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Classification of endogenous 
and exogenous bursts in collective 
emotions based on Weibo 
comments during COVID‑19
Qianyun Wu1, Yukie Sano2, Hideki Takayasu3,4 & Misako Takayasu1,4*

Bursts and collective emotion have been widely studied in social physics field where researchers use 
mathematical models to understand human social dynamics. However, few researches recognize 
and separately analyze the internal and external influence on burst behaviors. To bridge this gap, we 
introduce a non-parametric approach to classify an interevent time series into five scenarios: random 
arrival, endogenous burst, endogenous non-burst, exogenous burst and exogenous non-burst. 
In order to process large-scale social media data, we first segment the interevent time series into 
sections by detecting change points. Then we use the rule-based algorithm to classify the time series 
based on its distribution. To validate our model, we analyze 27.2 million COVID-19 related comments 
collected from Chinese social media between January to October 2020. We adopt the emotion 
category called Profile of Mood States which consists of six emotions: Anger, Depression, Fatigue, 
Vigor, Tension and Confusion. This enables us to compare the burst features of different collective 
emotions during the COVID-19 period. The burst detection and classification approach introduced in 
this paper can also be applied to analyzing other complex systems, including but not limited to social 
media, financial market and signal processing.

Heavy tailed phenomena have been observed in various human activities such as phone calls, emails, and social 
media communications1–6 including user’s comment posting behaviors7,8. We can observe similar comment 
posting behavior based on data obtained from Weibo, the leading social platform in China. When each user 
publishes a comment randomly and independently, comment’s arrival follows a Poisson process and the arrival 
duration follows an exponential distribution3,6. However, when the collective emotion emerges and the users 
behave dependently, the density of arrival may be clustered and the distribution function of interarrival times 
may show a heavy tail which is typically approximated by a power-law distribution1–3,5–8.

On one hand, we argue that a burst can be triggered by emotional empathy among users when they browse 
comments published in the social media platform. When a user is exposed to comments over a certain period, he 
or she shares the same feeling and leave a comment. This behavior is widely studied using different approaches, 
for example, statistical hypothesis testing for examining factors influencing emotion changes9,10, virus models 
which regard the spread of emotions as infectious disease11–15, agent-based models for simulating the interac-
tions of individual users4,16,17, and network theories that study the flow of emotion and information in the social 
networks1,18. On the other hand, bursts are considered to be triggered by external sources such as news, govern-
ment propaganda, or extraordinary events. For example, when users are exposed to breaking news, they search 
for related posts and leave comments to express their emotions and opinions12,19,20.

We define the emotion empathy as endogenous factors influenced by precedent comments and exogenous 
factors triggered by external sources such as news. Although a few researchers have also considered the endog-
enous and exogenous influence on collective human behavior, most of them used parametric approaches that 
infer parameters for given models12,20. It is computationally expensive to run parametric analysis on long-term 
time series which is large in data size and whose distribution may change over time. In this paper we propose a 
non-parametric approach that can effectively detect endogenous and exogenous burst periods even from large 
dataset. More specifically, we first segment the time series to homogenous sections using the Fisher’s Exact Test21, 
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which allows us to study the different comment arrival patterns separately. Then for each time series section, 
we presume that if the collective emotion is triggered by an endogenous factor, the corresponding time series 
should follow an autoregressive model that can be approximated by a non-stationary Poisson process called the 
self-modulation process22. Otherwise, we presume that the burst is caused by an exogenous factor.

Our paper introduces an empirical approach to detect and analyze collective emotion dynamics statistically 
focusing on each comment arrival. To validate its robustness, we deploy it to analyze 27.2 million COVID-19 
related comments which were collected from the Weibo platform during January to October 2020. To our best 
knowledge, although there are numerous collective emotion researches related to COVID-19, most of them either 
visualize the emotion profiles in one or multiple countries23,24, or extract the most frequent topics and analyze 
their correlation to emotions25,26. Comparatively, however, fewer studies are done statistically to investigate the 
underlying dynamics which form the collective emotions. Yin et al.27 proposed an emotion-based susceptible-
forwarding-immune model to study how is the public emotion shaped when users repost with comments. 
Velásquez et al.28 identified hate clusters in six social media platforms and used network theory to illustrate how 
malicious contents diffuses among different platforms.

Our approach to analyze collective emotion dynamics can be briefly summarized as follows. We build a 
multi-class classifier based on POMS (Profile of Mood States) and use it to identify emotion words from Weibo 
comments. The POMS has been traditionally used as a survey to rate a participant’s emotion states29,30, and has 
recently been used for analyzing public emotions in social media31,32. It consists of 6 emotion categories—Anger, 
Depression, Fatigue, Vigor, Tension and Confusion. POMS is considered to be suitable for analyzing the COVID-19 
related emotions because people tend to react more negatively to the surroundings when exposed to the risk of 
infection33. Next, we introduce a non-parametric method to distinguish the endogenous and exogenous emotion 
bursts. Based on the burst analysis, we explain how do the popularity of emotions evolve and show the difference 
of burst features between different emotions.

Results
In the Results section, we will explain the concept of a non-parametric approach to classify endogenous and 
exogenous bursts based on the emotion time series and show the result of empirical data analysis. Details of the 
methods will be provided in the “Methods” section. Figure 1 summarizes the data analysis process. It can also 
be used as a directory for reading this paper.

Public emotion profile based on Weibo comments related to COVID‑19.  We first visualize the 
public emotion profile (see Fig. 2) to give a general idea of how users in the Weibo platform responded to the 
COVID-19 crisis during January to October 2020.

