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ABSTRACT

Sequence-based approach for motif prediction
is of great interest and remains a challenge. In this
work, we develop a local combinational variable
approach for sequence-based helix-turn-helix
(HTH) motif prediction. First we choose a sequence
data set for 88 proteins of 22 amino acids in length
to launch an optimized traversal for extracting local
combinational segments (LCS) from the data set.
Then after LCS refinement, local combinational
variables (LCV) are generated to construct predic-
tion models for HTH motifs. Prediction ability of LCV
sets at different thresholds is calculated to settle a
moderate threshold. The large data set we used
comprises 13 HTH families, with 17 455 sequences
in total. Our approach predicts HTH motifs more
precisely using only primary protein sequence
information, with 93.29% accuracy, 93.93% sensitiv-
ity and 92.66% specificity. Prediction results of
newly reported HTH-containing proteins compared
with other prediction web service presents a good
prediction model derived from the LCV approach.
Comparisons with profile-HMM models from the
Pfam protein families database show that the LCV
approach maintains a good balance while dealing
with HTH-containing proteins and non-HTH proteins
at the same time. The LCV approach is to some
extent a complementary to the profile-HMM
models for its better identification of false-positive
data. Furthermore, genome-wide predictions detect
new HTH proteins in both Homo sapiens and
Escherichia coli organisms, which enlarge
applications of the LCV approach. Software for
mining LCVs from sequence data set can be
obtained from anonymous ftp site ftp://
cheminfo.tongji.edu.cn/LCV/freely.

INTRODUCTION

Since the discovery of the DNA double helix in 1953 and
the ‘central dogma’ of molecular biology (1), which has
been questioned and subsequently revised, research and
debate on the flow of genetic information have been con-
tinuous (2). The mechanisms for encoding, decoding and
transmitting genetic information have been the focus of
much attention. DNA-binding proteins play a vital role
in the delivery of this information DNA-binding proteins
(3) include transcription factors that modulate the tran-
scription process, nucleases that cleave DNA molecules
and histones that are involved in DNA packaging in the
cell nucleus (4). DNA-binding proteins comprise DNA-
binding domains such as the helix-turn-helix (HTH), the
zinc finger and the leucine zipper, among others (5). Since
the determination of the crystal structures of C1 and Cro
repressor proteins from the lambda bacteriophage, the
DNA-binding HTH structural motif has become one of
the most important studied examples of the interaction
between proteins and DNA (6).

The HTH structural motif is composed of two helices
joined by a short strand of amino acids and is found in
many proteins that regulate gene expression. In most
cases, such as in the Cro repressor, the second helix
contributes most to DNA recognition, and hence it is
often called the recognition helix. It binds to the major
groove of DNA through a series of hydrogen bonds
and various van der Waals’ interactions with exposed
bases (7).

Prediction methods for determining whether proteins
contain the HTH motif represent a hot topic, and a number
of prediction methods have been proposed in recent years.
Structure-based methods include HTHquery, a web-based
service based on a similarity with a set of structural
templates, the accessibility of a putative structural motif
and a positive electrostatic potential in the neighborhood
of the putative motif (8); use of the electrostatic potential
to select generic DNA-binding residue patches (9) and
a statistical model based on geometric measures of the
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motif with a decision tree model (10). Apart from several
consensus-based and profile-based approaches dating
back to the 1990s or earlier and a number of evolutionary
studies, few methods using only the sequence information
have been published. For instance, a fully connected
two-layered neural network for a series of structural and
sequence features was proposed for the prediction of
DNA-binding proteins and residues (11). In another
good work using both structural knowledge and sequence
information, two different libraries of hidden Markov
models were built, results showing that information
carried by motif sequences and motif structures are to
some extent complementary (12).

Despite the growing number of proteins for which the
3D structure has been determined, only primary sequence
information is available for many proteins. Thus, it is
essential to develop an effective way to predict HTH struc-
ture motifs using only primary sequence information.

Variable extraction and present of samples (i.e. protein
primary sequence) are of critical importance for bio-
statistical reasoning and modeling. These serve as the
information bridge from samples to models that may
reveal potential biological meanings. Many studies
attach importance to variable extraction and calculate
frequency statistics for samples that are directly used or
transformed to other formats for constituting feature
variables. For better prediction, the variables extracted
for depicting the data set should differ greatly between
the positive set and the negative set (13). A study that
used the frequency difference between true sites and false
sites to predict splice sites is a case in point (14).

