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OBJECTIVE—TR4 is a nuclear receptor without clear patho-
physiological roles. We investigated the roles of hepatic TR4 in
the regulation of lipogenesis and insulin sensitivity in vivo and in
vitro.

RESEARCH DESIGN AND METHODS—TR4 activity and
phosphorylation assays were carried out using hepatocytes and
various TR4 wild-type and mutant constructs. Liver tissues from
TR4 knockout, C57BL/6, and db/db mice were examined to in-
vestigate TR4 target gene stearoyl-CoA desaturase (SCD) 1 regu-
lation.

RESULTS—TR4 transactivation is inhibited via phosphorylation
by metformin-induced AMP-activated protein kinase (AMPK) at
the amino acid serine 351, which results in the suppression of
SCD1 gene expression. Additional mechanistic dissection finds
TR4-transactivated SCD1 promoter activity via direct binding
to the TR4-responsive element located at 2243 to 2255 on the
promoter region. The pathophysiological consequences of the
metformin→AMPK→TR4→SCD1 pathway are examined via TR4
knockout mice and primary hepatocytes with either knockdown
or overexpression of TR4. The results show that the suppression
of SCD1 via loss of TR4 resulted in reduced fat mass and in-
creased insulin sensitivity with increased b-oxidation and de-
creased lipogenic gene expression.

CONCLUSIONS—The pathway from metformin→AMPK→TR4→
SCD1→insulin sensitivity suggests that TR4 may function as an
important modulator to control lipid metabolism, which sheds light
on the use of small molecules to modulate TR4 activity as a new
alternative approach to battle the metabolic syndrome. Diabetes
60:1493–1503, 2011

M
etabolic syndrome, which includes obesity,
dyslipidemia, and the proinflammatory state,
linked well with insulin resistance, which can
be regarded as a disease with dysregulation

of not only glucose homeostasis but also lipid metabolism (1).
Stearoyl-CoA desaturase (SCD) is a family of rate-limiting

enzymes involved in the biosynthesis of monounsaturated

fatty acids from saturated fatty acids, and its activity
has been implicated in the metabolic syndrome (2). SCD1
knockout (SCD12/2) mice showed impaired triglyceride
and cholesterol ester biosynthesis with increased insulin
sensitivity (3). Early studies showed that the gene ex-
pression of SCD1 was well regulated by sterol regulatory
element–binding proteins (SREBPs), which are important
transcription factors for the regulation of fatty acids and
cholesterol metabolism (4). Insulin and glucagon act oppo-
sitely in the transcriptional regulation of hepatic SREBP-1c,
with insulin inducing and glucagon repressing SREBP-1c
expression (5). Constitutively expressing SREBP-1c in mice
leads to increased SCD1 expression and lipogenesis, whereas
knocking out SREBP-1c (SREBP-1c2/2) results in a de-
creased SCD1 expression (6,7).

AMP-activated protein kinase (AMPK) functions as
a sensor of cellular energy that can be activated by glucose
deprivation, high AMP-to-ATP ratios, and the antidiabetes
drug metformin (8). Several mechanisms of AMPK action
on lipid and glucose metabolism have been studied: AMPK
regulates the expression of lipid synthesis genes by mod-
ulating the activities of transcription factors and coac-
tivators in liver and other peripheral tissues (9).

TR4 is a member of the nuclear receptor superfamily.
Based on the anatomical profiling of nuclear receptor ex-
pression, TR4 was classified in the central nervous system,
circadian, and basal metabolism group (10). Recent stud-
ies also indicate the rhythmic expression of TR4 in four
metabolic tissues (liver, white adipose tissue, brown adi-
pose tissue, and muscle) over light and dark cycles (11).
Using TR4 knockout (TR42/2) mice (12,13) as model,
we identified a novel pathway, metformin→AMPK→TR4→
SCD1→insulin sensitivity, in liver that proved that TR4 may
function as a regulator in lipid metabolism. Small mole-
cules, such as metformin, AICAR, or AMPK inhibitor com-
pound C (CpdC), are able to modulate TR4 transactivation
to control the metabolic syndrome.