We extract the POMS emotions from Weibo comments and analyze the daily count of comments under each 
emotion. Briefly, the emotion extraction method can be described as follows. We build a Chinese version of 
POMS dictionary containing 3944 emotional words categorized into 6 POMS emotions and 2500 neutral words 

Figure 1.   The overall data analysis process. It shows the steps to obtain data, analyze data and interpret analysis 
results. The results and details of methods can be found in respective sections as indicated in the figure.
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(the corpus has been provided in Supplement 2). The dictionary is used as labeled data for training a multi-class 
emotion classifier that can automatically categorize a new word into Anger, Depression, Fatigue, Vigor, Tension, 
Confusion or Neutral. To extract emotions from Weibo comments, each comment is tokenized into words and 
then each word is processed using this classifier to determine its emotion category. After summarizing the fre-
quency of emotion words for each comment, we take the emotion with the highest frequency as the emotion of 
the comment. The details of data and algorithms are provided in the “Methods” section.

Next, we build the time series for each emotion and normalize it by the daily total count of comments. We 
show the public emotion profile in three phases (see Fig. 2): the baseline period before the COVID-19 from 
August to December 2019, the initial discovery of the COVID-19 during early January 2020 and the outbreak 
from end January to October 2020. We excluded (shaded) the second phase because at that time the COVID-
19 was neither officially reported nor widely discussed in social media which resulted in high fluctuation in 
normalized emotion time series.

Figure 2.   Normalized POMS emotion time series before and during the COVID-19 crisis in China. (a) The 
time series plot showing the daily number of comments related to COVID-19. (b–g) The time series plot 
showing the normalized daily number of comments under each emotion—Anger, Depression, Fatigue, Vigor, 
Tension and Confusion. The normalization is done by dividing the daily number of comments containing a 
specific emotion by the total daily number of comments. The key events that happened at the peak point of each 
time series plot are marked out.
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When comparing emotions before and during the COVID-19, we can observe that Anger remained at the 
similar level and not much affected by the COVID-19 situation. Depression rose slightly in early outbreak period 
from January to April 2020 and fell back to the baseline level afterwards. Fatigue also rose during the COVID-
19 compared to the baseline and remained at a higher level from January to October. Vigor decreased since 
the COVID-19 outbreak. Although it rose a bit after April 2020, the level was still lower than the baseline. 
Tension surged at the point when the COVID-19 was firstly confirmed by the government, but it immediately 
dropped despite the worsening COVID-19 situation. This may be explained by a phenomenon called psycho-
logical resilience34. When people are faced with a stressful situation, they tend to develop positive emotions 
with a moderate tension level. The overall Tension level during the COVID-19 was higher than the baseline. 
Confusion increased during the COVID-19 period compared to the baseline and it remained steady throughout 
the observation period.

Non‑parametric approach to identify endogenous and exogenous bursts from long‑term time 
series.  In this paper, we develop a non-parametric approach to reduce computation complexity. The method 
consists of two steps: (1) segment the time series into homogenous sections and (2) use hypothesis test to check 
if a time series section belongs to endogenous, exogenous burst or other arrival patterns.

Here in the Results section, we describe the concept and show the results of the non-parametric approach. 
The details are provided in the “Methods” section—4. Non-parametric rule-based algorithm to classify the time 
series sections.

(1)	 Segment the long-term time series into homogenous sections

Because the user behavior may change over time which results in different distributions, we need to segment 
the long-term time series before doing the burst analysis. We introduce a new segmentation method applied to 
the comment count time series. We first aggregate the time series per 600 s to mitigate zero-valued data points 
while keeping the fluctuating pattern in the time series. However, the six emotion time series spanning over 
10 months still contains more than 40,000 data points each, which is large in size. Therefore, a non-parametric 
segmentation method is preferred. We adopt a method based on the Fisher’s Exact Test proposed by Sato and 
Takayasu21.

Conceptually, the Fisher’s Exact Test functions as follows. We start with the single point detection. If there 
exists one change point υ in a time series { rt }, then the time series segments before and after υ should be inhomo-
geneous, which can be tested using the Fisher’s Exact Test (the lower the p-value is, the less homogenous are the 
two datasets). Therefore, to look for a change point in a time series, we calculate the hypergeometric probability 
for all the points in a time series and take the minimum hypergeometric probability as the p-value. If this p-value 
is lower than the pre-determined threshold, then we adopt the corresponding time point t  as the change point 
υ . Otherwise, we conclude that there is no change point in the given time series.

To extend this method to multiple change points detection, we simply need to repeat the same process recur-
sively on the time series segments, until all segments’ p-values are higher than the threshold, which indicates 
that there exists no more change point.

Here we show an example of the time series segmentation result (see Fig. 3). The details of segmentation 
method are provided in “Methods”—3. Segmentation of time series: multiple change point detection. After seg-
mentation, the original time series for each emotion is segmented into different number of sections: Anger—651 
sections, Depression—558 sections, Fatigue—208 sections, Vigor—659 sections, Tension—464 sections, Confu-
sion—390 sections. The average section length is 14.3 h. The minimum section length is 0.5 h. The maximum 
section length is 55 days, due to very few comments related to Fatigue were posted from August to October 2020.

(2)	 Classify a time series section to detect endogenous and exogenous burst

As a pre-process we exclude “inactive periods” from the time series after the segmentation procedure. Inac-
tive periods typically appear in the midnight (2 a.m.–5 a.m.), or after May 2020 when the COVID-19 crisis was 
under control in China (see Fig. 3b) so there are less COVID-19 related comments. The inactive periods are 
characterized by a very low submission rate of comments, and therefore no statistical property can be discussed. If 
a time series section partly or fully falls within 2 a.m.–5 a.m. (the condition can be set as start time tstart ≤ 5 a.m. 
and end time tend ≥ 2 a.m.), or if its average rate of comment arrival is lower than 1 comment per minute, we 
categorize the time series section as “inactive” and exclude it from our analysis.