When extracting variables from samples of different
length, strategies must be used to process the raw data
to project the same multi-dimensional feature space.
Some traditional methods used include approaches that
consider amino acid frequency encoding, the composition,
transition and distribution of amino acids (15), and the
physical and chemical properties of amino acids (16).
These methods show good performance for some specific
areas, but do not yield satisfactory results for all cases.

HTH motif prediction remains a challenge, because the
motifs are much shorter than the sequences containing
them, unique local information from other parts of the
sequence cannot be effectively utilized. Furthermore,
the position of the HTH motif varies considerably from
protein to protein. It is hard to focus on motif domains
when considering the whole protein sequence. Residues
contributing to the same frequency-based variable may
have many possible permutations and combinations at
the primary sequence level. Thus, traditional methods
using frequency statistics show weakness in extracting
local structural information for proteins and generating
effective variables to construct a good model.

Avoiding overall encoding of protein sequences,
methods based on profile hidden Markov models (profile
HMMs) are state of the art. In this method, protein
domains are divided into families (or clans), which are
related sequences defined by similarity of sequence, struc-
ture or profile-HMM. An alignment of a set of represen-
tative sequences (usually named SEEDs) in a clan is used
to construct the HMMs. Pfam (17) is such a good protein
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families database including comprehensive collection of
protein domains and families, represented as multiple
sequence alignments and as profile hidden Markov
models (22). Proteins with unknown structure information
can be submitted to Pfam server to detect whether a
HTH motif is contained and which clans it belongs to.
The HTH motif detection ability of Pfam is powerful
due to its detailed classification; however it is inferior
in discriminating non-HTH proteins that have higher
sequence similarity to SEEDs from HTH clans (18).

We developed a new approach based on a quintessential
HTH motif set to generate local combinational variables
(LCVs). This method showed good performance for large-
scale HTH motif prediction using only primary sequence
information. First, a quintessential set containing 88
peptides of 22 residues was used to generate local combin-
ational segments (LCSs). Then a traversal algorithm was
carried out to exhaust all possible residue combination
patterns. This step is time-consuming because of the
number of possibilities for residue positions and counts.
To minimize this process, some rules were introduced to
enhance the algorithm efficiency. After a mining step,
LCSs were used in a sliding window matching process
to generate LCVs, which were consequently taken as the
feature variables of the motif prediction model. Using the
SMART database of 13 HTH-motif-containing pro-
tein families, we verified the effectiveness of the LCV
approach for HTH prediction, with overall results of
93.29% accuracy, 93.93% sensitivity and 92.66%
specificity. Better prediction results of newly reported
HTH-containing proteins compared with other prediction
web service (i.e. GYM2.0) validate generalization ability
of the prediction model. The LCV approach was also
compared to the profile-HMM method of Pfam, and the
former maintained a good balance between HTH-
containing proteins and non-HTH proteins while the
latter showed powerful detection ability of known HTH-
containing proteins. Better discrimination of false positive
data proved a balance prediction model derived from
LCV approach, which could be a complementary to
profile-HMMs. Furthermore, genome-wide predictions
detect new HTH proteins in both Homo sapiens and
Escherichia coli organisms, which enlarge applications of
the LCV approach.

MATERIALS AND METHODS

The LCV approach is an encoding method for protein
sequence which extracts LCS from an aligned protein
dataset named quintessential set at a moderate threshold,
and generates LCV by matching refined LCS set to target
proteins. These local combinational variables can be used
in machine learning algorithms to set up models and make
predictions.

Data sets

Three data sets, QuintessentialSet-88, DS HTH_ALL and
DS_NONHTH_ALL (see below for definition), were used
to construct prediction models and to compare the new
LCV approach with some traditional methods.
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Table 1. HTH families

HTH family Sequence Description from SMART

HTH_ARAC 5426 Arabinose operon control protein

HTH_ARSR 2111 Arsenical resistance operon repressor
HTH_ASNC 1571 An autogenously regulated activator
of asparagine synthetase
HTH_CRP 810 cAMP regulatory protein
HTH_DEOR 1099 Deoxyribose operon repressor
HTH_DTXR 252 Diphteria tox regulatory element