RESEARCH DESIGN AND METHODS

Animal use and care. All animal procedures were approved by the Animal
Care and Use Committee of the University of Rochester. TR42/2 male mice
used in this study were generated from heterozygous breeding pairs provided
by Lexicon Genetics and genotyped as previously described (13). In the
fructose-feeding study, 8-week-old male TR4+/+, TR42/2, and C57BL/6 mice
were fed for 6 weeks with a fructose diet consisting of 60% fructose by weight
(Dyets). Leptin receptor–deficient db/db mice were purchased from The
Jackson Laboratory (Bar Harbor, ME).
Analytical procedures. Blood was collected from fed or overnight-fasted
animals, and 5–10 mL of plasma samples were used for measuring concen-
trations of insulin (Crystal Chem, Inc., Downers Grove, IL), free fatty acids
(Wako Diagnostics, Richmond, VA), triglycerides (Sigma-Aldrich, St. Louis,
MO), and glucose (LifeScan, Milpitas, CA), according to the manufacturers’
protocols. For determination of tissue triglyceride content, tissue pieces
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(100 mg) were quick frozen in liquid nitrogen and homogenized on ice. Tri-
glycerides were extracted from homogenized tissues with chloroform/metha-
nol and resuspended in t-butyl alcohol. Resuspended samples were then
mixed with Triton X-100/methanol (2:1, vol/vol) to completely dissolve the
lipid suspension, and an aliquot of this solution was used for the triglyceride
assay kit (Sigma-Aldrich). For determination of mitochondrial b-oxidation, the
assay uses the incubation with [14C]palmitate with or without potassium cyanide
followed by trapping released 14CO2 by base, as described previously (14).
Protein dephosphorylation. Cell lysates were prepared, and protein con-
centrations were quantified by the Bradford method (Bio-Rad, Hercules, CA).
The lysates were suspended in 1 3 NE Buffer (1 µg/10 µL; New England
Biolabs, Ipswich, MA), and 1 unit/µg protein lysates of calf intestinal alkaline
phosphatase (CIP; New England Biolabs) was added and incubated at 37°C for
60 min.
Western blot analysis. Protein extracts from cell and liver tissue samples
were prepared by homogenizing the tissue in modified lysis buffer. Protein
samples (60 mg) were tested for TR4, SCD1, or AMPK phosphorylation levels
by Western blot analyses. Western blotting was performed with anti-TR4, anti-
SCD1 (Alpha Diagnostic International, San Antonio, TX), anti–phospho-AMPK
(Cell signaling), or anti-a1AMPK antibodies (Cell Signaling Technology, Danvers,
MA) (15).
Determination of gene expression. Total RNA was isolated from different
tissues using TRIzol reagent (Invitrogen, Carlsbad, CA), and cDNA was syn-
thesized using SuperScript II and random hexamer primers (Invitrogen).
Quantitative RT-PCR was performed using SYBR green supermix reagent with
the iCycler real-time PCR amplifier (Bio-Rad). The results are given as per-
centage over control after normalization of mRNA to 18S rRNA expression.
A list of primer sequences for real-time PCR is available in Supplementary
Table 1.
Reagents, plasmids, and luciferase assay. We used 500 mmol/L metformin
(Sigma-Aldrich), 1 mmol/L AICAR (Calbiochem, San Diego, CA), and 10 mmol/L
CpdC (Dorsomorphin; Calbiochem). The plasmid pCMX-TR4 has been de-
scribed previously (15). The human SCD1 59 promoter region consisting of
2487 to +67 bp was amplified by PCR from HepG2 genomic DNA and cloned
into pGL3 reporter vector (Promega, Madison, WI) to generate pGL-SCD-Luc.
Deleted pGL-SCD1 (2237/+67)-Luc containing 2237 to +67 bp of SCD1 59
promoter region was generated by PCR amplification from pGL-SCD1-Luc and
subcloning into pGL3 (Promega). The DR1 3 3-Luc plasmid contains three
copies of the TR4- response element (TR4RE) direct repeat (DR) (15). Hepa1–6,
HepG2, and COS-1 cells were maintained in Dulbecco’s modified Eagle’s me-
dium containing 10% FCS. Transfections were performed by using SuperFect
(Qiagen, Valencia, CA). Relative luciferase activities were measured in the
luciferase reporter assay system (Promega). The plasmid pRL-TK (Promega)
for internal control was cotransfected in all transfection experiments.
Glucose and insulin tolerance tests. For the glucose tolerance test, mice
were fasted overnight, followed by an intraperitoneal D-glucose injection (2 g/kg
body wt). Blood glucose was measured by tail bleeding at 0, 15, 30, 60, and
120 min after the injection. For the insulin tolerance test, mice were injected
intraperitoneally with human insulin (Sigma-Aldrich) at 1 unit/kg body wt, and
blood glucose was measured at 0, 15, 30, and 60 min after the administration.
Histological analysis. Tissues were fixed in fresh 4% buffered paraformal-
dehyde and then dehydrated through a series of graded alcohols before being
embedded in paraffin. Tissue sections were stained with hematoxylin and
examined under light microscopy. To investigate the lipid amount in both TR4+/+

and TR42/2 livers, Oil Red O staining was performed (16).
Chromatin immunoprecipitation assay. Chromatin immunoprecipitation
(ChIP) assays were performed in HepG2 cells, as described in previous studies
(12). Immunoprecipitations were performed at 4°C overnight, with 2 µg TR4 anti-
body number 15. The list of primers used can be found in Supplementary Table 1.
Statistical analysis. Experiments were carried out at least in duplicate and
repeated three times. The result was expressed as means 6 SD. The P values
calculated from the Student t test and one-way ANOVA ,0.05 are interpreted
as statistically significant.