Next, we define the categories which we will classify a time series segment into. When users post comments 
randomly and independently at a constant rate, the number of comments posted within a fixed time interval 
follows a Poisson process and the interevent time follows an exponential distribution. We define such scenario 
as scenario 1—random. When the posting behavior is neither random nor independent, the arrival of comments 
is clustered. This can result from an endogenous influence (such as preceding comments) or an exogenous influ-
ence (such as external news or events). When users are exposed to an endogenous influence, if the number of 
comments surge drastically, we define it as scenario 2—endogenous burst, elsewise as scenario 3—endogenous 
non-burst. Similarly, when users are exposed to an exogenous influence, if the number of comments surge drasti-
cally we define it as scenario 4—exogenous burst, elsewise as scenario 5—exogenous non-burst. In the following 
we will introduce the concept of classifying a time series into these five scenarios.
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Conceptually, under different scenarios the distribution of interevent time can be different. Let tj be the time 
point at which jth comment is posted. Therefore, �tj = tj − tj−1 represents the posting time interval between jth 
and (j − 1)th comment.

When comments arrive randomly and independently (scenario 1—random), the number of comments within 
a fixed interval, rt , follows a Poisson distribution with a constant average rate �0 , rt ∼ Poi(�0) . The interevent 
time �tj follows an exponential distribution �tj ∼ Exp(�0) . This can be tested using the Chi-square Test.

When the comment arrival is influenced by endogenous factors (scenario 2 and 3), the posting time series 
can be modeled as a self-modulation process where the probability of an event’s occurrence is dependent on 
precedent events. Such process is similar to Hawkes process or self-exciting (regulating) process20,35,36. Inspired 
by Takayasu and Takayasu22, we presume that the interevent time �tj between jth and (j − 1)th comment depends 
on the average interevent time of precedent comments �tj−1,�tj−2, . . . ,�tj−k posted over past φ period, where 
φ is a memory kernel and k is the number of comments in the past φ period. Namely, we assume that �tj can be 
modeled using the following Eq. (1), in which bj is an independently and identically distributed (i.i.d.) random 
variable which follows the exponential distribution ~ Exp(1) . In this paper, the angle brackets <  > means the 
averaged value, namely, < �tj−1,�tj−2, . . . ,�tj−k >= 1

k

∑k
i=1 �tj−i.

where

The value of memory period, φ, and the corresponding number of precedent comments, k, can be determined 
as follows. When there exists such dependency in a time series { �tj }, the autocorrelation function ρ(τ), especially 
ρ(τ = 1) �= 0 . Therefore, we can adjust the value of φ and k to calculate bj =

�tj
<�tj−k>

 based on Eq. (1) and the 

(1)�tj = bj < �tj−1,�tj−2, . . . ,�tj−k >,

(2)bj ∼ Exp(1).

Figure 3.   Time series segmentation using the Fisher’s Exact Test. (a) An example of segmentation result 
using proposed Fisher’s Exact Test. The x-axis is the timestamp (unit time 600 s) and the y-axis is the count 
of comments. Each segmented section is shown in different colors and separated using dashed lines. (b) is 
the corresponding comment’s arrival density plot of (a). It shows that the originally uneven and clustered 
distribution of arrival can be segmented into sections with similar comment arrival density. (c) Results of the 
process of recursive Fisher’s Exact Test for detecting multiple change points in a time series. The hypergeometric 
probability is calculated using Eq. (5) for each sub-segment. The minimum hypergeometric probability value of 
each segment is taken as the p-value. The p-value is then compared to a threshold pth to determine if the time 
point t is small enough to be considered as a change point υ . If yes, the sub-segment will be cut into 2 sub-
segments at the change point υ . Then the same process will be repeated until the p-value of all sub-segments are 
larger than the threshold. The data label CP:i refers to the change point detected in the ith loop.
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corresponding autocorrelation function ρ(1) based on Eq. (8). The optimal value of φ and k are the ones that 
remove (minimize) the autocorrelation value ρ(1) of the time series { bj }. Details are described in the “Methods” 
section. Figure 4a shows an example of determining the value of φ based on the autocorrelation function.

If the normalized interevent time { bj } follows an exponential distribution (to be tested by the Chi-square 
test), it means that the original interevent time series { �tj} can be modeled by Eq. (1). Therefore, it can be clas-
sified to Scenario 2 and 3—endogenous. Otherwise, if { �tj} does not belong to Scenario 1, 2 or 3, we presume 
that the distribution of interevent time �tj is influenced by exogenous factors such as external news or events.

However, not all time series classified to the endogenous or exogenous category are bursts (drastic increase). 
Some time series can be fluctuating or decreasing. Therefore, we need to calculate the increment rate of a time 
series. Only when the increment rate is larger than the threshold θ , the time series segment can be classified 
as a burst. To find the threshold value θ, we calculate the increment rate (see Eq. (9)) for all endogenous and 
exogenous time series and plot the histogram chart (Fig. 4b). We take the first local minima of the histogram 
chart, where the increment rate equals to 1 as the threshold value (see the red bar in Fig. 4b). Figure 4c shows an 
example of the classification result where the increment value of each segment is annotated in the figure. We can 
see that the exogenous and endogenous segments with obvious increment are classified into burst, while those 
fluctuating or decreasing are classified into non-burst.

