameters describing the

genetic architecture of the traits: (a) polygenicity (πc) and the total num-

ber of sSNPs as (πc × M); (b) discoverability quantified as the variance

of effect sizes for non-null sSNPs (σ21 and σ22); and (c) predictions of her-

itability explained by GWS (p <5.0×10−8; GWS) sSNPs in future sam-

ple sizes. We then compared these genetic architecture parameters

across traits.

3.1 | Model selection

We first identified the best fit model comprising either one set of

null SNPs and one set of sSNPs (M2) or one set of null SNPs and two

sets of sSNPs at different levels of effect size (M3) for each trait

(Supplementary Tables S2 and S3). Among 91 traits, the M3 model

best fit 42 traits (46.2%). The thickness and surface area of the brain

cortex (n = 35 traits each) showed somewhat different proportions of

the best fit model (i.e., 65.7% of surface area GWAS best fit M2, while

60.0% of thickness GWAS best fit M3), though this difference was

not significant (Fisher's exact test; p = .055) (Supplementary Figures S1

and S2, Supplementary Table S2). To evaluate goodness of model fit

to the observed data, we generated Q–Q plots which allows visual

assessment of whether the expected p-values from the model corre-

spond to the empirically observed p-values from GWAS summary sta-

tistics (Supplementary Figures S1–S5). Generally, we observed strong

goodness of fit for the best fit model, where the observed p-values

corresponded to the model p-values. However, for some traits fit to

the M3 model (e.g., surface area of lateral orbitofrontal area and thick-

ness of caudal middle frontal area), there are a number of outlier

sSNPs (p < 10−10) implying that these traits could be fit to more com-

plex models (Zhang et al., 2018).
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F IGURE 2 Estimates of polygenicity across multiple complex brain-relevant traits The predicted number of susceptibility SNPs (sSNPs) shows
(a) decreased polygenicity for cortical surface area compared to cortical thickness or subcortical volumes, and (b) decreased polygenicity for global
cortical traits compared to neuropsychiatric disorders, addiction traits, cognition, and anthropometric measurements, but increased polygenicity
compared to neurodegenerative disorders. (c) The significance after FDR correction between categories, calculated via a heterogeneity test. The
horizontal line indicates log10(FDR) = 0.05. Because SE for polygenicity (πc) of the cuneus thickness was not able to be estimated, we excluded
this region from the heterogeneity tests for cortical thickness. To avoid bias, we also excluded cuneus surface area when comparing cortical
surface area and cortical thickness
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3.2 | Comparing polygenicity across complex
brain-relevant traits

We compared the number of sSNPs, a measure of polygenicity,

between groups of related traits. We found that global surface area

had πc = 0.9% with 9,949 sSNPs (95% CIs: 6,552–13,346) (Figure 2a).

Current GWAS results have detected only 20 genome-wide signifi-

cant loci (Grasby et al., 2020), but these results show that many mor-

e significant loci are expected to be associated with global surface

area as sample sizes grow. We noted that there was heterogeneity in

terms of polygenicity across different cortical regions with insula hav-

ing the highest polygenicity (10,791 sSNPs, 95% CIs 7,510–14,072)

and parahippocampal gyrus having the least polygenicity (2,365 sSNPs,

95% CIs 0–5,989). There was significant heterogeneity observed

across the 35 cortical surface area traits, indicating regional genetic

architecture varies even for the same measure (surface area) across

cortical regions (I2 = 67%; p < .01). We then compared polygenicity

from the 34 cortical surface area traits to the 34 matched cortical

thickness traits (excluding cuneus, see Section 2). The predicted num-

ber of sSNPs for cortical surface area was significantly smaller than

cortical thickness (FDR = 0.01; Figure 2a,c), indicating that cortical

surface area has reduced polygenicity as compared to thickness.

Similarly, subcortical volumes also have reduced polygenicity relative

to cortical surface area, indicating that cortical surface area traits, as

a group, are the least polygenic among these tested brain structure

traits.

