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Abstract: White-matter hyperintensity (WMH) is a primary biomarker for small-vessel cerebrovas-
cular disease, Alzheimer’s disease (AD), and others. The association of WMH with brain structural
changes has also recently been reported. Although fluid-attenuated inversion recovery (FLAIR)
magnetic resonance imaging (MRI) provide valuable information about WMH, FLAIR does not
provide other normal tissue information. The multi-modal analysis of FLAIR and T1-weighted (T1w)
MRI is thus desirable for WMH-related brain aging studies. In clinical settings, however, FLAIR is
often the only available modality. In this study, we thus propose a semi-supervised learning method
for full brain segmentation using FLAIR. The results of our proposed method were compared with the
reference labels, which were obtained by FreeSurfer segmentation on T1w MRI. The relative volume
difference between the two sets of results shows that our proposed method has high reliability. We
further evaluated our proposed WMH segmentation by comparing the Dice similarity coefficients
of the reference and the results of our proposed method. We believe our semi-supervised learning
method has a great potential for use for other MRI sequences and will encourage others to perform
brain tissue segmentation using MRI modalities other than T1w.

Keywords: segmentation; deep-learning; FLAIR; T1w; white-matter hyperintensity

1. Introduction

Automated quantitative metrics of structural magnetic resonance imaging (MRI),
such as cortical volume or thickness, have commonly been used as objective indicators
of neurodegeneration related to aging, stroke, and dementia. Recently, they have been
combined with other MRI-based biomarkers such as white-matter hyperintensity (WMH)
for investigation in Alzheimer’s disease (AD) or aging research [1,2].

The WMH biomarker indicates bright areas appear in the white matter on T2 fluid-
attenuated inversion recovery (FLAIR) sequences. The etiologies of WMH are diverse, and
it is considered primarily a marker of small-vessel cerebrovascular disease. WMH represent
increased blood–brain barrier permeability, plasma leakage, and the degeneration of axons
and myelin [3].

Larger WMH regions are associated with an accelerated cognitive decline and in-
creased risk for AD [4]. Recent studies suggest that WMH plays a role in AD’s clinical
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symptoms and there is synergistic contribution of both medial temporal lobe atrophy and
WMH on cognitive impairment and dementia severity [5]. Patients with mild cognitive
impairment or early AD had concurrent WMH, which indicates a more significant cognitive
dysfunction than those with a low WMH burden [5]. WMH predicts conversion from
mild cognitive impairment to AD [6]. In addition, WMH has been reported to have a
relationship with structural changes and cognitive performance, especially with respect to
processing speed, even in cognitively unimpaired participants [7].

In clinical practice, WMH burden is usually estimated using a visual scale such as
the Fazekas scale, but this cannot be used as an objective indicator without analyzing the
volumetric ratio between WMH and white matter (WM). The quantification of WMH is
essential for evaluating the association of WMH burden with cognitive dysfunction and
longitudinal changes in WMH volume. Hence, a reliable automated method for measuring
WMH and cortical volume would be helpful in clinical practice. Recently, it was reported
that WMH progression is associated with changes in cortical thinning. Therefore, automatic
measurement methods for WMH burden and cortical volume measurement on FLAIR MRI
would be clinically valuable for tracing the longitudinal change in patients with cognitive
impairment [8].

Thus, brain structural analysis, especially volumetric analysis, combined with WMH
could provide more descriptive information to reveal the relationship between cognitive
performance and MRI-based biomarkers. There are various brain tissue segmentation
tools for three-dimensional (3D) T1-weighted (T1w) MRIs, such as FreeSurfer [9], SPM [10],
and FSL [11]. However, brain tissue segmentation tools for other magnetic resonance
sequences (such as FLAIR, susceptibility-weighted imaging (SWI), and gradient echo (GRE)
sequences) are rarely developed because their aim is not to measure brain volume or
analyze brain morphology precisely.

A deep learning-based automatic segmentation algorithm was first used to diagnose
brain tumors and showed a high automatic detection rate and high accuracy [12]. However,
accuracy and reproducibility of automatic segmentation methods for WMH have not
been achieved because the gold standard of manual segmentation is time consuming to
create. It is also difficult to obtain intra- and inter-rater reliability. In reality, it is rare for
clinicians to obtain both T1w and FLAIR MRIs because of the burden of scanning time.
Ultimately, this situation hinders approaches that perform brain tissue segmentation on
non-T1w sequences.