HTH_GNTR 4402 Gluconate operon transcriptional
repressor

Isocitrate lyase regulation

Lactose operon repressor

Lux regulon

Multiple antibiotic resistance protein

Mercury resistance

XRE-family like proteins

HTH_ICLR 1058
HTH_LACI 2137
HTH_LUXR 4068
HTH MARR 2777
HTH_MERR 2046
HTH_XRE 6002

QuintessentialSet-88 comprises 88 protein sequences
(19) of 22 amino acids in length. The sequences are aligned
and are non-redundant. Choosing a quintessential set is
vital for the remaining steps. Initially, research on HTH
motif prediction was based on scores between a master set
and a target protein sequence. In this approach it was
assumed that similarity to known HTH motif sequences
indicated whether a protein contained HTH motifs. Thus,
master sets have been supplemented with increasing
experiment data (7,20). The quintessential set we used
was the master set of Dr Giri Narasimhan in his
GYM2.0 program (19). The proteins are chosen from dif-
ferent species and have different functions.

DS_HTH_ALL data set contains 17455 sequences
(up to November 1, 2006), each containing at least one
HTH motif. By browsing the SMART database (21), we
get 13 HTH families (Table 1). Each item has its accession
number (ACC), by which raw protein sequence can be
obtained from other protein databases; in the present
study we used the ExPASy proteomics server (22).

DS NONHTH_ALL contains the same number (i.c.
17455) of proteins as DS HTH_ALL, which are all
from ExPASy database without any reported HTH
motifs. In the modeling process, it is taken as negative
data set. In modeling of each HTH motif family,
sequences were randomly chosen with the same number
as corresponding positive data set.

Traditional encoding methods

Some traditional methods were tested for construction of
prediction models for HTH motifs:

Single-residue frequency method (23): the content of 20
amino acids in protein sequences is calculated;

Double-residue frequency method (14): the content of
all possible double-residue combinations (20 x 20) is
calculated and

Composition—transition—distribution method (CTD)
(15): the composition is calculated as a percentage of
three constituents/groupings (e.g. polar, neutral and
hydrophobic residues for the feature of hydrophobicity).
The transition frequencies (polar to neutral, neutral to

hydrophobic, etc.) are then calculated. Finally, the distri-
bution pattern of a particular property (the position of the
first amino acid with a given property and the sections in
which 25, 50, 75 and 100% of the amino acids with that
property are contained) is determined.

LCYV concept

The definitions and concept of the LCV approach are as
follows.

The quintessential set contains several protein
sequences that are non-redundant, of the same length
and from different protein families to ensure a representa-
tive distribution of HTH motifs. A residue and its position
in the sequence, e.g. A3, are termed the basic unit of the
LCS. An LCS consists of several such units and is depicted
as the LCS units in brackets, e.g. {A3, ES5, F8}. An LCS
containing only one unit is called an LCS seed. Some
LCSs may be a part of others, e.g. {A3, D5} is part of
{D2, A3, D5, F7}, where the former is a sub-LCS of the
latter.

If an LCS appears in a sequence (e.g. {A3, D5, F6} in
‘A DF ’, where _ denotes any amino acid), the LCS
matches or supports the sequence. When sequences in the
quintessential set are aligned, we may obtain many LCSs
for each sequence, with some LCSs simultaneously
supporting many different sequences. These simultaneous
LCSs show the same amino acid composition in different
sequences, and we can calculate the number of times they
appear, named support number.

To constrain the number of LCSs, we set a threshold to
filter out LCSs with a support number lower than the
threshold. Then we use criteria to refine and optimize
the LCS set. The LCS set for a given quintessential set
and threshold is thus defined. The LCS matches the
target data set in a different way compared to the quint-
essential set. Whereas an LCS matches a sequence in the
quintessential set with absolute positions (e.g. {A3, E5}
only matches sequences like © _A_E °), it matches the
target data set with relative positions (e.g. {A3, E5}
matches both ©* A E and * A E_ ).

After LCS refinement and optimization, the match
counts to the target data set (i.e. protein sequences that
contain HTH motifs or not) for each LCS are calculated
as the LCV variables. Because of the difference in protein
length between the quintessential set and the training set, a
successful match occurs when a certain LCS matches the
target sequence in relative position. An LCS-length
window slides along the target sequence to detect success-
ful matches. The match count for the LCS set for each
sequence in the target data set is used to generate the LCV.
Thus, the LCV indicates the sequence accordance of the
target data set with the LCS set, and the LCS incidence.