Next, we tested differences in polygenicity for global cortical

structure traits (global thickness and surface area) compared to

brain-relevant and anthropometric traits. Consistent with previous

findings (Zhang et al., 2018), these neuropsychiatric disorders,

addiction relevant traits, cognition, and anthropometric traits all

had high levels of polygenicity (Figure 2b). Interestingly, we found

significantly reduced polygenicity for cortical structure traits as

compared to the aggregated estimates across multiple neuropsychi-

atric disorders (FDR = 0.006), addiction relevant traits (FDR =

0.0006), cognition (FDR = 0.0006), and anthropometric measure-

ments (FDR = 0.0006) (Figure 2b,c). Since there was heterogeneity

(I2 = 64%; p = .02) in estimates from neuropsychiatric disorders,

we also tested differences at the level of individual disorders.

We found increased polygenicity in depression (FDR = 0.01) and

schizophrenia (FDR = 0.03), while the remaining neuropsychiatric

disorders have no significant differences (FDRbipolar disorder = 0.22;

FDRADHD = 0.42, FDRASD = 0.42) compared to cortical surface area.

On the other hand, neurodegenerative disorders showed the oppo-

site directionality, (i.e., decreased polygenicity relative to surface

area (FDR = 0.0006). This may reflect that those two neurodegener-

ative disorders have strong signals (e.g., APOE region for Alzheimer's

disease) that were removed by the quality control preprocessing

within GENESIS. Overall, these results are consistent with predic-

tions of cortical structure as satisfying the higher power criterion of

an endophenotype when compared to a subset of neuropsychiatric

disorders.

3.3 | Comparing discoverability across complex
brain-relevant traits

We next examined the effect size distribution across the same traits.

In Figure 3a, we plotted the estimated effect size distribution of global

cortical structure phenotypes, neuropsychiatric disorders, cognition,

addiction relevant traits, and brain relevant traits using the best fit

model. As expected based on the polygenicity results, we observed

increased discoverability, wider effect size distribution and larger

value of the σ parameter(s), of cortical structure traits as compared to

others. However, this visual comparison does not include CIs of dis-

coverability estimates, limiting statistical inference across traits. To

identify one quantity from the effect size distribution, including CIs,

that can be compared across traits potentially modeled with different

mixture distributions, we used the absolute value of the effect size of

the 50th percentile of ranked sSNPs (Figure 3b). Consistent with the

polygenicity results above, we observed increased discoverability of

effect sizes in cortical surface area compared to cortical thickness

(FDR = 1.90 × 10−5). However, we did not observe statistically differ-

ent effect sizes in cortical surface area compared to subcortical vol-

umes (FDR = 0.05) (Figure 3d, Supplementary Figure S6).

We also statistically compared the effect size distribution of

genetic variants across brain-relevant traits including neuropsychiat-

ric disorders, neurodegenerative disorders, addiction related traits,

cognitive function, and anthropometric measurements (Figure 3c,d).

The heterogeneity tests indicated significantly increased effect

sizes in cortical structure compared to those complex traits

(FDRneuropsychiatric disorders = 4.29 × 10−9; FDRaddiction relevant traits =

4.70 × 10−18; FDRcognition = 1.15 × 10−11; FDRanthropometric measurements =

1.14 × 10−3; FDRneurodegenerative disorders = 0.014). There was also hetero-

geneity of discoverability estimates across neuropsychiatric disorders,

and the observed significance between cortical structure and neuropsy-

chiatric disorders were driven mainly by depression, as the significance

decreased when removing depression from the group of traits (FDR

without depression = 0.33) (Figure 3c,d). This was also confirmed by

comparison of individual neuropsychiatric disorders to cortical surface

area (FDRdepression = 6.90 × 10−10; FDRASD = 0.07; FDRADHD = 0.22;

FDRbipolar disorder = 0.30; FDRschizophrenia = 0.30). In summary, we found

evidence that sSNPs for brain structure have stronger effect size com-

pared to aggregated estimates across multiple neuropsychiatric disor-

ders, largely driven by the low effect sizes observed in depression. We

also observed that brain structure traits have stronger effect sizes when

compared to cognition or addiction relevant traits.