In this study, we propose a brain tissue segmentation method that enables us to
obtain trainable brain labels on FLAIR MRIs. With given T1w MRI and FLAIR MRI paired
datasets, we initially generated the brain labels on the T1w MRIs and aligned the label to
FLAIR MRIs using the co-registration method. Then, the label quality was improved using
a semi-supervised learning method [13]. Finally, we trained a deep neural network-based
brain segmentation model for FLAIR MRI.

2. Materials and Methods
2.1. Subjects

This study has the following Institutional Review Board (IRB) approval. As shown in
Table 1, our dataset was taken from the Catholic Aging Brain Imaging (CABI) database,
which holds brain MRI scans of outpatients at the Catholic Brain Health Center, Yeouido St.
Mary’s Hospital, and Eunpyeong St. Mary’s Hospital at the Catholic University of Korea.
The dataset for brain segmentation is approved under IRB No. SC20RISI0198 as confirmed
by Dr. Hyun Kook Lim on 31 December 2020. The dataset for WMH segmentation is
approved under IRB No. PC20EISI0094 as confirmed by Dr. JeeYoung Kim on 2 July 2020.

For brain tissue segmentation, a total of 68 subjects with paired T1w MRIs and FLAIR
MRIs were obtained from Yeouido St. Mary’s Hospital and Eunpyeong St. Mary’s Hospital
from 2017 to 2019. The T1w MRIs have a consistent matrix size of 256 × 256 × 256 along
with a pixel spacing of 1.0 × 1.0 × 1.0 mm3. Moreover, the paired FLAIR MRIs have a
consistent matrix size of 348 × 384 × 28 along with a pixel spacing of 0.57 × 0.57 × 6 mm3.
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Table 1. Summary of the datasets used for training and validation.

Dataset MRI No. of Subjects Matrix Size Pixel Spacing (mm) Purpose

CABI T1w 68 256 × 256 × 256 1.0 × 1.0 × 1.0 Brain tissue
segmentation

CABI FLAIR 68 348 × 384 × 28 0.57 × 0.57 × 6 Brain tissue
segmentation

CABI FLAIR 308 768 × 768 × 32 0.27 × 0.27 × 5 WMH segmentation

For WMH segmentation, a total of 396 FLAIR MRIs with clinically confirmed WMH
regions and annotated labels were initially obtained from Eunpyeong St. Mary’s Hospital
from 2020 to 2021. The MRIs have a consistent matrix size of 768 × 768 × 32 and a pixel
spacing of 0.27 × 0.27 × 5 mm3. However, because of the various levels of WMH in
the dataset, we excluded the FLAIR MRIs with neglectable WMH regions along with
mislabeled cases, obtaining a final total of 308 FLAIR MRIs.

2.2. Overview of the Proposed Method

Our goal is to produce brain tissue and WMH segmentation exclusively on FLAIR
MRI. However, it is impractical to generate the ground truth using FLAIR MRI because
it lacks structural information when compared with T1w MRI. Therefore, we suggest the
following steps, as shown in Figure 1: (A) Brain Tissue Segmentation from FLAIR MRI: T1w
MRI brain tissue labels are generated using FreeSurfer and the labels are co-registered with
the FLAIR MRI. (B) Brain Tissue Segmentation Enhancement: the co-registered pseudo-
labels are enhanced with an initial semi-supervised learning method using a deep learning
segmentation architecture followed by a morphological correction. (C) Brain Tissue and
WMH Segmentation: this process trains the brain tissue and WMH segmentation processes
individually and merges the results into one label with their predictions.

Figure 1. Pipeline of the proposed method. Blue boxes: input or output data; Green boxes: computational processes.
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2.3. Brain Tissue Segmentation from FLAIR MRI: Pseudo-Labeling-Based Segmentation
2.3.1. Pseudo-Labeling from T1w MRI

For the T1w MRIs, we used FreeSurfer (6.0, Boston, MA, USA) with a “recon-all”
pipeline, then extracted the brain labels as the pseudo-labels, which consist of cerebral gray
matter, cerebral white matter, cerebellum gray matter, cerebellum white matter, and lateral
ventricle from aseg+aparc.mgz [9].