RESULTS

AMPK phosphorylates hepatic TR4 at the serine 351
site. Using peptide mapping and motif scan, we found that
the amino acid serine 351 (Ser351) phosphorylation site,
which is conserved in human, mouse, and rat TR4, is
a potential target of AMPK (Fig. 1A). We used SDS-PAGE
analysis to examine the TR4 phosphorylation status in
mouse hepatocyte Hepa1–6 cells and found that endoge-
nous TR4 displays three bands. The addition of CIP to
cytosolic extracts reduced the number of TR4 bands to the

fastest moving component (Fig. 1B), suggesting that TR4 is
a phosphoprotein and a potential target for AMPK.

We then mutated the Ser351 phosphorylation site of TR4
from serine to alanine (S351A) to mimic dephosphorylated
TR4 and from serine to glutamic acid (S351E) to mimic
phosphorylated TR4, and then we re-evaluated these mod-
ifications on TR4 transactivation. Using a luciferase reporter
assay utilizing the TR4 target gene (12), PEPCK promoter
(PEPCK-Luc), with in vitro transcription/translation system
equally expressed TR4-wt, S351A, and S351E (Fig. 1C),
we found higher TR4 transactivation for the S351A protein
and lower TR4 transactivation for the S351E protein com-
pared with TR4-wt (Fig. 1D) in Hepa1–6 cells, suggesting
that phosphorylation of TR4 at S351 resulted in suppression
of TR4 transactivation in vitro.

An in vitro phosphorylation assay further demonstrated
that TR4 can be phosphorylated by AMPK in the presence
of AMP (TR4-wt could be phosphorylated at Ser351) (Fig.
1E, lane 4 vs. 3) and that mutation of Ser351 completely
abolished phosphorylation of TR4 in the presence or ab-
sence of AMP (Fig. 1E, lanes 5–8). This result suggested
that AMPK is an upstream signal capable of modulating
TR4 protein via phosphorylation of TR4 at Ser351.

We next tested whether modulating AMPK activity, via
its activator AICAR or inhibitor CpdC, resulted in the
modulation of TR4 transactivation. Inactivation of AMPK
via CpdC, leading to dephosphorylation of AMPK (17), re-
sulted in enhanced TR4 transactivation on the DR1 3 3-Luc
reporter, which contains TR4RE (Fig. 1F). In contrast, ac-
tivation of AMPK by AICAR resulted in suppression of TR4
transactivation (Fig. 1F). Furthermore, reducing endoge-
nous AMPK in hepatocytes by AMPK-RNA interference
(RNAi) (a gift from Dr. J.P. Bolanos, Department of Bio-
chemistry and Molecular Biology, University of Salamanca,
Salamanca, Spain) induced TR4 transactivation (Fig. 1G).
Together, results from Fig. 1A–G demonstrate that hepatic
TR4 is a target of AMPK and that changing AMPK activity
may modulate TR4 transactivation via reversible phosphor-
ylation at the Ser351 site.
Metformin induces AMPK-mediated TR4 phosphoryla-
tion with decreased TR4 transactivation.Metformin has
been used widely as an antidiabetes agent, and it activates
AMPK. In vitro studies (18,19) suggest that AMPK inhibits
some metabolic gene expressions, for example PEPCK and
SCD1. The underlying mechanisms that link metformin,
AMPK, and TR4, and how they influence each other, re-
main unclear. Incubation of Hepa1–6 cells with metformin
resulted in increased phosphorylation of AMPK at amino
acid threonine 172, without changing AMPK protein ex-
pression (Fig. 2A), which might then result in increased
phosphorylation of TR4 (Fig. 2B). The addition of CIP to
metformin-treated Hepa1–6 cell lysates resulted in the dis-
appearance of metformin-induced TR4 phosphorylation,
suggesting that metformin, like AICAR, can also activate
AMPK-mediated TR4 phosphorylation in Hepa1–6 cells.

The consequence of metformin-induced AMPK-mediated
TR4 phosphorylation resulted in decreased TR4 trans-
activation using either DR1 3 3-Luc (Fig. 2C) or PEPCK
promoter-Luc (Fig. 2D). In contrast, metformin failed to
repress the transactivation of TR4 mutants (TR4-S351A
and S351E) (Fig. 2D). Together, results from Fig. 2A–D
suggest that metformin can modulate TR4 transactivation
via induction of AMPK-mediated TR4 phosphorylation.
TR4 and SREBP-1c induce SCD1 gene expression
independently. We noted first that SCD1 expression was
markedly reduced in the liver of TR42/2mice (Fig. 3A and B).
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The promoter-Luc assay in HepG2 cells confirmed that
TR4 induced hSCD1-Luc reporter activity in a dose-
dependent manner (Fig. 3C), suggesting that TR4 can in-
duce SCD1 gene expression at the transcriptional level.
Using a series of deletion mutations with or without pu-
tative TR4RE (a DR site with GGGGCAGGGGCA for the
binding of TR4), we found that TR4 has minimal activity
with the deletion mutant of SCD1 promoter (SCD1 [2237])
that lost the TR4RE site (Fig. 3D). ChIP assays further
confirmed that TR4 bound directly on the SCD1 promoter
(2108 to 2376) in HepG2 cells in vivo (Fig. 3E).