Finally, support vector machine (SVM) tools are used
to construct a prediction model from the LCVs.

LCS mining algorithm rules

To utilize the information of the quintessential set
effectively, some highly representational segments should
be extracted from sequences. This is a time-consuming
step because of the variation in residue combination



positions and counts. To increase the algorithm efficiency,
the following rules are introduced. These rules used in the
mining algorithm greatly improve the time complexity.
They are relevant for a given quintessential set and a cer-
tain threshold value (N is the length of a given sequence).

(1) If and only if the support number for an LCS in a
quintessential set is not less than the given threshold,
the LCS is valid and can be retained in iteration
steps.

(2) In a given quintessential set, the present number of
an N-length LCS is surely more than all its sub-LCS.

(3) The sub-LCS of a given valid LCS is also a valid
LCS.

(4) An N-length LCS is the result of merging of two
N — 1-length sub-LCSs that have N —2 similar
residues when N > 2.

(5) This rule is also known as the LCS merging rule.
When N>1, two N-length LCSs can be merged if
and only if they have N —1 LCS units the same and
one different LCS unit at different positions. When
N =1 (LCS seed), two N-length LCSs can be merged
into one N + I-length LCS if and only if the seeds
are at different positions. It depends on the match
counts whether the new LCS is valid.

Algorithm implementation
The algorithm is implemented as follows.
(1) Quintessential set choice and initialization

A set of aligned protein sequences of the same length is
needed to generate the LCS set, which should be non-
redundant and to some extent typical, otherwise, the
LCVs generated may be not suitable. In the present
study, QuintessentialSet-88 meets these requirements.

The number of LCSs generated depends on the thresh-
old chosen in the algorithm. A moderate value is essential
to provide the prediction model with enough information
and not too big variable dimension.

(2) LCS seed searching

The search for LCS seeds process is a time-consuming
step. All sequences of the same length form a residue
matrix. Each type of residue in each column is counted
as the present number. If this is not less than the target
threshold, the residue is eligible as an LCS seed.

(3) Iteration process.

Based on rules 1 and 5 and using seeds obtained from the
last step, the iteration process can be carried out until the
longest LCSs are generated (i.e. of the same length as the
protein sequence), or no more LCSs are generated in a
certain iteration. To minimize the algorithm complexity,
each LCS position should be marked.

Cross-validation of the HTH motif prediction model

For ecach HTH motif family (denoted HTH_XXX) a
5-fold cross-validation was performed to test the HTH
motif prediction model. The positive data set consisted
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of the sequence in the central 80% distribution of all
sequences in length. The same number of sequences ran-
domly chosen from DS_NONHTH_ALL constituted the
negative data set.

SVM tools are widely used in machine learning for
supervised classification and regression. We use LibSVM
(24), which is an integrated software for support vector
classification, for all experiments. A radial basis function
was chosen as the kernel function to construct prediction
models.

RESULTS
Results for traditional methods

The prediction results for the best traditional methods are
shown in Table 2 for various model parameters.

Prediction ability for different thresholds

A moderate threshold is important for generating a suit-
able number of LCSs and LCVs. A threshold that is too
low will result in too many LCSs and a long computation
time. On the other hand, a threshold that is too high will
result in too few LCSs and LCVs, and there will not be
enough information to construct the prediction model.
The prediction ability for different thresholds is listed in
Table 3 and the performance of the prediction model for
a moderate threshold of 7 is shown in Supplementary
Data Table 1.

LCYV results for different thresholds

We tested different thresholds and obtained different
numbers of LCVs. The cross-validation results are
shown in Supplementary Data Tables 1-4. From these
results it can be concluded that in a certain range, the
lower the threshold and the greater the number of
LCVs, the better is the result. Moreover, when threshold

Table 2. Results for traditional methods

Method Variable count Ac (%) Sn (%) Sp (%) CC
Single-residue 20 74.50 70.59 78.41 0.49
Double-residue 400 80.65 76.91 84.39 0.61
CTD 104 76.72 73.92 79.51 0.54

Ac, Sn, Sp and CC denote the accuracy, sensitivity, specificity and
correlation coefficient, respectively.