3.4 | Correlation between polygenicity,
discoverability, and heritability

Previous studies have shown that increasing polygenicity is associated

with decreased discoverability (Watanabe et al., 2019). To test if

this same relationship was observed among the traits tested here,

we computed a correlation of these measures. We observed an
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F IGURE 3 Estimates of discoverability across multiple complex brain-relevant traits The effect size distributions across traits suggest
increased effect sizes in cortical structure compared to complex traits including four neuropsychiatric disorders, two addiction relevant traits, two
cognitive traits, two neurodegenerative disorders and two anthropometric measurements (a–d). Joint effect sizes are an approximation of
Pearson's correlation coefficient between susceptibility SNPs (sSNPs) and phenotype. (a) M2/M3 indicates the best fit model for the traits. The
effect size distribution (variance) shows increased absolute effect size for global cortical traits compared to neuropsychiatric disorders, addiction
traits, cognition, and anthropometric measurements. (b) The ranked absolute effect size at the 50th percentile of observed sSNPs were compared.
The red horizontal line indicates the 50% probability. (c) A comparison of the absolute effect size at the 50th percentile across traits. Note that
phenotypes annotated with a * require caution in interpretation because the lower limit of the 95% confidence interval (CI) of proportion of
sSNPs in cluster 1 (the larger variance component) was estimated to be a negative value and we limited it to 0 for these phenotypes (all sSNPs

were considered in cluster 2 (smaller variance component) in this case. The significance between categories under FDR correction, calculated via
a heterogeneity test, is displayed in (d). The horizontal line indicates log10(FDR) = 0.05. See also Supplementary Figure S6 for comparison across
cortical/subcortical regions
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inverse relationship between estimated polygenicity and estimated

discoverability (Pearson's correlation coefficient [r] = −.65, p = 4.59 ×

10−7; Supplementary Figure S7a), though such a large negative

correlation between polygenicity and discoverability was expected

given the covariance of estimated parameters output by GENESIS

(Supplementary Figure S7b). Because of this, we are unable to disam-

biguate whether the observed correlation between estimates of poly-

genicity and discoverability across traits arose due to a biological

relationship or as a consequence of estimating model parameters.

Since we also observed global cortical structure traits had higher

heritability than aggregated neuropsychiatric disorders (FDR = 4.29 ×

10−21), or cognitive traits (FDR = 7.67 × 10−24) (Supplementary

Figure S8), we further tested the relationship between heritability and

discoverability/polygenicity. As a result, we found that discoverability

was also correlated to heritability of brain-related phenotypes (r = .55,

p = 1.60 × 10−8; Supplementary Figure S7c). Interestingly, we found

no evidence that polygenicity and heritability are correlated (r = .11,

p = .31; Supplementary Figure S7c). Heritability is based on a combi-

nation of both discoverability and polygenicity. All three measures are

important descriptions of the genetic architecture of a trait, but each

is not identical.

3.5 | Confounding factors influencing polygenicity
and discoverability

Genetic architecture may be influenced by measurement error, where

increased measurement error may lead to decreased effect sizes

and increased polygenicity. We therefore assessed the impact of reli-

ability of MRI segmentations on polygenicity and discoverability using

TRC obtained from a previous study (Iscan et al., 2015). We observed

significant positive correlation between TRC and discoverability

(Pearson's correlation coefficient = 0.39; p = .001) and negative corre-

lation between TRC and polygenicity (Pearson's correlation coeffi-

cient = −0.34; p = .005) (Supplementary Figure S9). However, this

relationship was driven by three small regions known to be poorly

segmented in MRI (temporal pole, frontal pole, and entorhinal cortex)

that have TRC < 0.7. Indeed, when excluding those regions, no signifi-

cant correlation was found (Pearson's correlation coefficient = 0.24

[discoverability] and −0.21 [polygenicity]; p = .059 [discoverability]

and .100 [polygenicity]). This indicates that measurement error does

influence observed genetic architecture, but only when the most

poorly segmented regions are included.