To determine the binding of TR4 to TR4RE in vitro, we
used the nonradioactive biotin–labeled probes to perform

the DNA pull-down assay. As shown in Fig. 3F, the input
control was an indication of TR4 protein; biotin-labeled
probes containing SCD1-TR4RE were able to bind effi-
ciently to TR4 (Fig. 3F, lane 2). However, TR4 failed to
bind to the TR4RE mutant (TR4REmu) (Fig. 3F, lane 5).
Thus, results from Fig. 3A–F indicate that TR4 can induce
SCD1 gene expression via direct binding to the TR4RE
located on the SCD1 59 promoter.

Analysis of the promoter of SCD1 found other con-
served elements, including the sterol regulatory element
(SRE) (20,21), might be able to mediate SCD1 induction
via SREBP-1c (Fig. 4A). SCD1 promoter activity assay in
Hepa1–6 cells demonstrated that SREBP-1c, like TR4,

FIG. 1. AMPK inhibits TR4 transactivation through TR4 protein phosphorylation. A: Mouse, human, and rat TR4 amino acid sequence of the pu-
tative AMPK phosphorylation site. B: TR4 phosphorylation status by immunoblot with TR4 antibodies. Hepa1–6 cell lysates were treated with CIP
or with buffer as the control. C: TR4-wt, TR4-S351A, and TR4-S351E protein were translated in the transcription/translation system containing
[
35
S]methionine, as described in Supplemental Methods. D: The effect of TR4-wt and mutants (S351A and S351E) on the transcriptional activity of

the TR4 target gene PEPCK-Luc reporter plasmid in Hepa1–6 cells (**P < 0.01; *P < 0.05 vs. vector control). E: Autoradiogram of the TR4 protein
phosphorylated in vitro by AMPK. TR4-wt and S351 mutants were incubated with purified rat liver AMPK and [g-32P]ATP, in the presence or
absence of AMP, as indicated. Lane 1: 35S-labeled TR4 protein. F: DR1 3 3-Luc reporter vector was cotransfected with TR4 in Hepa1–6 cells. After
overnight recovery, the transfected cells were treated with AICAR or CpdC for 24 h, and luciferase activity was measured (*P < 0.05 vs. lane 1).
G: DR1 3 3-Luc reporter vector was cotransfected with TR4 and AMPK RNAi (target sequence: AMPK-a1 59-GAATCCTGTGACAAGCACA-39)
in Hepa1–6 cells. The transfected cells were harvested after 48 h, and luciferase activity was measured (*P < 0.05 vs. lane 1).
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could also activate SCD1 transactivation, and that the
addition of both TR4 and SREBP-1c resulted in the addi-
tive transactivation effects (Fig. 4B, lanes 1–4). Although
SREBP-1c activation was eliminated following the muta-
tion of the SRE (pSCD1-SREmu) reporter (20), TR4 effects
persisted using pSCD1-SREmu (Fig. 4B, lanes 5–8). In
contrast, TR4 activation was eliminated following muta-
tion of the TR4RE (pSCD1-TR4REmu), but the SREBP-1c
effect persisted (Fig. 4B, lanes 9–12). Double mutations of
the SRE and TR4RE (pSCD1-D-mu) resulted in no SCD1
induction in the presence of TR4 and SREBP-1c (Fig. 4B,
lanes 13–16), suggesting that TR4 and SREBP-1c activate
SCD1 independently.

Previous studies have shown that the SCD1 gene is
regulated at the transcriptional level by a number of dietary
factors, such as glucose and fructose, via a SREBP-1c–
dependent mechanism (7,22), with less SCD1 expression
in normal diet–fed SREBP-1c2/2 mice (7,23). However,
long-term fructose feeding results in increased SCD1 ex-
pression in both SREBP-1c2/2 and SREBP-1c+/+ mice, with
even higher SCD1 induction found in SREBP-1c2/2 mice
(7). These data suggest that fructose-induced SCD1 gene
expression acts through a mechanism that is independent
of SREBP-1c. In a similar series of experiments to de-
termine whether fructose-induced SCD1 gene expression
is TR4-dependent, we found, in wild-type mice fed with
a fructose diet, that TR4, as well as SCD1 and SREBP-1c
gene expression, were induced (Fig. 4C). Increased SCD1
gene expression was also induced by fructose in both
TR4+/+ and TR42/2 mice. It is noteworthy that TR42/2

mice fed with fructose had significantly higher SCD1 gene
expression compared with TR4+/+ mice (Fig. 4C and D),
and this result is similar to that obtained in fructose-fed