2.3.2. Co-Registration

Co-registration is a method that aligns two individual MRIs (e.g., different modalities)
obtained from the same subject. In our case, this is used to align the T1w MRI with the
FLAIR MRI. Because the primary purpose of the first step of our process is to generate
initial brain tissue labels on the FLAIR MRI, we calculated the transform matrix from the
T1w MRI to FLAIR MRI using a spatial co-registration method with rigid transformation
from the SimpleITK library [14]. We transformed the pseudo-labels to the FLAIR MRI
using the registered transform matrix. However, because of differences in the MRI spacings
and dimensions, the result did not delineate brain tissue structure accurately. Therefore,
we iteratively enhanced the brain tissue segmentation labels of the FLAIR MRIs.

2.4. Brain Tissue Segmentation Enhancement
2.4.1. Deep Learning-Based Initial Segmentation

We trained a convolutional neural network (CNN) with the FLAIR MRI and co-
registered pseudo-labels of the brain tissue as shown in Figure 2. For the initial segmen-
tation model, we used U-Net [15] with an evolving-normalization (EvoNorm) activation
layer [16]. In the preprocessing step, the histogram-based intensity regularization, min-
max normalization with percentile cut-offs of (0.05, 99.95), and z-score normalization were
performed, and the input shape was set as 196× 196. We used medical MRI-based augmen-
tation techniques to improve the robustness of the CNN-based segmentation architecture.
Our data augmentations were applied using TorchIO [17].

Figure 2. Example of brain tissue labels on T1w MRI and their co-registered pseudo-labels on FLAIR MRI.

2.4.2. Morphological Label Correction

After training on the brain tissue segmentation in the FLAIR MRIs, there remains
some noise that makes the training label data incomplete. Thus, we perform a simple
morphological correction method based on brain structure characteristics to enhance the
brain tissue labels. In addition, we performed connected component-based noise reduction
using the fill-hole method [18] by connecting the nearest 26 voxels in three dimensions. The
morphologically processed brain tissue label does not have either isolated labels or holes.

2.5. WMH Segmentation: Supervised Learning-Based Segmentation
2.5.1. Annotated Labeling with Radiologists

Reference segmentation of the WMH was performed by manual outlining on the
FLAIR MRIs. A total of 308 FLAIR MRI datasets were manually segmented, producing
binary masks with a value of 0 (non-WMH class) or 1 (WMH class). The manual segmenta-
tion process was performed through the consensus of three certified radiologists (J.Y. Kim,
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S.W. Oh, and M.K. Lee) who did not have access to the T1w MRIs for the subjects. For
the process of consensus, two radiologists discussed the criteria used for defining manual
segmentation and had training sessions to standardize their visual skills. Manual segmen-
tation was performed independently, and the segmentation results were then exchanged
for confirmation. Chronic infarcts were hypointense with hyperintense rim lesions on the
FLAIR MRI and were excluded from WMH labeling.

2.5.2. Preprocessing

We performed the resampling into a 1 mm2 isometric space (z-direction was excluded
from this process because our training process requires a 2D slice MRI). For WMH seg-
mentation, we used the skull-stripping method with HD-BET [19] on the FLAIR MRIs of
the WMH dataset to focus the regions corresponding to our training on the white-matter
regions. Moreover, as shown in Figure 3, we used histogram-based intensity regularization,
min-max normalization with percentile cut-offs of (0.05, 99.95), and z-normalization using
TorchIO [17] to deal with the differences in MRI intensity variance.

Figure 3. Example of WMH labels on a raw FLAIR MRI and WMH labels on the preprocessed FLAIR MRI.

2.6. Training

We compared three well-known segmentation architectures for the brain tissue seg-
mentation and WMH segmentation: U-Net [15], U-Net++ [15], and HighRes3DNet [20].
We used the kernel sizes specified in the original article for each architecture. We set the
input and output shapes to 196 × 196 and used the EvoNorm activation layer [16] instead
of batch normalization and an activation function. The only difference between the training
processes of brain tissue segmentation and WMH segmentation is the data augmentation.

For brain tissue segmentation, we used the following TorchIO augmentation meth-
ods [17].

• RandomAffine, which has a scale parameter in the range of 0.85–1.15.
• RandomMotion, with a degree value up to 10 and a translation value up to 10 mm.
• RandomBiasField, with a magnitude coefficient parameter ranging between −0.5

and 0.5.
• RandomNoise, which has a mean value of Gaussian distribution in range of 0 to 0.025.
• RandomFlip, with a spatial transform value up to 2, which inverts the Z axis.

For WMH segmentation, we did not include data augmentation in our method so that
we could focus on the actual intensity range of the WMH regions.