The five scenarios we introduce for categorization of segments are summarized as follows:

•	 Scenario 1: Random
	   Interevent time follows exponential distribution �tj ∼ Exp(�0)
•	 Scenario 2 and 3: Endogenous
	   Interevent time �tj is dependent on the averaged preceding interevent times and Eqs. (1) and (2) are 

fulfilled, which will be further classified into below two scenarios:

–	 Scenario 2: Endogenous burst
–	 Scenario 3: Endogenous non-burst

•	 Scenario 4 and 5: Exogenous
	   The distribution of interevent time �tj neither falls under scenario 1 nor scenario 2 and 3. It will be further 

classified into below two scenarios.

–	 Scenario 4: Exogenous burst
–	 Scenario 5: Exogenous non-burst

Based on the concept described above, we propose a non-parametric approach—the rule-based algorithm 
to categorize segments of time series based on the distribution of time intervals between consecutive comments 
as follows. The detailed method and algorithm are provided in the “Methods” section—4. Non-parametric 
rule-based algorithm to classify the time series sections. Figure 4c–f shows that our proposed non-parametric 
approach can segment a time series into homogenous sections and determine the type of arrival pattern.

Burst features of different emotions and periods based on the COVID‑19 related com‑
ments.  Having segmented the 6 emotion time series and classified each time series section into the five 
scenarios, we summarize the duration of each scenario by month and emotion (see Fig. 5). We can observe that 
for each emotion, the burst period was longer from January to April compared to May to October. This trend 
corresponded to the count of COVID-19 new infection cases which peaked in February, underwent recovery 
from February to April and was under control since May. Therefore, collective emotion was considered to be 
affected by the COVID-19 situation.

Among all the emotions, Vigor, Anger, Depression had the longest burst duration which on average reached 
close to 50% during February to March in 2020. This indicates that these three emotions can easily form collec-
tive emotions during outbreak and recovery period of the COVID-19 in China.

For Anger and Vigor, the percentage of exogenous bursts was much higher than endogenous bursts, suggesting 
that Anger and Vigor were more likely triggered by external factors such as news and propaganda published by 
official accounts such as the governments or news presses. In contrast, Depression had a more balanced exogenous 
and endogenous bursts.

Tension had shorter burst periods compared to the above three emotions, but it still had more than 35% of 
time under burst status during February and March. Tension was more likely to be triggered by endogenous 
influence.

Fatigue and Confusion both had a comparatively low percentage of burst duration suggesting that they were 
less likely to form collective emotions. Duration of endogenous bursts was longer than that of exogenous bursts, 
which indicates that they were more influenced by other users’ comments instead of external news.

We are interested in the dynamics of emotion in terms of how the popularity of an emotion evolve during 
the endogenous and exogenous burst, and how different are the dynamics between different emotions. In the 
following we will further analyze the features of endogenous and exogenous bursts separately.

An endogenous burst is formed when users’ emotion and posting behavior are influenced by other users’ 
comments. We can use the self-modulation process model (Eq. 1) to explain the dynamics behind the emotion 
cascade. Based on the model, when the time interval between comments is short (or long), the arrival of the 
next comment also tends to be fast (or slow). Although the endogenous burst also represents an increase in the 
number of comments, the change is usually more gradual than the exogenous burst. We can observe from Fig. 5c 
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Figure 4.   Example of the rule-based algorithm to classify time series segments. (a) An example of determining 
memory φ based on autocorrelation function ρ(τ). The blue line represents the autocorrelation value of the 
original time interval { �tj } and the orange line represents that of the normalized time interval { bj }. The first 
sub-figure shows result of |ρ(1)| based on different φ. |ρ(1)| reaches its minimum value close to 0 at φ = 360 s. 
This indicates that at φ = 360 s, the normalized time series is not autocorrelated anymore. The second sub-figure 
shows the autocorrelation function before and after normalization based on φ = 360 s. It obviously shows that 
the autocorrelation is removed after the normalization. (b) Histogram chart of �r(m) , the increment rate of 
number of comments. The bar in red (where �r(m) = 1) represents the threshold value θ. (c) The result of burst 
analysis on a segmented time series (the unit time is 600 s), from which we picked 3 samples with different 
scenarios as circled in red box. The numbers marked above the line chart are increment rate �r(m) of each 
segment. (d) Density heat map of comments arrival. X-axis represents the timestamp of comment arrival. 
The shorter the interval between the two comments, the darker the vertical lines are. (e) Semi-log CDF plot 
of the original time interval and a fitting exponential distribution line. X-axis represents the time interval in 
seconds and y-axis represents the cumulative distribution function of interval. The p-values of Chi-square test 
on samples 1, 2 and 3 are 0.23, 6.58 × 10−212 , and 1.09× 10−209 , respectively. Because sample 1’s p-value is 
significant (> 0.05) enough to be accepted as an exponential distribution, it is classified as scenario 1-random. 
(f) Semi-log CDF plot of the normalized time interval and fitting exponential distribution line. The p-value of 
Chi-square test on sample 2 and 3 are 1.43× 10−3 and 4.62× 10−5 , respectively. Because sample 2’s p-values is 
significant (> 0.0005) enough to be accepted as an exponential distribution and its increment rate is larger than 
θ = 1, sample 2 is classified as an endogenous burst while sample 3 is classified as an exogenous burst.
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Figure 5.   Comparison of comment’s arrival pattern across emotions and months. (a) Percentage bar charts 
summarizing the duration of each scenario for different months (x-axis) and emotions. The percentage of 
endogenous and exogenous period are marked in the plot. (b) Line chart showing the monthly count of new 
COVID-19 infection cases in China during January to October 2020. It can be observed that during January 
to April, which is the outbreak period in China, each emotion shows a longer burst period compared to other 
months. (c) Histogram chart of increment rate of the endogenous and exogenous burst. We can observe that 
the increment rate of the endogenous burst is lower than the exogenous burst. The average increment rates of 
endogenous and exogenous burst are 9.3 and 22.0, respectively.
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that the increment rate of an endogenous burst is usually lower than an exogenous burst. Such self-modulation 
process can be normalized to a random process based on the memory period φ (Eq. 2), which suggests that the 
users are influenced of comments over precedent φ period.