SREBP-1c2/2 mice (7,23). These data suggest that fruc-
tose induced SCD1 gene expression in a TR4-independent
manner. Together, results from Fig. 4 indicate that TR4
and SREBP-1c induce hepatic SCD1 gene expression in-
dependently.
TR4 induces SCD1 gene expression in the primary
hepatocytes from wild-type and db/db mice. To con-
firm the above results in Hepa1–6 cells showing that TR4
modulates SCD1 gene expression, we performed trans-
ductions to deliver TR4 shRNA into Hepa1–6 cells and
primary hepatocytes. Using vector-based TR4 RNA in-
terference (pRetro-shTR4a) to knockdown TR4 expression
transiently, we evaluated the effect of TR4 silencing on
SCD1 reporter activity in Hepa1–6 cells. As shown in
Fig. 5A, TR4-mediated SCD1 promoter transcriptional
activation was significantly reduced in the TR4 knock-
down cells (Fig. 5A, lane 4). We also used mice primary
hepatocytes with knockdown of TR4 (via RNAi) (Fig. 5B).
As shown in Fig. 5C, the addition of lentiviral vector with
TR4-RNAi, but not TR4-scramble-RNAi, resulted in the
suppression of SCD1 gene expression. These results are
consistent with the above in vivo data.

We additionally used db/db mice that show induction of
SCD1 in liver (24) to confirm our finding of hepatic SCD1
induction by TR4. As expected, we found increased ex-
pression of both TR4 and SCD1 in livers of db/db mice
compared with wild-type mice (Fig. 5D). Injection of
metformin into db/db mice resulted in the decreased he-
patic SCD1 gene expression (Fig. 5E) that may be a result
of the decreased TR4 transactivation (Supplementary Fig.
1A). We further confirmed these results via using primary
hepatocytes from db/dbmice treated with metformin in the
presence or absence of TR4-RNAi. As shown in Fig. 5F,

FIG. 2. Effect of metformin on TR4 activity. A: AMPK and phosphor-AMPK in Hepa1–6 cells treated with metformin. B: TR4 phosphorylation status
by Western blot. Hepa1–6 cells were treated with AICAR and metformin, and cell lysates were harvested. Cell lysates were then treated with CIP.
C: DR1 3 3-Luc reporter vector was cotransfected with TR4 in Hepa1–6 cells. After overnight recovery, the transfected cells were treated with
metformin and luciferase activity was measured (*P < 0.05 vs. lane 3). D: PEPCK-Luc reporter vector was cotransfected with TR4-wt, S351A, or
S351E in Hepa1–6 cells and treated with or without metformin (*P < 0.05 vs. control). (A high-quality color representation of this figure is
available in the online issue.)
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treatment with metformin resulted in the reduction of
SCD1 gene expression in db/db mice (Fig. 5F, lanes 1 and
2), and silencing TR4 abolished the inhibition of SCD1 ex-
pression by metformin (Fig. 5F, lanes 3 and 4), suggesting
the role of TR4 in the metformin suppression of SCD1.
Potential pathophysiological consequences of the
newly identified metformin→AMPK→TR4→SCD1
pathway. Early studies demonstrated that altered SCD1
gene expression resulted in changes in lipid oxidative and
lipogenic pathways. To dissect the consequences of TR4-
induced SCD1 expression, we compared gene profiles in-
volved in hepatic fatty acid oxidation and lipogenesis in
TR4+/+ and TR42/2 mice. TR42/2 liver showed enhanced
mRNA levels of genes involved in lipid b-oxidation, carni-
tine palmitoyltransferase-1, acyl-CoA oxidases, and peroxi-
some proliferator–activated receptor-a (Supplementary Fig.
2A). As expected, enhanced b-oxidation gene expression

may then result in the higher rates of isolated hepatic
mitochondrial b-oxidation in TR42/2 mice compared with
TR4+/+ mice, using radioisotope-labeled tracer experiments
with [U-14C]palmitate (Supplementary Fig. 2B).

We also examined the genes involved in hepatic lipogenic
pathways. Acetyl-CoA carboxylase and fatty acid synthase
were reduced in TR42/2 mice liver (Supplementary Fig. 2C).
It is noteworthy that TR42/2 mice showed no difference in
SREBP-1c- and carbohydrate-responsive element–binding
protein (ChREBP ) expression, suggesting that the reduction
of SCD1 we observed is not a result of the loss of SREBP-1c
or ChREBP in TR42/2 mice (Supplementary Fig. 2C).