Table 3. Prediction ability for different thresholds

Threshold  Variable count  Ac (%) Sn (%) Sp (%) CC
7 567 93.84 94.85 92.82 0.88
8 354 93.29 93.93 92.66 0.87
13 78 88.20 89.59 86.80 0.77
17 27 83.21 84.80 79.63 0.65

Ac, Sn, Sp and CC denote the accuracy, sensitivity, specificity and
correlation coefficient, respectively.
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Figure 1. ROC curve for different thresholds (threshold of 7, 8, 13 and
17 from top to bottom).

varies from 8 to 7, the number of LCVs changes a lot
(from 354 to 567), but there is no significant improvement
in prediction ability, and the accuracy only increases from
93.29% to 93.84%. In comparison, when the threshold
varies from 7 to 13, the number of LCVs decreases from
354 to 78, and the prediction ability also significantly
decreases with the accuracy decreasing from 93.29% to
88.20% (Figure 1). Thus, a threshold of 8 is a moderate
value.

Comparisons with GYM2.0

To verify the generalization capability of the 13 LCV-
based prediction models, we implemented experiments
on newly reported HTH-motif-containing sequences
from the SMART database.

Sequences containing HTH motifs of 2 HTH families,
i.e. HTH_ASNC and HTH_DEOR (see Table 1) in the
SMART database up to now, are all tested except for
those taken in former prediction models. The two new
prediction models are constructed with all sequences
used in former prediction models of each HTH family as
positive set, and equal amount of sequences randomly
chosen from DS_NONHTH_ALL as negative set. Some
results are pretty good as the cross validation results, e.g.
95.05% accuracy in HTH_ASNC of 1274 sequences, while
others are not so good as cross-validation results, e.g.
84.78% accuracy in HTH_DEOR of 736 new sequences.
It is possible that sequences in HTH_DEOR family
are not enough and not so typical that leads to the
inferior generalization capability of its prediction
model. Better results can be expected with sufficient
HTH-motif-containing sequences. Compared to cross-
validation, anyhow, these results finally confirm that the
LCYV approach is applicable in HTH motif prediction.

Compared with Dr Giri Narasimhan’s work in his
GYM2.0 web service (http://www.cs.fiu.edu/~giri/bioinf

Table 4. Prediction results compared with GYM2.0

HTH family Count GYM detected, Ac (%) LCV detected, Ac (%)

HTH_ARAC 4463 3492 78.24 3618 81.07
HTH_ARSR 1597 756 47.34 1240 77.65
HTH_ASNC 1274 852 66.87 1211 95.05
HTH_CRP 561 544 96.97 522 93.05
HTH_DEOR 736 602 81.79 624 84.78
HTH_DTXR 195 126 64.61 156 80.00
HTH_GNTR 3454 2701 78.20 3154 91.31
HTH_ICLR 760 580 76.32 706 92.89
HTH_LACI 1485 1454 97.91 1455 97.98
HTH_LUXR 2909 2331 80.13 2314 73.36
HTH_MARR 2152 1156 53.72 1934 89.87
HTH_MERR 1516 1103 72.76 1347 88.85
HTH_XRE 4454 3828 85.95 4164 93.49
Total 25556 19525 76.40 22445 87.83

Table 5. Prediction results of LCV and Pfam

Method Ac (%) Sn (%) Sp (%) cC
LCVs (1) 95.40 92.60 96.45 0.88
HMM (1) 87.05 100.00 81.87 0.75
LCVs (2) 93.12 90.91 93.83 0.82
HMM (2) 69.90 97.15 61.10 0.50

LCVs (1) denotes LCVs derived from the QuintessentialSet-88 set;
HMM (1) denotes the HMM model of Crp clan in Pfam database;
LCVs (2) denotes LCVs derived from SEEDs in Crp clan and HMM
(2) denotes HMM model constructed by sequences in the
QuintessentialSet-88 set. In both HMMs, models are calibrated to
increase the sensitivity of search, and E-values are empirical estimates.

/GYM/welcome.html), results of GYM?2.0 prediction are
66.88% accuracy for HTH_ASNC and 81.79% accuracy
for HTH_DEOR (Table 4). The lower prediction accuracy
may due to that HTH motifs are not always exactly
22 amino acids in length and fixed-length sliding window
for matching motif sequences still has some limitations.
Meanwhile, the LCV approach does not extract informa-
tion from only fixed-length-part of a given sequence but
involves all the ‘contribution factors’ for HTH motifs. In
other words, more flexible utilization of sequence ensures
more intensively information mining.

