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OBJECTIVE: Dual-energy X-ray absorptiometry (DXA)-derived bone mineral density (BMD) often fails to predict
fragility fractures. Quantitative textural analysis using magnetic resonance imaging (MRI) may potentially yield
useful radiomic features to predict fractures. We aimed to investigate the correlation between BMD and texture
attributes (TAs) extracted from MRI scans and the interobserver reproducibility of the analysis.

METHODS: Forty-nine volunteers underwent lumbar spine 1.5-T MRI and DXA. Three-dimensional (3-D) gray-
level co-occurrence matrices were measured from routine sagittal T2 fast spin-echo images using the IBEX
software. Twenty-two TAs were extracted from 3-D segmented L3 vertebrae. The estimated concordance
coefficient was calculated using linear regression analysis. A Pearson correlation coefficient analysis was
performed to evaluate the correlation between BMD and the TAs. Interobserver reproducibility was assessed
with the concordance coefficient described by Lin.

RESULTS: The results revealed a fair-to-moderate significant correlation between BMD and 13 TAs (r=� 0.20 to
0.39; po0.05). Eight TAs (autocorrelation, energy, homogeneity 1, homogeneity 1.1, maximum probability, sum
average, sum variance, and inverse difference normalized) negatively correlated with BMD (r=� 0.20 to � 0.38;
po0.05), whereas five TAs (dissimilarity, difference entropy, entropy, sum entropy, and information measure
corr 1) positively correlated with BMD (r=0.29–0.39; po0.05). The interobserver agreement was almost perfect
for all significant TAs (95% confidence interval, 0.92–1.00; po0.05).

CONCLUSION: Specific TAs could be reliably extracted from routine MRI and correlated with BMD. Our results
encourage future evaluation of the potential usefulness of quantitative texture measurements from MRI scans
for predicting fragility fractures.
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’ INTRODUCTION

Osteoporosis is the most common metabolic bone disease
and is characterized by reduced bone mineral density
(BMD), deteriorated bone microarchitecture, and increased
bone fragility and susceptibility to fractures (1).
BMD quantified with dual-energy X-ray absorptiometry

(DXA) is used as a major determinant of osteoporosis;

however, bone mass measurements are insufficient to
correctly predict all osteoporotic fragility fractures. In spite
of this, DXA continues to be an important tool in the clinical
evaluation of osteoporosis. Moreover, DXA is still used as
an initial, but insufficient, step in the evaluation of the efficacy
of new drugs. This has encouraged the development of other
techniques that can reveal bone strength abnormalities.
Currently, several bone quality parameters are used with
clinical data to improve the prediction of future fragility
fractures (2-4).
Together, bone geometry, cortical porosity, collagen prop-

erties, bone turnover rates, trabecular microarchitecture, and
percentage of microdamage, and bone marrow adiposity
(BMAT) are bone strength determinants. In addition, each
property may independently contribute to an increased or
decreased risk of fracture, even without changes in BMD
(5-10). Recent studies have shown that texture-derived
features extracted from multidetector computed tomographyDOI: 10.6061/clinics/2020/e1766
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(MDCT) and DXA scans can indirectly quantify the trabe-
cular bone microarchitecture and thus improve the tradi-
tional examination of bone quality and the prediction of
fragility fractures (11,12).
The gray-level co-occurrence matrix (GLCM) model is a

texture analysis method that uses several statistical para-
meters to quantify the spatial relationship between diagnostic
image pixels, allowing characterization of the morphological
properties of underlying tissues (13,14). This model has been
validated for characterizing textural attributes (TAs) from
MDCT images; however, a few studies have used the same
model to extract TAs from magnetic resonance imaging (MRI)
scans. Most of these studies extracted texture patterns from
the MRI scans of patients with tumors to improve diagnostic
accuracy and prognostic prediction (15-17).
MRI is a versatile imaging technique with great potential