In this model, the memory period φ is the key parameter to be determined empirically from the data. We 
plot a frequency distribution histogram in Fig. 6. We can observe that the memory period φ for most emotions 
are similar except for Fatigue. For most emotions, the average memory period ranges from 150 to 188 s, which 
is around 3 min. However, the average memory period of Fatigue is 318 s which is slightly higher. Therefore, we 
can conclude that during COVID-19 crisis, the popularity of a collective emotion triggered by peer influence is 
related to the short-term memory.

Next, we investigate the details of exogenous bursts. An exogenous burst can be understood as a sudden 
increase in comment arrival rates when influenced by external news or events, whose increment rate is com-
paratively higher than the endogenous burst (see Fig. 5c). The burst then decays gradually and returns to the 
non-active level as the popularity of the news fade away. In this paper, we apply a power-law function to model 
the dynamics of an exogenous burst. Let rt be the number of comments posted at time point t after an external 
news arrives at time point tE . Let β be the power-law decay exponent,

Here the power-law exponent β is the key parameter to be determined based on empirical data analysis. We 
apply the nonlinear least squares to fit the number of comments rt to time elapsed after the external news being 
posted (t − tE) . The unit time is set as 300 s. We find that 95% of the exogenous period can be fitted nicely by a 
power-law function. The average R-squared values for measuring the goodness-of-fit are as follows: Anger—0.77, 
Depression—0.80, Tension—0.81, Vigor—0.85 (the results of Fatigue and Confusion are excluded because they 
rarely have exogenous burst). Figure 7a shows an example of fitting data with a power-law function. Then we 
plot Fig. 7b to show the frequency distribution of power law exponent β. We can observe that the value of β for 
different emotions are as follows: Anger—0.42, Depression—0.62, Vigor—0.63, Tension—0.49.

The power-law decay exponent represents the persistence of collective response to an external influence20. Our 
fitting result reveals interesting difference in emotion persistence when users are exposed to exogenous news. 
Anger and Tension have a smaller power-law exponent which suggest that these two emotions are more persistent 
when exposed to external news related to COVID-19. Comparatively, Depression and Vigor has a larger power-
law exponent which indicates that they are less persistent and fades away faster during the exogenous burst.

(3)rt ∝ (t − tE)
−β .

Figure 6.   Histogram chart of memory period φ by emotion. The values of φ (ranges from 0 to 1800 s) are 
divided into 20 bins of the same size. The x-axis represents the memory period φ (in s) and y-axis represents the 
frequency distribution of the memory period. The dotted curves show the cumulative distribution function of 
the memory period. It is observed that the average memory periods for most emotions except for Fatigue are 
similar around 3 min.
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Figure 7.   Features of exogenous burst. (a) An example of comment count time series that we categorized under 
exogenous burst. The post-burst part can be fitted nicely to power-law function with exponent equals to 0.8. (b) 
Histogram chart of power-law exponent β for each emotion (Fatigue and Confusion are not included here because 
they rarely have exogenous burst periods). Typical β value ranges from 0.42 to 0.63 for different emotions. (c) Word 
cloud chart visualizes the top 10 topic words of comments under exogenous period each month. The larger the font 
is, the more frequently the word occurs. Because the occurrence of exogenous bursts after May became rare, we 
visualized the key topics every two months after May. Those months with little or no exogenous burst period are left 
blank due to lack of data.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3120  | https://doi.org/10.1038/s41598-022-07067-w

www.nature.com/scientificreports/

There are many other researches using a power-law function to model the relaxation of bursts after an external 
influence, for example, Sano et al.19 found that the burst of number of blog posts decayed after the 2011 Japan 
Tsunami with a power-law exponent of 0.67; Crane and Sornette20 found that the number of views on featured 
YouTube videos decayed with a power-law exponent of 0.6; Johansen and Sornette37 found that the popularity 
of papers relaxed obeying a power-law exponent of 0.58 after being introduced in an interview. However, none 
of these papers studied the difference of power-law exponent between different collective emotions. Therefore, 
our result shows some new findings related to the exogenous burst.

For exogenous bursts that are triggered by external news or events, we also investigate what news topics 
attracted users’ attention. We gather comments that form the exogenous bursts and use Term Frequency Inverse 
Document Frequency (TF-IDF)38 method to extract one topic word from each comment. Then we visualize 10 
most frequently occurred topics (with the highest TF-IDF value) for each emotion and each month as shown 
in Fig. 7c.

Methods
Dataset.  Weibo is a leading social platform in China which has been widely used during the COVID-19 out-
break period for information sharing and communication. The active Weibo user reached 241 million during the 
first quarter 2020, increasing by 15% compared to the same period in 2019. Like Twitter, it is a public platform 
where users can post and comment in short text. In this paper we use two datasets:

1.	 The main dataset in which all comments are related to COVID-19. It contains 27.2 million comments that 
were collected during 1st January to 31st October 2020.

2.	 The control dataset that is not related to COVID-19. It contains 9.2 million comments that were collected 
during 1st September to 31st December 2019, before the COVID-19 outbreak.