Comparisons with Pfam

By searching profiled HMMs, Pfam uses sequence and
domains score to determine whether a sequence belongs
to the full alignment of a particular Pfam entry. The
attribute of domains and motifs depends on sequence
similarity, thus those non-motif sequences with certain
degree of sequence similarity may result in incorrect
discriminations.

To compare with the profile-HMM method, 561 newly
reported proteins in HTH_Crp family are taken as posi-
tive test set. Proteins without HTH motifs are randomly
chosen as negative test set. First, the LCV approach with
threshold 8 and the Pfam clan Crp are both used on test
set. The LCV approach shows a better balance between
positive and negative sets (Table 5). Then the SEEDs from
Crp clan are taken as the quintessential set to generate



different LCVs for HTH prediction. It is interesting that
the new LCVs perform not so good as the
QuintessentialSet-88 set, which may be due to the
SEEDs form Crp clan share high sequence similarity
and sequence of train set and test set may differ from
the new LCVs to a larger extent compared with the ori-
ginal LCVs.  Furthermore, when using the
QuintessentialSet-88 to build profile-HMM model, the
specificity of negative test set decreases significantly
while the sensitivity of positive set becomes a little lower
than its own SEEDs. It can be inferred that HTH SEEDs
from different protein families combine characteristic
information of each family, and then have more prediction
accuracy on positive set but poor results on negative sets
for its lower conservation in sequence similarity. While the
profile-based HMM method has powerful ability in
detecting known HTH-containing proteins, the LCV
approach can take advantage of the combinational infor-
mation effectively to build prediction models and yields
balance results, and therefore can be regarded as a bene-
ficial complementary to Pfam. In fact, the SEEDs in Pfam
database can be regarded as combinations of the LCVs,
which are arranged with certain sequence orders and fixed
length. The LCV approach focus on those highly
presented residue combinations from quintessential set,
and ignores the sequence order of LCV location.

New predictions on genome-wide proteins

To make the LCV approach broadly applicable,
predictions on a genomic scale are launched to find out
new HTH-containing proteins. Proteins in two organisms
(e.g. H. sapiens and E. coli) from the UnitProt Know-
ledgebase (UniProtKB) are investigated. UniProtKB (25)
gives access to all the protein sequences which are avail-
able to the public with different evidence levels of protein
existence. More than 99% of the protein sequences in
UniProtKB are derived from the translation of the
coding sequences (CDS) which have been submitted to
the public nucleic acid database, the EMBL-Bank/
GeneBank/DDBJ database.

There are totally 86824 sequences for H. sapiens and
16658 sequences for E. coli, of which 20330 and 641
sequences are reviewed, respectively. First, in each
organism, proteins recognized by Pfam database to have
HTH motifs are taken as positive set of new prediction
models (i.e. 497 HTH proteins for H. sapiens and 1172
HTH proteins for E. coli), while same amount of those
non-HTH proteins are randomly chosen as negative set.
Second, new prediction models are constructed by taking
LCVs from QuintessentialSet-88 with a threshold of 8.
In each organism, models are training for five times with
different random selected negative set, and an average of
2% false positive rate and 99% sensitivity of self-
prediction results show good model prediction ability
and consistency. Then all proteins in both organisms are
tested and those newly detected HTH-containing proteins
are analyzed of their subcellular locations and gene
ontology. 350 proteins against all reviewed proteins
in H. sapiens organism are newly detected having
HTH motifs and the same for 861 proteins against all
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Table 6. Statistics on newly detected HTH proteins of subcellular
location and gene ontology

Homo sapiens Count H. sapiens gene Count
subcellular ontology terms
Membrane 76  Cintegral to membrane 88
Nucleus 70 C:nucleus 72
Secreted S1 F:protein binding 59
Cytoplasm 48 C:cytoplasm 41
Cell membrane 21 P:transcription 36
Endoplasmic reticulum 16  P:regulation of transcription, 35
membrane DNA-dependent
Mitochondrion 10 C:extracellular region 33
Extracellular space 9 F:transcription factor activity 28
Cell junction 5 F:zinc ion binding 23
Total 387  Total 1477
Escherichia coli Count E. coli ontology terms Count
subcellular
Cytoplasm 10  F:DNA binding 43
Periplasm 7  Piregulation of transcription, 37
DNA-dependent
Fimbrium 1 C:membrane 28
Secreted 1 P:signal transduction 20
P:chemotaxis 19
F:transcription factor activity 18
F:transmembrane receptor 18
activity
P:pathogenesis 14
P:transposition, DNA-mediated 13
P:DNA recombination 13
Total 19  Total 592