Increased b-oxidation and reduced lipogenic gene ex-
pression via TR4-modulated SCD1 expression in TR42/2

mice may result in the lipoatrophy. Although TR42/2 mice
had smaller sizes and lower body weights than TR4+/+

mice, TR4+/+ and TR42/2 mice had a similar basal daily

FIG. 3. SCD1 expression and effect of TR4 on the transcriptional activity of the SCD1 promoter. A: Hepatic SCD1 protein levels of TR4
+/+

and TR4
2/2

male mice. The Western blots are representative of 10 mice per group.B: Quantitative PCR using total RNAs extracted from liver of TR4
+/+

and TR4
2/2

mice was performed and quantified (**P < 0.01 vs. TR4
+/+

; n = 6). C: Hep1–6 cells were cultured and transiently transfected with SCD1 reporter
without or with increasing amounts of TR4-expressing wild-type plasmid (*P < 0.05; **P < 0.01 vs. lane 1). D: SCD1 promoter full-length (2487) or
deletion (2237) mutant were cotransfected with TR4 (*P < 0.05 vs. lane 1). E: ChIP assay using TR4-specific antisera. Lane 1: Input control. Lane 2:
Control IP with normal mouse IgG. Lane 3: PCR product was obtained from immunoprecipitates using TR4 antibodies. F: DNA pull-down assay using
biotin-labeled oligonucleotides containing the PEPCK-TR4RE1, SCD1-TR4RE, and SCD1-TR4REmu. Protein extracts were incubated with biotin-
labeled double-stranded oligonucleotides containing the putative TR4RE, and the bound proteins were pulled down with streptavidin-agarose beads
and analyzed by immunoblotting with antibodies against TR4. A total of 25 µg of protein extract was loaded in the “input” lane as a control (lane 1);
100 µg of proteins were used in each pull-down (lanes 1–3, 5, and 6). Non–biotin-labeled oligonucleotides were used as competition probes (lanes 4
and 7).
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food intake normalized to body weight. Epididymal and
retroperitoneal fat masses of TR42/2 mice were markedly
reduced when these tissues were normalized by body
weight compared with those of TR4+/+ mice (Fig. 6A). In
contrast to the dramatic reduction of white adipose tissue,
other organs, such as liver, heart, kidney, and testis, were
similar to those of TR4+/+ mice (Fig. 6A). We also found
that TR42/2 mice had obvious reduction in fat-pad size
(Fig. 6B). Histological analysis showed that adipocytes of
epididymal fat pads from TR42/2 mice were much smaller
and more heterogeneous in size than those of TR4+/+ mice
(Fig. 6C). Additional histological analysis showed signifi-
cantly less lipid accumulation in liver from TR42/2 mice
via using Oil Red O staining (Fig. 6C). Liver triglyceride
level of TR42/2 mice consistently was reduced to ~50% of
that of TR4+/+ mice. However, skeletal muscle triglyceride
levels were similar to that of TR4+/+ mice (Fig. 6D).

In addition to reduced fat mass, loss of the SCD1 gene
might also result in enhanced systemic insulin sensitivity
(25,26). We measured blood glucose and insulin concen-
trations and found that TR42/2 mice had 10% reduction in
fed and 20% reduction in fasting blood glucose concen-
trations, compared with those of TR4+/+ mice (Fig. 7A).
Serum insulin levels were lower in fed TR42/2 mice, and
fasting caused a decrease of insulin levels in both TR4+/+

and TR42/2 mice (Fig. 7B). Intraperitoneal glucose in-
jection showed reduced blood glucose in TR42/2 mice at
all time periods compared with TR4+/+ mice (Fig. 7C).
Furthermore, blood glucose levels of TR42/2 mice were
returned to normal levels at 60 min after glucose injection.
However, blood glucose levels of TR4+/+ mice were still
higher than normal glucose levels until 120 min after glu-
cose injection. Increased insulin sensitivity was further
confirmed in insulin tolerance tests, showing an enhanced

FIG. 4. TR4 and SREBP-1c effects on SCD1 gene regulation. A: Schematic representation of the proximal promoters of the hSCD1. The sequences
that correspond to a SRE (■), as well as TR4RE (○) are indicated. A mutated motif is indicated (with an X). B: Effect of mutation of the SRE and
TR4RE on the transcriptional regulation of promoter-reporter genes. Hep1–6 cells were transiently transfected with pSCD1-(2487), pSCD1-
SREmu, pSCD1-TR4REmu, or pSCD1-D-mu, as indicated (*P < 0.05; **P< 0.01 vs. control). C: Hepatic TR4, SREBP-1c, and SCD1 gene expression
in wild-type mice fed with the fructose diet for 6 weeks. The relative gene expression amount was quantified by quantitative PCR (*P< 0.05; **P<
0.01 vs. control diet; n = 7). D: Hepatic SCD1 mRNA expression upon control diet and long-term fructose feeding in TR4

2/2
mice (**P < 0.01 vs.

control diet; n = 7 per group).
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glucose-lowering effect in TR42/2 mice compared with
that of TR4+/+ mice (Fig. 7D).