2.7. Experiment Setup

We used the PyTorch deep learning library [21] for our main framework on a worksta-
tion with an Intel i9-9900X 3.5 GHz CPU, 128G RAM, and two NVIDIA RTX 2080 11 GB
GPUs. In addition, for preprocessing and augmentation, we used TorchIO library [17].

For brain tissue segmentation enhancement (Figure 1B), we trained the CNN-based
segmentation model using patches that consist of 128 samples per FLAIR MRI cropped
from randomly selected locations. The size of the cropped MRI patches is 128 × 128. In
addition, we used the cross-entropy loss function [22] and AdamW optimizer [23] with
learning rate = 0.001 and weight decay = 0.01.
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For brain tissue segmentation, we divided 68 subjects with a split ratio of 0.8; 54 sub-
jects were used for training and 14 subjects were used for validation. After model training
was complete, we used grid-based sampling and aggregation to perform inference on the
segmentation results.

For WMH segmentation, we distributed 308 subjects, using 277 subjects for training
and 31 subjects for validation. No medical MRI-based augmentation technique was used to
process the WMH segmentation to avoid confusing any of the information on the already
sensitive object. The remainder of the experiment setup was the same as that of brain
tissue segmentation. For the loss function, we used the DiceBCE loss function, which is a
combination of the Dice loss function [24] and binary cross-entropy loss function [22], to
handle the varying sizes of WMH regions. Moreover, we used the AdamW optimizer [23]
with learning rate = 0.001 and weight decay = 0.01.

2.8. Metrics for Evaluation
2.8.1. Evaluation for Brain Tissue Segmentation

The co-registered pseudo-labels of brain tissue cannot be interpreted as the ground
truth due to noise, isolated regions, and misled hole results from using the co-registration
method. Therefore, we measured the relative volume difference between the labels from
T1w MRI using FreeSurfer and the labels predicted from FLAIR MRI using our proposed
method. The relative volume difference is defined as follows:

Relative Difference (X, Xre f erence) =
|X− Xre f erence|

Xre f erence
∗ 100

2.8.2. Evaluation for WMH Segmentation

To evaluate the performance of WMH segmentation, we measured the Dice over-
lap score [25], which measures the similarity between the ground truth label and the
prediction label.

Dice Overlap Score (A, B) =
2|A ∩ B|
|A|+ |B|

Because of the variance in size in the WMH segmentation, we expect several false
positives and false negatives in the predicted segmentation of WMH. Therefore, we also
measured the ratio of true positives to positive predictions (the precision), the ratio of true
positives to all predictions (the recall), and the weight of precision and recall (the F1 score).

Precision =
TruePositive

TruePositive + FalsePositive

Recall =
TruePositive

TruePositive + FalseNegative

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

3. Results
3.1. Measured Volume Comparisons: Brain Tissue Segmentation

Figure 4 presents the result of brain tissue segmentation from each model. By compar-
ing each model’s predicted label with its pseudo-label, we can observe that all three models
(U-Net++, U-Net, and HighRes3DNet) have made changes in initially empty regions.

By comparing the volume obtained by each model to the volume obtained by FreeSurfer
from the T1w MRI, we can measure the average relative volume difference (U-Net++,
4.8 ± 2.0; U-Net, 4.8 ± 1.7). HighRes3DNet tends to underestimate Cerebellum GM and
overestimate Cerebellum WM (Cerebellum GM volume: Reference, 430.8 ± 45.7; High-
Res3DNet, 408.0 ± 34.6. Cerebellum WM volume: Reference, 499.3 ± 5.8; HighRes3DNet,
559.3± 56.4). The average relative volume difference between the results of HighRes3DNet
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and FreeSurfer is 7.4 ± 3.4. Other detailed volumes and relative volume differences are
listed in Tables 2 and 3.

Figure 4. Result of brain tissue segmentation of the same subject in the axial view. The red, green, and blue labels
represent the gray matter, white matter, and ventricle regions. Moreover, the highlighted boxes show the differences in the
segmentation labels for each model.

Table 2. Volume of individual brain tissue from the FreeSurfer labels (T1w MRI), pseudo-labels, U-Net++, U-Net, and
HighRes3DNet.