There are 350 and 861 new HTH proteins detected in H. sapiens and
E. coli organism, respectively. Total count under each item is the count
of annotation entries that can be found in UnitProtKB database. Some
reviewed proteins may have more than one annotation entries; in
contrast, unreviewed ones may have no annotations. Only the top 10
annotation entry groups are listed.

proteins in E. coli organism (see Supplementary Data
Table 6). Known subcellular locations and gene ontol-
ogy distributions are listed in Table 6. As for DNA-
binding and transcriptional regulating, HTH motifs are
most probably appeared in nucleus, membrane and
cytoplasm.

DISCUSSION
LCV’s advantages

The LCV approach takes into account non-consecutive
residues rather than involves specific properties of protein
entirely as the traditional methods. Due to the gaps
among residues in LCVs, it is almost impossible to gener-
ate the same variables by using traditional frequency
statistics methods, because of the rapid exponential
growth of variable count while increasing the statistical
residues and interval. On the other hand, the LCV
approach encoding samples of unequal length to equal
length variables can effectively make use of sequence
information and avoid exhausting all possible combina-
tions of residues.
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Figure 2. Long-range interactions between residues in LCV within the
HTH motif. The HTH motif part (red for a-helix and green for turn)
and its binding DNA (purple part) are shown in 3D structure of mol-
ecule (i.e. PDB Id:1BDI). Two potential interactions occur between
residues of the {A7,V12} (cyan part) and {S13,V17} (blue part)
LCVs, of which the distances are 2.83 and 3.11 A, respectively.

Potential long-range interaction between residues

In addition to LCV’s advantages mentioned above,
regarding the inconsistency between primary sequence
and 3D structure, traditional methods based on residue
statistics can hardly involve variables reflecting long-
range interactions, while LCVs may include residues
which potentially interact with each other, owing to the
non-consecutive feature of LCV. From distance analysis,
residues in specific LCVs drop in a possible interaction
distance. These potential long-range interactions may be
an important factor in formation of HTH motifs.

Proteins containing HTH motifs with known 3D
structures in the Protein Data Bank database are
investigated. LCVs in the motif region of proteins are pos-
sible combinations of residues which have potential
long-range interactions. By calculating distances of
main-chain atoms, some residues having potential long-
range interactions are singled out. An example in a
DNA-binding protein complex (i.e. PDB Id: 1BDI) is
shown in Figure 2. Two residue groups highlighted by
cyan and blue colors appear both in LCVs (ie.
{A7,V12} and {S13,V17}) and in HTH motifs, with
distances of 2.83 and 3.11A, respectively. It can be seen
from the structure that the residues in both «o-helix may
interact with residues in the turn secondary structure
according to the close distances.

LCYV refinement and optimization

LCS seeds should be removed from the LCS set, since
these are single residues at specific positions and thus
cannot represent the combinational relationship among
residues.

There may be some redundant LCSs that play the
same role in generating LCVs. For example, two LCSs,
{A1,E2,D6} and {A3,E4,D8}, are the same in the window
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Figure 3. LCV count distribution for each HTH family. The number of
matches per sequence is shown for the top 10 LCV numbers.

sliding process. Only one should be retained for LCV
generation.

When the number of matches for an LCS and its
sub-LCS are equal, the shorter one should be removed.
If the sub-LCS has more matches than the parent LCS, it
should be retained. This measure avoids an excessive
number of variables, and at the same time not neglects
useful information.

LCYV distribution in each HTH family

The LCV count distribution was calculated for each pro-
tein family, as shown in Figure 3. It can be concluded that
some LCVs are more prominent in all the protein families,
whereas others show a different distribution, and the top
10 LCVs are distributed more evenly in the negative set
than for other HTH families. It may be the varying LCV
distribution for each HTH family that contributes to the
better prediction ability.

LCS coverage analysis

A good LCS set should represent all the protein sequence
information in the quintessential set. The LCS coverage
indicates the utilization ratio of the quintessential set.
The ideal LCS coverage is 100%; a lower value indicates
that information is missing and the prediction model may
be weak. The LCS set used in this work reaches 100%
coverage of the quintessential set.