To further examine whether increased systemic insulin
sensitivity is accompanied with increased insulin signaling,
we also examined insulin signaling in skeletal muscles of
TR42/2 and TR4+/+ mice. The TR42/2 mice showed in-
creased basal tyrosine phosphorylation of insulin receptor-b
(IRb) in skeletal muscle compared with TR4+/+ mice be-
fore infusion of insulin (Fig. 7E), indicating that TR42/2

mice are more sensitive to insulin. Both TR4+/+ and TR42/2

mice showed insulin-induced tyrosine phosphorylation of
IRb in skeletal muscle with, as expected, a much higher
extent in TR42/2 mice. To further confirm increased insulin
signaling in TR42/2 mice, we measured tyrosine phosphor-
ylation of insulin receptor substrate (IRS)-1. Consistent with
phosphorylation of IRb, TR42/2mice showed enhanced basal

phosphorylation of IRS-1. Insulin infusion further phosphor-
ylates IRS-1 in skeletal muscle of both TR4+/+ and TR42/2

mice with approximately onefold higher phosphorylation of
IRS-1 in TR42/2 mice (Fig. 7E; Supplementary Fig. 1C).

DISCUSSION

Transactivation of nuclear receptors can be activated
by ligands or via modulation through post-translational
modifications, such as phosphorylation, acetylation, and
sumoylation, that result in the alteration of biological func-
tion (27). Here, we found, for the first time, that trans-
activation of TR4 could be altered by a small molecule, such
as metformin. Metformin has been shown to activate AMPK
via an LKB1-dependent mechanism (28). The activated AMPK
may phosphorylate TR4 and inhibit TR4 transactivation

FIG. 5. Inhibition of TR4 reduces SCD1 promoter activity and gene expression. A: Effect of pRetro-shTR4a (TR4 RNAi) or control pRetro-shNS
(scramble RNAi) on TR4-mediated SCD1-Luc activity (*P< 0.05 vs. lane 3) in Hepa1–6 cells. The TR4 (B) and SCD1 (C) mRNA were quantified in
TR4

+/+
mice primary hepatocytes cultured and transiently transduced by lentiviral vector carrying pLVTHM-shTR4 (TR4 RNAi) and scramble RNAi

(*P < 0.05; **P < 0.01 vs. scramble RNAi). D: Quantitative PCR using total RNAs extracted from liver of wild-type (WT) and db/db mice was
performed and quantified (*P< 0.05; **P< 0.01 vs. WT; n = 5). E: Hepatic SCD1 and TR4 gene expression in db/dbmice with or without metformin
injection (*P < 0.05 vs. control; n = 5). F: Effect of TR4 RNAi and metformin on SCD1 mRNA amounts from primary hepatocytes (*P < 0.05). NS,
nonsignificant.
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activity and subsequently downregulate TR4 target gene
expression. These data suggest that TR4 activity can be
altered by phosphorylation. It also provides a platform
in which small molecules can change TR4 phosphoryla-
tion status in the absence of an identified ligand(s) and
potentially modulate TR4 target gene expression, which
show the clinical application of the physiological functions
of TR4.

A previous study (29) showed that TR4 transactivation
could also be modulated by mitogen-activated protein ki-
nase phosphorylation that resulted in the recruitment of
corepressors and coactivators, with hyperphosphorylated
TR4 showing lower activity and hypophosphorylated TR4
showing higher activity. The same phenomena were ob-
served in AMPK phosphorylation on TR4 proteins, that TR4
transactivation could be negatively regulated by AMPK-
mediated phosphorylation. However, TR4 behavior after
phosphorylation remains unclear. The AMPK phosphoryla-
tion site, Ser351, is located on the hinge region, which is
important for nuclear receptor nuclear localization, sug-
gesting that TR4 nuclear/cytosolic translocation may be
regulated by AMPK phosphorylation. The impact of AMPK
phosphorylation of TR4 on the DNA-binding ability, protein
stability, and coregulator(s) recruitment, however, remains
unclear.

The data from the SREBP-1c2/2 and TR42/2 fructose-
feeding experiments indicate that the lipogenic effects of
fructose may be mediated by TR4 or SREBP-1c, whereas
other transcription factors may also participate in the
regulation independently. Two possible candidates medi-
ating the SREBP-1c- or TR4-independent mechanisms are
ChREBP and liver X receptor (LXR). ChREBP has been
known as a transcription factor mediating glucose sensing
and lipogenesis (30). However, the role of ChREBP on
SCD1 regulation is yet to be determined. LXR, the major
transcription factor that activates SREPB-1c and ChREBP
transcription, integrates hepatic carbohydrate and lipid
metabolism (31). In a recent study (32), LXR was also
identified as a transcription factor regulating SCD1 gene
expression directly. Through the LXR-response element on
SCD1 promoter, LXR could induce SCD1 gene expression
and increase the hepatic triglyceride-to-monounsaturated
fatty acid-to-saturated fatty acid ratio. It has been dem-
onstrated that the SCD1 induction in SREBP-1c2/2 or
TR42/2 mice fed with fructose is through the SREBP-1c- or
TR4-independent pathway. It is possible that the SCD1
regulation in the absence of SREBP-1c is mediated by TR4,
ChREBP, and LXR. In contrast, the induced SCD1 gene
expression in TR42/2 mice may be mediated by SREBP-1c,
ChREBP, and LXR. However, there is no study about the