for enabling the multiparametric analysis of bone quality in a
single examination. Advanced MRI sequences such as proton
spectroscopy and gradient-echo sequences have been used
to quantify BMAT and trabecular bone microarchitecture,
respectively (18-25). However, to the best of our knowledge,
no study has used routine MRI sequences to extract bone TA,
a tool that can be used to indirectly study the microarchi-
tecture of trabecular bone.
This study investigated the interobserver reproducibility

of bone texture parameters extracted from routine sagittal
T2-weighted fast spin-echo (FSE) lumbar spine (LS) MRI
sequences obtained from healthy eutrophic individuals by
using GLCM texture features and evaluated their relation-
ship with BMD.

’ ETHICAL CONSIDERATIONS

Approval by our institutional ethics committee was
obtained (47580315.5.0000.5440). All the participants agreed
to participate in the study and provided written informed
consent. In addition, the procedures were performed in
accordance with the Declaration of Helsinki.

’ MATERIALS AND METHODS

Subjects
The study subjects were comprised 49 volunteers who

underwent MRI and DXA between May 2011 and October
2014. Both examinations were performed on the same day.
All the individuals were at least 18 years old and had a body
mass index (BMI) between 18 and 25 kg/m2. Individuals
who used medications that affect bone metabolism, reported
histories of smoking and/or alcoholism in the last 10 years,
and presented any structural abnormality in the LS that
could affect MRI or DXA measurements were excluded from
the study.

Dual-energy X-ray absorptiometry
The BMD of the LS (L1–L4) was determined using DXA

(Hologic Discovery Wi, QDR series, Hologic, Inc., Waltham,
MA, USA). The precision error in the LS was 1.2%.

MRI and TA extraction
All the subjects underwent LS MRI on a 1.5-Tesla system

(Philips Achieva, Philips Medical Systems, Best, the Nether-
lands). Routine sagittal T2-weighted FSE sequences were
used to extract TAs (echo time [TE], 120 ms; gap, 4.4 mm;
echo-train length, 19; repetition time [TR], 3900 ms; slice

thickness, 3.0 mm; scan duration, 2 min 16 s). The L3
vertebrae were manually segmented by two trained raters
(JGM, a musculoskeletal radiologist with 3 years of expe-
rience in this area) and (LCT, a medical student research
fellow). The GLCM characteristics were segmented and
extracted using the radiomics analysis platform IBEX v 1.0
(26) as demonstrated in Figure 1.

The IBEX software characterizes the spatial distribution of
gray-level intensities in a region (ROI) or volume of interest
(VOI) (27). GLCMs obtained from a VOI or ROI are used
to calculate the probability of occurrence of pixel/voxel pairs
of gray-level intensities i and j given a distance d from an
orientation y (13,28).

A total of 22 attributes were identified from the L3
segmented VOI. Thus, volumetric three-dimensional (3-D)
GLCM (COM3Ds) analyses were performed for the vertebral
body. COM3Ds directly computed the occurrence of intensity
pairs in the orientation y for the dimensions x and y, and in
the orientation f for the dimension z. The distances ranged
from 1 to 5 voxels, and all 13 orientations of y and f (y=0o

and f=0o, 45o, 90o, and 135o; y=45o and f=45o, 90o, and 135o;
y=90o and f=45o, 90o, and 135o; and y=135o and f=45o, 90o,
and 135o) were used, resulting in 65 COM3Ds. The 22 GLCM
attributes extracted were autocorrelation, cluster prominence,
cluster shade, cluster tendency, contrast, correlation, difference
entropy, dissimilarity, energy, entropy, two measures of
homogeneity (homogeneities 1 and 2), two measures of
information correlation (IMC1 and IMC2), inverse differ-
ence moment normalized, inverse difference normalized,
inverse variance, maximum probability, sum average, sum
entropy, sum variance, and variance.