From the perspective of specific locations of aligned-
quintessential set, the location coverage reveals import-
ance of 22 locations within HTH motifs. The 7th, 11th
and 17th locations have higher percentage of residues.
It should be noted that in the 7th location amino acid
Ala (A) covers all the cases and Gly (G) almost the
same in the 11th location. What’s more interesting are,
Ala has the highest helix propensity while Gly has the
lowest helix-forming propensity and tends to disrupt heli-
ces because its high conformational flexibility makes it
entropically expensive to adopt the relatively constrained
a-helical structure (26).



LCYV extensibility and applicability

There are many structural domains or motifs in different
length distributed widely in various proteins which need to
be predicted with primary sequence information. The
LCV approach shows effectiveness on the HTH motif
with an average length of 22 residues. Some shorter
motifs (e.g. beta turn with four residues) may not take
advantage of the LCV approach for its less number of
variable combinations. Since most known domains have
an average length of more than 20 residues (25), domain
size does not confine extensible use of LCV. Cases are
more complicated with bigger domains, which do not
have a single conserved motif but several discontinuous
motifs positioned with variable spacings, with a different
degree of conservation and sometimes with different order
of motifs in linear sequence. A case in point is enzyme
prediction and its functional classification. Efforts have
been made to identify whether a newly found protein
sequence is an enzyme or not, and if it is, to determine
which main class does it belong to (27). Beyond the pre-
vious works, which take into account pair-wise sequence
similarity (28), physical and chemical features (29), and
functional domain composition and pseudo amino acid
composition (27), a good work done by Kunik et al.
(30), introduced the Specific Peptides to perform function
annotation of enzyme and achieved better results. Both
LCV and Specific Peptide are deterministic combinations
of amino acids. While Specific Peptides are groups of con-
secutive amino acids in proteins, the units of LCV may be
continuous or discontinuous. With gathering representa-
tive sequences for Quintessential Set that covers all motifs,
flexible combinations among extracted LCVs and the units
within them may facilitate extensible use of the LCV
approach in prediction of big and complicated domains.

CONCLUSIONS

The LCV approach is a new strategy for variable
extraction. It is effective for feature extraction from a
quintessential set and for constructing a good prediction
model for HTH motifs. When faced with samples of un-
equal length, approaches calculating sorts of properties
of amino acid or making statistics information of the
samples as a whole are common practice. So traditional
methods show weakness owing to the overall treatment
of sequences, whereas the LCV approach draws local
sequence information that can be regarded as an alterna-
tive to local residue frequency information for certain resi-
due combinations. But it is almost impossible to exhaust
the same LCV variables because of the rapid exponential
growth of variable count while increasing the statistical
residues and interval. In contrast, out of a huge number
of all possible residue combinations at different locations,
those remarkable ones are singled out in LCS mining
phase, which convey potential information on the quint-
essential set in the form of various LCSs. After refinement
to LCS set, a non-redundant LCV set is formed. In the
matching process, LCVs also take advantage of the
discontigous information of target protein sequences.
LCVs may reveal long-range interactions with biological
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implications according to distance analysis and the
extreme helix-forming propensity. In other words, the
factors contributing to the formation of HTH motif in
proteins are conveyed by LCVs, and the relationship
among LCVs may determine whether a protein potentially
contains a HTH motif.

Generally, various quantized signals for pattern recog-
nition are regarded as obeying a normal or Gaussian
distribution, as supported by many research results.
However, this does not apply to all cases. The LCV
method introduces the concept that signal distribution
varies in position, combination pattern and count, and
may not have one central position in samples like
normal distribution. This idea, in which signals are treated
as a non-Gaussian-distribution, attributes the mechanism
of occurrence of certain motifs (or patterns) to some
multi-combination factors in sequence (i.e. the manner
of residue combination and the position and count of
these specific combination patterns).

Prediction results of newly reported HTH-containing
proteins compared with GYM?2.0 validates the prediction
ability of LCV approach. Comparisons with profile-
HMM models from the Pfam protein families database
show that the LCV approach maintains a good balance
between true positive data and negative data. Though the
LCV and profile-HMM approaches are both based on
sequence similarity, the LCV approach focus on those
highly presented residue combinations (i.e. LCVs) from
quintessential set and ignores the sequence order of LCV
location, and thus makes flexible, comprehensive utiliza-
tion of sequence information.
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