Next, we assessed whether genetic architecture measured in

GWAS summary statistics from meta-analysis of cohorts of European

ancestry is biased by subtle uncorrected population stratification (Sohail

et al., 2019). We found that there was no relationship between LDSC

intercept (Bulik-Sullivan et al., 2015), a measure of population stratifica-

tion, and measures of polygenicity (Supplementary Figure S10). Also,

comparisons of polygenicity and discoverability within the more homo-

geneous UK Biobank population replicated our previously observed

results based on GWAS meta-analysis data. Specifically, we again found

reduced polygenicity and increased discoverability of cortical structures

compared to multiple brain-related traits from UKBB study, including

depression and cognitive traits (Supplementary Figure S11).

Earlier studies have shown that estimates of effect sizes are

likely to be biased upwards in smaller sample sizes (winner's curse)

(Kraft, 2008; O'Sullivan & Ioannidis, 2020; Xiao & Boehnke, 2009).

To examine the possibility that smaller sample sizes in brain structure

traits may have inflated discoverability estimates, we compared

discoverability estimates from historical schizophrenia GWAS with

sample sizes ranging from Neff = 31 k to Neff = 99 k (Supplementary

Figure S12). We found, as expected, that increased sample size is

associated with decreased estimated effect size distributions. Never-

theless, the estimates of discoverability for each sample size have

overlapping 95% CIs and the SE decreases with increasing

sample size.

3.6 | Sample sizes needed to explain full
heritability

Finally, we predicted the number of subjects needed in future GWAS

to identify all of the common variant loci (sSNPs) associated with

a trait. In other words, we estimated the sample size needed to

achieve 99% heritability explained by genome-wide significant SNPs.

(Figure 4, Supplementary Figure S13, Supplementary Table S4). We

predict that at least 8 million individuals will be required to explain the

full heritability of global cortical surface area and 8.65 million for corti-

cal thickness. Notably, while less than 20 million individuals will be

needed to explain the full heritability for the majority of regional sur-

face area traits, about half of regional cortical thickness will not

achieve full heritability even at that large sample size. As expected,

larger sample sizes will be needed to explain the full heritability for

phenotypes that showed lower discoverability or increased poly-

genicity such as depression or drinks per day.

4 | DISCUSSION

Here, we directly tested one proposed property of brain structure

traits as endophenotypes: higher power of genetic discovery. We

evaluated this by estimating the polygenicity and discoverability

(effect size distribution) across multiple cortical and subcortical brain

structure traits and compared these to the same measures from neu-

ropsychiatric disorders, neurodegenerative disorders, cognitive, addic-

tion relevant, and brain related traits. We found that cortical structure

traits have reduced polygenicity and increased discoverability com-

pared to aggregated estimates across multiple neuropsychiatric disor-

ders. This is consistent with brain structure satisfying the higher

power criterion of endophenotypes.

Our results have both practical and theoretical implications. Prac-

tically, brain structure traits have higher power than neuropsychiatric

disorders so smaller sample sizes will be required to achieve equiva-

lent gains in genetic discovery. The costs of phenotype acquisition

for brain MRI are still high, but nevertheless large biobanks and
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integration of genotype data with electronic medical records are now

developing that will allow GWAS of brain structure in sample sizes of

hundreds of thousands in the near future (Bowton et al., 2014; Elliott

et al., 2018). Theoretically, we hypothesize that polygenicity and dis-

coverability are related to the number of causal mechanisms that

impact a trait. For example, genetic variants associated with molecular

traits like chromatin accessibility have very high effect sizes and low

polygenicity (Liang et al., 2020; Zhang et al., 2020)—a single variant

may explain most of the heritability of an accessible region. This is

likely because there are a limited number of mechanisms by which

genetic variation influences accessibility, namely the ability of DNA

binding proteins (like transcription factors) to bind to the genome.