Statistical analyses
The results were analyzed using one-way analysis of

variance followed by the Duncan posttest. The confidence
interval (CI) was 95%, and the level of significance was set
at 0.05. Simple (model 1) and multiple (model 2) linear
regression models were tested to verify the association of
the parameters. Model 2 was adjusted by age and BMI. In
addition, the Pearson correlation coefficient (r) was calcu-
lated to measure the strength of the relationship between the
variables. The interobserver agreement was evaluated using
the concordance test proposed by Lin in 1989 (29). The levels
of strength of the agreement associated with kappa statistics
were described according to the corresponding kappa ranges
as follows: poor, 0.00–0.19; fair, 0.20–0.39; moderate, 0.40–
0.59; substantial, 0.60–0.79; and almost perfect, 0.80–1.00 (30).
All analyses were performed using the SAS 9.4 software (31).

’ RESULTS

Patients’ demographics, clinical characteristics, and
BMD

The study subjects were comprised 49 healthy individuals
with a mean age of 41±14.2 years (range, 20–68 years;
median, 39 years) and a mean BMI of 22.6 kg/m2. Of the
subjects, 20 were men (mean age, 41±15.5 years; range,
20–68 years) and 29 were women (mean age, 40.9±13.4
years; range, 21–66 years). All nine women aged 450 years
were in the postmenopausal stage. The mean BMI was
similar between the men and the women (Table 1). The LS
BMD results were available for all the subjects. No significant
difference in BMD measured with DXA was found between
the men and the women. In addition, the differences in the
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BMDs of the LS (L1–L4) and third lumbar vertebral body
(L3) were not significant (p40.05; Table 1).

Correlation between BMD and bone TAs
The results revealed a fair-to-moderate significant correla-

tion between BMD and 13 TAs derived from MRI scans
(r=� 0.20 to 0.39; po0.05). Eight TAs (autocorrelation,
energy, homogeneity 1, homogeneity 1.1, maximum prob-
ability, sum average, sum variance, and inverse difference
normalized) negatively correlated with BMD (r=� 0.20
to � 0.38; po0.05), and five TAs (dissimilarity, difference
entropy, entropy, sum entropy, and information measure
corr 1) positively correlated with BMD (r=0.29–0.39;
po0.05; Table 2).

Inter-rater reliability
This study evaluated the agreement between two observers

(JGM and LCT) for the 13 significant TAs derived from MRI
scans. Both researchers performed manual segmentation of the

L3 vertebra using the IBEX software and extracted TAs using
the software. Both researchers were blinded to the patients’
clinical data and identification. The extracted values were
tabulated in Excel, and the agreement coefficient was
calculated using the Lin coefficient. The results demon-
strated an almost perfect interobserver agreement for all 13
significant TAs extracted (95% CI, 0.92–1.00; po0.05). The
level of agreement of the two observers was greater for the
following parameters: autocorrelation, cluster tendency,
contrast, difference entropy, dissimilarity, energy, entropy,
homogeneity 1, homogeneity 2, inverse different moment
normalized, inverse different normalized, inverse variance,
maximum probability, sum average, sum entropy, sum
variance, and variance.

’ DISCUSSION

Radiomics is a research area that has shown promising
growth and usefulness in diagnostic and prognostic evalua-
tions and therapeutic decision making (32-34). Texture-based

Figure 1 - A 31-year-old female volunteer. Illustrated are the segmentation and positioning of the volume of interest (VOI) in the L3
vertebral body using the IBEX program for volumetric (three-dimensional) extraction of textural attributes (TAs).

Table 1 - Demographics, clinical characteristics, and bone mineral density of the study participants.