Both datasets were collected using Weibo open API (https://​open.​weibo.​com/​wiki/​API). More specifically, 
we first collected the COVID-19 related posts published by 1600 public accounts (news organizations, govern-
ment, influential individuals, etc.) and then obtained comments under these posts (see Fig. 8). Note that because 
we want to study collective emotions rather than individual emotions, only posts with more than 20 comments 
are included. Detailed data collection process and profile of 1600 verified public accounts are provided in the 
Supplement 1.

Extract POMS emotions: emotion word classification.  There are various approaches to categorize 
words, sentences, or paragraphs according to a pre-defined emotion category based on the classification of emo-
tions. The most common methods are dictionary-based approaches that look up emotion words in a pre-defined 
dictionary31,32,39–42, rule-based approaches that define a rule of how to use available information (e.g. linguistic 
features, emoticons, etc.) for predicting the emotion categories43,44, and machine learning algorithm that uses 
corpus to build classification model4,18,45,46. In this paper, we use words and emotion categories defined in POMS 
questionnaire. However, the pure dictionary-based approach contains a limited range of words and therefore is 
not suitable for analyzing social media data which are written in informal languages such as slangs, abbrevia-
tions, or new words.

Our research adopts dictionary-based approach but expands it using machine learning algorithms (Fig. 8). 
We first created a Chinese version of POMS dictionary (the corpus has been provided in Supplement 2). Then we 
used this dictionary as labeled data for training a multi-class emotion classifier which can automatically classify 
a word to either neutral category or one of POMS emotion categories. To run the machine learning training, we 
looked up each word in a Word2Vec corpus (developed by Tencent AI lab that provides 200-dimension vector 
representation for 8 million Chinese words47) to get a corresponding word vector. The Word2Vec is a technique 
that maps a word to a high dimensional vector space based on its semantic similarity to other words48. This 
feature has been used by researchers to classify emotions presuming that words with similar emotion are closer 
in the vector space45,46,49.

Our training objective is to find the optimal boundaries between seven clusters: six POMS emotion clusters—
Tension, Anger, Vigor, Fatigue, Depression, Confusion, and neutral cluster. We ran both Support Vector Machine 
(using Scikit-learn package50) and Neural Network algorithm based on 6444 labeled words, 80% of which were 
used for training and 20% of which were used for cross validation. Figure 8a shows that both algorithms per-
formed well, but the Support Vector Machine algorithm yielded a slightly higher accuracy rate. Therefore, we 
used a model trained by Support Vector Machine to classify new words.

We processed two datasets using the algorithm described in Fig. 8b and extracted emotions from comments. 
More details of this emotion classification method are explained in Supplement.

Segmentation of time series: multiple change point detection.  The change point detection 
algorithms have been widely studied and applied in fields like signal processing51, financial market21,52 and 
climatology53. They are categorized into either parametric or non-parametric approaches. The parametric 
approach fits the time series data into one or a selection of known distribution functions, then find a segmenta-
tion point where the distribution changes. The non-parametric approach compares the homogeneity of the time 
series before and after a time point and tests if it is significant enough to be treated as a change point.

In this paper, we focus on the non-parametric algorithm to reduce computational complexity. There are 
various non-parametric algorithms developed for detecting multiple change points. Wilcoxon Rank Statistic54 
compares the homogeneity of two samples’ population mean ranks and extends it to detect multiple change points 

https://open.weibo.com/wiki/API
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using dynamic programming. Maximum Likelihood Estimation55 which treats time series as binary data uses 
Bayesian information criterion to find number of change points and dynamic programming to get locations of 
change points. Wild Binary Segmentation56 localizes multiple change point problem by recursively running single 
change point detection in subsegments based on CUSUM (cumulative sum) statistics. Density Ratio Estimation57 
adopts non-parametric Gaussian kernel model to calculate the density ratio of sample data before and after 
each time point, then choose those points as change points if the density ratios exceed a pre-defined threshold.

We adopted a non-parametric method based on Fisher’s Exact Test proposed by Sato and Takayasu21. The 
advantage of Fisher’s Exact Test is that the p-value is directly calculated based on statistics and therefore is more 
accurate for any data size.

Figure 8.   Process to detect emotion from the COVID-19 related comments. (a) Process to obtain the COVID-
19 related comments using open Weibo API. The COVID-19 related keywords are {疫情 (epidemic/pandemic), 
肺炎 (pneumonia), 感染 (infection), 病毒 (virus), 新冠 (coronavirus), 隔离 (quarantine), 核酸 (PCR test), 
COVID}. (b) The algorithm to pre-process comment data, tokenize into words and then label each comment 
with either a POMS emotion or neutral tag by looking at each word’s emotion classification. (c) The process 
to build the Chinese version of POMS emotion classifier combining dictionary-based and machine learning 
algorithm. The training result shows that the performance between Support Vector Machine and Neural 
Network are similar in general. We adopted Support Vector Machine which gives better accuracy rate.
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We localize the multiple change points detection by starting with a single change point detection. Let rt be 
the count of comments belonging to the same emotion at time point t, where t ∈ [0, T]. Let F(rt:[t1, t2]) be the 
probability distribution function of comment count in the interval [t1, t2]. We use Fisher’s Exact Test to check 
homogeneity of time series before and after time point υ . The hypothesis test is defined as follows:

–	 H0 (time point υ is not a change point): F(rt : [0,υ]) = F(rt : [υ + 1,T])
–	 H1 (time point υ is a change point): F(rt : [0,υ]) �= F(rt : [υ + 1,T])

To apply this statistical test, we count the number of points a, b, c and d shown in the Table 1 contingency 
table, by comparing each data point rt to h and comparing its time point t to υ . h is a constant with value 
min(rt) ≤ h ≤ max(rt) . Its value can be determined by trying different h and adopting the one that gener-
ates minimum p-value based on Fisher’s Exact Test. To reduce computation complexity, we divide the range 
[ min(rt),max(rt) ] evenly into ten deciles and take each decile as potential h value.