Genetic variants associated with gene expression also have high

effect sizes, but lower than caQTLs (Liang et al., 2020). This is likely

because multiple mechanisms can influence gene expression including

transcription factor binding, miRNA expression levels, methylation,

and RNA degradation (Li et al., 2016). Extending this logic to complex

traits like brain structure, we would predict that fewer mechanisms

influence cortical surface area compared to neuropsychiatric disor-

ders. For example, we previously have described evidence to support

that cortical surface area is influenced by proliferation of neural

progenitor cells present in fetal development (de la Torre-Ubieta

et al., 2018; Grasby et al., 2020). Whereas for major depressive disor-

der, which has some shared genetic basis with cortical surface area,

we would hypothesize that multiple mechanisms including multiple

cell-types (progenitors and mature neurons), multiple cellular pro-

cesses (proliferation and neuronal firing), in multiple developmental

and tissue contexts all create risk for the complicated disorder.

We note that our study was only designed to address the first cri-

terion of an endophenotype, higher power. In order to gain mechanis-

tic insight into the basis of neuropsychiatric disorders using brain

structural traits, there must also be both a genetic correlation and evi-

dence of mediation between the brain structural trait and risk for a

neuropsychiatric disorder (Kendler & Neale, 2010; Le & Stein, 2019;

Zhu et al., 2020). Significant genetic correlations have been demon-

strated between ADHD, major depressive disorder, and brain struc-

ture traits (Grasby et al., 2020; Klein et al., 2019; Satizabal et al.,

2019). Notably though, no significant genetic correlations have yet

been observed between brain structural traits and schizophrenia

(Franke et al., 2016; Grasby et al., 2020), so it is unlikely that the brain

structural traits explored in this study will provide mechanistic insight

into the basis of schizophrenia.

We should interpret our results in light of some limitations. First,

we found that increased sample size is associated with decreased esti-

mated effect size distributions. Future brain structure GWAS in larger

sample sizes may therefore lead to decreased discoverability esti-

mates, but nevertheless we expect that those estimates will likely be

contained within the CIs shown here, if the assumptions for the esti-

mation procedure in GENESIS have been met. The sample sizes were

smaller in cortical/subcortical structures compared to behavioral traits

(e.g., mean value of sample size is 32,512 for cortical surface area

193,640 for behavioral traits, Welch's t test p = .048), so future explo-

ration of genetic architecture in increased sample sizes will help

solidify the findings of decreased polygenicity and increased dis-

coverability of brain structure traits relative to neuropsychiatric disor-

ders and cognitive traits. Second, polygenicity and discoverability are

related to measurement error, whereby lower discoverability and

increased polygenicity are observed in very poorly segmented brain

structures like frontal and temporal pole. So, differences in genetic

architecture estimates may reflect our ability to accurately measure

the phenotypes. Third, although there are several software packages

that can be applied for estimating polygenicity and discoverability

(Holland et al., 2016; Holland et al., 2020; Nishino, Ochi, Kochi,

Tsunoda, & Matsui, 2018; Stephens, 2017), we employed one such

package, GENESIS, since it is the only currently available method that

implements a three-component mixture model, which was necessary

to best fit over half the traits we tested (Supplementary Table S2),

while controlling for population stratification. Additional models with

the appropriate number of components would increase confidence in

the presented results. Given the inflations shown in QQ-plots for

some traits (Supplementary Figures S1–S5), even more complex

models (>3 components) may be necessary for some traits to better

fit the effect size distributions. Fourth, the current study does not

capture the effect of rare variants which also contribute to the genetic

architecture of a trait. Finally, in this study we identified all sSNPs

regardless of their genomic position or functional annotation. Future

studies may explore discoverability within specific functional catego-

ries (e.g., enhancers present within a cell-type or context) to derive

specific hypotheses about the mechanisms underlying trait variation

(Johnson et al., 2020; Shadrin et al., 2020).

5 | CONCLUSION

Overall, our results use estimates of genetic architecture to test long-

standing hypotheses about brain structure traits as endophenotypes

for neuropsychiatric disorders.
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