Female (n=29) Male (n=20) p-value

Age (years) (Mean±SD) 40.9±13.4 41±15.5 0.98
BMI (kg/m2) (Mean±SD) 22.3±2.6 23.0±1.9 0.30
Bone mineral density (BMD)
L1–L4 BMD (g/cm2) (Mean±SD) 0.99±0.11 1.00±0.15 0.88
L3 BMD (g/cm2) (Mean±SD) 1.03±0.11 1.02±0.16 0.82
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quantitative features are used to characterize uniformity,
randomness, and repetitive patterns in an image and have
been used to detect pathologies and malignancies. Moreover,
texture analysis using spectral and structural attributes
extracted from MRI scans has been used to differentiate
between osteoporotic and malignant compression fractures
of vertebral bodies, with promising results reported in the
literature (35).
Texture features have been used to study the microarch-

itectural characteristics of the trabecular bone from high-
resolution quantitative computed tomography (HR-pQCT)
images. However, no studies have been published using
GLCM to extract TAs that may reflect the microarchitecture
of the trabecular bone and bone fragility from spinal MRI
scans. In our study, we used GLCM to characterize the
spatial distribution of the gray-level within volumetric LS
images from routine sagittal T2-weighted MRI scans. The
choice of sagittal T2-weighted FSE sequences is justified
because this sequence is widely available in many routine
spinal MRI protocols. The distribution of gray levels is
directly impacted by the spatial resolution of MRI sequences.
The same attribute is expected to present different values for
the same image obtained at different spatial resolutions. In
fact, a reported methodology takes advantage of this possible
variation and pattern recognition techniques, using attributes
extracted from a pyramid of images taken from the same
original image at different spatial resolutions. The extent
of the effect of this variation on the results depends on
the content of the image. We used standardized acquisitions
to avoid significant variations in attribute values due to the
acquisition parameters.
In this work, the two observers showed good agreement

for all TAs extracted from routine MRI, and we found a
significant correlation between BMD and 13 TAs. Our
results suggest that specific texture parameters could be
reliably extracted from routine MRI scans, with clinically
acceptable reproducibility for most of the parameters
studied.
Our results should encourage future studies to identify

isolated attributes or a set of attributes to possibly diffe-
rentiate subjects at risk of fragility fractures when used with
clinical data and other bone quality parameters. Quantitative
measurements based on TAs could potentially discriminate
subjects with bone mass loss and those at risk of fragility
fractures.

This study has some limitations that deserve mention. The
cervical and thoracic spinal segments were not studied. This
is a relative limitation because currently, only the lumbar
vertebrae are used to measure BMD. In addition, our study
population was mainly composed of young volunteers with
normal bone mass and without fragility fractures. Finally,
our study used BMD as a surrogate parameter of fracture
susceptibility and did not test the potential usefulness of
textural features extracted from MRI scans to directly pre-
dict fracture risk. However, our study provides important
preliminary data for a more comprehensive study to examine
the role of the technique in the evaluation of fracture
susceptibility. Future studies are necessary to evaluate the
potential clinical application of texture analysis using spine
MRI.

’ CONCLUSION

In summary, several specific TAs could be reliably
extracted from routine sagittal T2-weighted MRI scans
and showed a strong relationship with BMD in a healthy
adult eutrophic population. Our results encourage future
evaluations of MRI quantitative textural measurements
to potentially discriminate subjects at risk of fragility
fractures.
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Table 2 - Estimated coefficients of the association between bone mineral density and bone texture attributes.

Bone mineral density (g/cm2)

Texture attribute Estimated coefficient p-value Pearson correlation coefficient (r)

Autocorrelation �0.0000046 0.0023 0.32
Difference entropy 0.076 0.0087 �0.29
Dissimilarity 0.0079 0.0485 �0.20
Energy �0.62 0.0070 0.33
Entropy 0.028 0.0024 �0.38
Homogeneity 1 �0.47 0.0020 0.38
Homogeneity 2 �0.44 0.0020 0.39
Information measure corr 1 2.16 0.0281 �0.35
Inverse different normalized �2.73 0.0308 0.22
Max probability �0.42 0.0021 0.39
Sum average �0.00083 0.0038 0.29
Sum entropy 0.053 0.0086 �0.31
Sum variance �0.0000012 0.0022 0.32
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