Given the contingency table denoted as Xυ , we calculate the hypergeometric probability at time point υ.

Then we sum up hypergeometric probabilities p(Y) that are smaller than p(Xυ ) based on contingency tables 
of all possible combinations of a, b, c, d that returns the same subtotals.

ForY =

{
Y is a 2× 2 contingency table,

2∑
j=1

Yij = Ri ,
2∑

i=1
Yij = Ci ,Ri ∈ Xυ ,Cj ∈ Xυ

}
,

If the p-value is smaller than the significance level pth , we reject the null hypothesis and treat the time point 
υ as a change point for time series { rt }. Otherwise, we accept υ as the change point. The significance level pth is 
determined by shuffling the time series { rt } randomly N times and taking the minimum p-value generated from 
N trials as pth (in this paper we shuffled the time series for N = 1000 times). This indicates that for a random 
time series (no change points), the probability Pr (p - value ≤ pth) =

1
N → 0 for largeN . We repeat the same 

procedures recursively on time series segments to the left and right of the detected change point until all seg-
ments’ p-value are higher than pth.

Empirically, it is still computational costly to run the hypothesis test on 10 months’ time series even after 
aggregating per 600 s. To reduce the data size, we process 3 days’ time series at once and then combine the last 
section with the following 3-day time series to maintain continuity. As a result, data size can be confined within 
around 500 time points per calculation. We also observe that the significance level pth tends to be larger when 
time series { rt } has wider range. We shuffle time series 1000 times and got pth = 10−4 when max {rt} > 50 and 
set pth = 10−6 when max {rt} ≤ 50.

Non‑parametric rule‑based algorithm to classify the time series sections.  The rule-based algo-
rithm consists of 4 steps.

Step (1): Check if the original interevent time { �tj } belongs to the random category (if it is exponentially 
distributed).

We start with testing if the time series in a segment is randomly and independently distributed using Chi-
square test. Let F

(
�tj

)
 be the cumulative distribution function (CDF) of real-valued interevent time �tj in the 

segment, and F̂
(
�tj

)
= exp

(
−�0�tj

)
 be the CDF of exponential distribution that is fitted to F

(
�tj

)
 using non-

linear least squares.
The Chi-square test is defined as follows:

(4)P(Xυ) =

(
a

a + d

)
×

(
b

b + d

)

(
a + b

a + b + c + d

) .

(5)P(Xυ) =

min(a,d)∑

k=0

(
a− k
a+ d

)
×

(
b+ k
b+ d

)

(
a+ b

a+ b+ c+ d

) +

min(b,c)∑

k=1

(
b− k
b+ d

)
×

(
a+ k
a+ c

)

(
a+ b

a+ b+ c+ d

) ,

(6)p - value = min
υ,h

P(Xυ), where0 ≤ υ ≤ T and min(rt ≤) h ≤ max(rt)

Table 1.   Contingency table of Fisher’s Exact Test.

Count of time point t 0 ≤ t ≤ υ υ < t ≤ T Row subtotal

rt > h a b R1 = a + b

rt ≤ h C d R2 = c + d

Column subtotal C1 = a + c C2 = b + d a + b + c + d
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–	 H0 ( �tj follows an exponential distribution):F
(
�tj

)
= F̂

(
�tj

)

–	 H1 ( �tj does not follow an exponential distribution): F
(
�tj

)
 = F̂

(
�tj

)
.

The test statistics χ2 can be calculated using Eq. (7).

where n represents the total number of �tj data points in the time series segment. Based on χ2 and degree of 
freedom (n − 1), the p-value can be calculated using the Chi-squared distribution. The p-value is then compared 
to the significance level 0.05 to determine if reject or accept the null hypothesis. If the p - value is larger than 0.05 , 
then the null hypothesis H0 is accepted, we conclude that �tj follows an exponential distribution and the arrival 
of comment is random not showing burst features.

Step (2): If { �tj } is not randomly distributed, remove the autocorrelation from { �tj } and build the normal-
ized time series { bj}.

This step aims to find the optimal value of ϕ , the correlation period, and k, the number of precedent comments 
posted within period ϕ . The autocorrelation function can be calculated as follows.

where bj =
�tj

<�tj−k>
 (Eq. 1), �tj is the time interval between (j − 1)th and jth comment, j ∈ [1, n] . τ is the time 

lag (here we set the unit lag time τ as 600 s). k is the number of comments arrived right before jth comment over 
the past ϕ period.

We gradually increase ϕ from 0 to up to 3600 s (assuming user’s memory is shorter than 1 h), calculate cor-
responding normalized time interval { bj } and its autocorrelation function ρ(τ) until we find a local minimal ρ(1) 
which is within distance 0.01 from the origin.

Step (3): Check if { bj } follows an exponential distribution using the Chi-square test (similar to step (1)).
Here we set Chi-square test’s significance level at 0.0005 instead of 0.05 because in Eq. (1) for calculating the 

average time interval of comments posted within a period φ, we assume that the memory period φ is fixed for 
the time series segment to reduce computation complexity. As described in the 2nd step, the value of φ may be 
varied so we lower the significance level to mitigate the impact of this assumption on the result. If the Chi-square 
test’s null hypothesis is accepted, meaning the normalized time intervals follow the exponential distribution, 
then we conclude that the comment arrival is caused by an endogenous self-modulation effect (scenario 2 or 3). 
Otherwise, the segment is considered as exogenous (scenario 4 or 5).