FIG. 6. TR4 deficiency leads to reduction of lipid content. A: Comparison of weights in different tissues from 10-week-old TR4
2/2

and TR4
+/+

male
mice. The weight of each tissue was normalized by body weight. Each bar represents the means 6 SD (n = 5). E.Fat, epididymal fat; R.Fat, ret-
roperitoneal fat (*P < 0.05 vs. TR4

+/+
). B: Epididymal fat pads isolated from TR4

+/+
and TR4

2/2
mice. C: Histological analyses of epididymal fat

(upper panel) and liver (lower panel). Sections were stained with hematoxylin and eosin or/and Oil Red O (liver) (3400). D: Triglyceride contents
in liver and skeletal muscle (*P < 0.05 vs. TR4

+/+
; n = 7 per group). (A high-quality color representation of this figure is available in the online

issue.)
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fructose or high-carbohydrate effect of SCD1 gene ex-
pression on LXR2/2 or ChREBP2/2 mice. Therefore, the
roles of ChREBP and LXR in fructose-fed SREBP-1c2/2

or TR42/2 mice remain unclear.
Here, we showed that TR4-deficient mice have reduced

fat-pad size, enhanced lipid oxidation, and insulin sensi-
tivity as a result of reduced SCD1 gene expression in liver.
These metabolic changes may protect TR42/2 mice from
a variety of dietary and genetic conditions that promote
obesity and insulin resistance. In support of this notion,
SCD12/2 mice were found to be resistant to diet-induced
obesity, have reduced adiposity, and have increased in-
sulin sensitivity. Furthermore, the regulation of SCD1 gene
expression is an important component of the metabolic
response. The TR42/2 mouse model recapitulates the phe-
notypes observed in standard diet–fed SCD1-deficient
mice. In agreement with our TR42/2 model, Kang et al.
(33) also observed that systemic loss of TR4 results in less
weight gain, lower hepatic triglyceride levels, reduced lipid
accumulation in adipose tissue, and greatly decreased
lipogenic gene expression. Taken together, our findings
support the idea that SCD1 may play important roles in the
TR42/2 mice lipid metabolism. These roles strengthen the

importance of TR4 regulation on SCD1 gene expression and
the pathophysiological significance of this newly identified
pathway (Fig. 8).

TR4 may function as a regulator to modulate many
nuclear receptor–mediated pathways, such as retinoid X
receptor, retinoid acid receptor, and androgen receptor
(34). Knockout of TR4 in mice leads to growth retar-
dation (13), as well as imbalance in glucose and lipid
metabolism (12,15). Recently, studies (35,36) suggested
that TR4 might exert its function by interacting with
certain fatty acids and lipids. In general, saturated fatty
acids and mono- and polyunsaturated fatty acids all show
different degrees of activation of TR4. Although fatty
acids are able to interact with TR4 directly, it remains
possible that fatty acids may regulate TR4 activity via
phosphorylation or other posttranslational modification.
Because SCD1 gene expression also can be regulated by
saturated and unsaturated fatty acids, it suggests that
fatty acid treatment may induce TR4 activation and TR4
target gene, SCD1, via a TR4-dependent pathway. The
SCD1 gene expression regulated by saturated and un-
saturated fatty acids may also be involved in the TR4-
independent pathway.

FIG. 7. TR4
2/2

male mice show increased insulin sensitivity. Plasma concentrations of glucose (A) and insulin (B) in animals fed or fasted
overnight. Values are given as means 6 SD (*P < 0.05; **P < 0.01 vs. TR4

+/+
; n = 5–7 per group). C: Glucose tolerance tests. Each point represents

the means 6 SD (n = 5). D: Insulin tolerance tests. Each point represents the means 6 SD (*P < 0.05; **P < 0.01; ***P < 0.001 vs. TR4
+/+

; n = 5–6
per group). E: Muscle tissue subjected to immunoprecipitation with anti-IRb, or anti–IRS-1 antibody, followed by immunoblot analysis using
antiphosphotyrosine antibody. The Western blots are representative of five separate experiments with independent tissue lysate preparations.
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Together, the newly identified pathways from metformin
to AMPK to TR4 in the present studies provide the first
evidence showing that hepatic TR4 transactivation can be
modulated by a small molecule, such as metformin, AICAR,
or CpdC, which may lead to the development of a platform
for using TR4 as a target to battle TR4-related diseases, such
as metabolic syndrome.
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