Step (4): Calculate the increment rate of a time series �r(m) and categorize it to a burst or a non-burst
Let r(m)

s  be the number of comments of the se interval in the mth segment, where s ∈ [0, 1, 2, . . . , sm] . The unit 
of s is fixed as 600 s. We define the increment rate of number of comments in the mth segment, �r(m) , by com-
paring the largest number of comments in the mth segment to the average value of (m − 1)th segment, < r(m−1)

s

>, or to the number of comments of the mth segment’s starting point, r(m)
0  , whichever is larger.

The rule-based algorithm to classify a time series section into the five scenarios can be summarized using 
the following pseudocode:

(7)χ2 =

n∑

j=1

(
F
(
�tj

)
− F̂

(
�tj

))2

F̂
(
�tj

) ,

(8)ρ(τ) =

∑n
j=k+τ+1(bj − < bj >)(bj−τ − < bj−τ >)

∑n
j=k+1

(
bj − < bj >

)2 ,

(9)�r(m) =
max

({
r
(m)
s

})
−max

(
< r

(m−1)
s >, r

(m)
0

)

max
(
< r

(m−1)
s >, r

(m)
0

) .
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The rule-based algorithm to categorize the time series segments

Input: Time series of the time interval between comments {∆ }

Output: Result of classifying a time series section into one of the five scenarios: random, 

endogenous burst, endogenous non-burst, exogenous burst, exogenous non-burst. 

If ∆ ~ Exp(λ0) using the Chi-square test:

Return “random”

End
Else:

Calculate =
∆

<∆ − >
based on Eq. (1) where the value of k can be derived by 

minimizing bj’s autocorrelation function (Eq. (8)) 

If ~ Exp(1) using the Chi-square test:

If increment rate of comment count ∆ ( ) ≥ threshold value θ=1:

Return “endogenous burst”

Else:

Return “endogenous non-burst”

End If
Else:

If increment rate of comment count ∆ ( ) ≥ threshold value θ=1:

Return “exogenous burst”

Else:

Return “exogenous non-burst”

End If
End If

Conclusion and discussion
In this paper, we have proposed a novel approach to detect endogenous and exogenous emotion bursts from 27.2 
million Weibo comments. We use a machine-learning algorithm to extract multi-class emotions from comment 
texts, segment the emotion time series into sections and then use a rule-based algorithm to identify the bursts. 
Our approach is non-parametric and therefore suitable for analyzing dataset of any size.

The analysis result reveals interesting differences in the burst feature between collective emotions. Vigor, 
Anger and Depression had significantly longer burst duration than Fatigue and Confusion especially during the 
COVID-19 outbreak period. Vigor and Anger bursts were more triggered by exogenous influence, while Tension, 
Fatigue and Confusion bursts were more triggered by endogenous influence. For the endogenous burst, we show 
that the word-of-mouth dynamics can be modeled by a self-modulation process during which emotions cascade 
based on a short-term memory period φ. The values of φ are similar for most emotions at around 3 min while 
Fatigue has a longer memory period of 5 min. For exogenous bursts, we show that the drastic surge of number of 
comments followed by relaxation can be modeled by a power-law function whose decay exponent β represents 
the persistence of the external influence. For emotions bursts triggered by the exogenous factors, we find that 
the values of β are smaller for Anger (0.42) and Tension (0.49), and larger for Depression (0.62) and Vigor (0.63), 
suggesting that the external influence on Anger and Tension are more persistent.

To our knowledge, the burst analysis based on multi-class collective emotions during COVID-19 is a novel 
research topic. We have shared the detailed empirical data analysis method to make it easily reproducible by 
other researchers. It can be an interesting future study to compare the burst features between different countries 
(such as the length of endogenous and exogenous bursts, the burst modeling parameters and key topic words), 
which may show differences in collective emotion response based on different COVID-19 situations, cultural 
backgrounds and prevention measures.

Our proposed burst detection method is not only applicable for analyzing social media data but can also be 
applied to analyze financial markets where each trader’s behavior may be influenced by other traders (endoge-
neity) or external news (exogeneity). It may also be applied to analyze burst phenomena in complex systems 
such as computer networks and servers. For example, the internet traffic burst that threats network security and 
affects user experience may be caused by endogenous factors (such as uneven and clustered usage) or external 
factors (cyber-attack or other extraordinary events). Our method can help to detect abnormality, identify the 
root causes of the bursts, and improve system performance.

The limitations of this paper are as follows. Firstly, due to the limited API usage and access provided by 
Weibo, we only obtained comments under posts published by 1600 official accounts. Compared to the large 
user population in Weibo, our results may not represent the whole user group. By using the comment data, we 
may constrain the topics being discussed among the users by the contents published by the official accounts. 
Ideally, our method could be better applied to the full posts data for detecting emotion bursts in the real public 
sphere. Secondly, we assumed that under the endogenous burst scenario, the rate of arrival is dependent on 
the average rate of comments over past ϕ period where ϕ is a constant value for the given time series segment. 
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This assumption is based on the intuition that users tend to read the latest comments over a certain period and 
then post a comment. However, the actual user behavior and the way that the comments are presented to users 
(for example, the most liked or interacted comments are promoted to the top) may be more dynamic and more 
complicated. Thirdly, we analyzed the six emotions independently, but not looking into the synergy between 
emotions. We are interested in exploring this topic as a future work.

Data availability
The datasets analyzed during the current study are not publicly available due to Weibo open API policy (keeping 
personal data confidential), but aggregated and anonymized data are available from the corresponding author on 
reasonable request. Similar data can be obtained using Weibo API (https://​open.​weibo.​com/​wiki/​API). Details 
are provided in in the Supplementary 1 (3. Data Collection Process).
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