Measurement Brain Tissue FreeSurfer Label
(T1w)

Pseudo Label
(FLAIR) U-Net++ U-Net HighRes3DNet

Volume
(mL, mean ± SD)

Cerebellum GM 430.8 ± 45.7 444.5 ± 47.3 458.0 ± 45.4 455.4 ± 42.0 408.0 ± 34.6
Cerebellum WM 499.3 ± 55.8 516.3 ± 57.5 510.4 ± 52.7 519.5 ± 54.4 559.3 ± 56.4
Cerebrum GM 100.2 ± 10.2 103.5 ± 10.7 102.2 ± 9.6 101.1 ± 9.6 96.7 ± 8.9
Cerebrum WM 23.2 ± 3.0 24.0 ± 3.1 22.5 ± 3.1 23.7 ± 2.8 22.9 ± 3.6

Lateral Ventricles 41.2 ± 20.8 42.5 ± 21.6 39.1 ± 20.6 39.9 ± 20.7 41.5 ± 21.3

Table 3. Relative difference between the FreeSurfer labels (T1w) and in the pseudo-labels, U-Net++, U-Net, and High-
Res3DNet. GM, gray matter; SD, standard deviation; WM, white matter.

Measurement Brain Tissue Pseudo Label (FLAIR) U-Net++ U-Net HighRes3DNet

Relative Difference
(%, mean ± SD)

Cerebellum GM 3.2 ± 1.1 6.4 ± 2.5 5.9 ± 2.8 5.4 ± 4.0
Cerebellum WM 3.4 ± 0.9 2.5 ± 2.0 4.1 ± 2.0 12.2 ± 3.6
Cerebrum GM 3.3 ± 1.4 2.7 ± 2.2 2.3 ± 1.7 4.3 ± 3.1
Cerebrum WM 4.3 ± 3.2 6.1 ± 3.7 6.8 ± 6.7 9.7 ± 7.9

Lateral Ventricles 3.1 ± 1.4 6.1 ± 4.3 4.7 ± 4.3 5.4 ± 6.0

Average Difference
(%, mean ± SD) - 3.4 ± 0.5 4.8 ± 2.0 4.8 ± 1.7 7.4 ± 3.4

3.2. Dice Overlap Scores: WMH Segmentation

Figure 5 shows the results of WMH segmentation from each model. For comparably
large WMH regions, all three models had predictions similar to the ground truth. However,
many false positives and false negatives were found in small WMH regions.

As shown in Table 4, U-Net performed best on the dice overlap score with 0.81 ± 0.07,
and f1 score with 0.84 ± 0.04. HighRes3DNet performed the best on recall with 0.92 ± 0.06,
yet the score showed the lowest dice overlap score. As Figure 6 demonstrates, U-Net
had the best performance with the lowest range of the interquartile range (IQR) and
its whiskers.
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Figure 5. Comparison of the WMH reference and the predicted segmentation from each model (U-Net++, U-Net, and
HighRes3DNet).

Table 4. Average dice overlap score of WMH, along with precision, recall, and F1 score value.

Dice Overlap Score Precision Recall F1 Score

U-Net++ 0.77 ± 0.09 0.88 ± 0.05 0.80 ± 0.08 0.83 ± 0.05
U-Net 0.81 ± 0.07 0.86 ± 0.06 0.84 ± 0.08 0.84 ± 0.04
HighRes3DNet 0.73 ± 0.07 0.64 ± 0.09 0.92 ± 0.06 0.75 ± 0.07

Figure 6. Boxplot of all three models (U-Net, U-Net++, and HighRes3DNet) with individual evalua-
tions (Dice Score, Precision, Recall, and F1-score). Each box represents the interquartile range (IQR)
with its median line in the box. The whiskers represent the range of extended IQR by 1.5 times, and
the dot outside of the whiskers represents the outlier.

4. Discussion

In this study, we developed a reliable automated segmentation method using FLAIR
for WMH and cortical volume without the need for 3D T1w MRIs. In clinical practice, it
can be difficult to obtain 3D T1w MRIs because of the long scan time, magnetic resonance
machine performance, and the patient’s condition. In contrast, FLAIR MRI is a more
common and essential sequence for evaluating the brain and is easy to obtain in routine
practice, so this method is applicable to more patients.

As it is shown in Figure 7, the result of brain tissue segmentation enhancement
suggests that semi-supervised learning was able to process the direct training of brain
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tissue segmentation only on FLAIR MRI. By following the procedure shown in Figure 1,
the transformation between two different MRI modalities (T1w and FLAIR) could be made
with improvements to the labeling quality. As we intended, our method was able to
measure the volume of brain tissue and WMH using only FLAIR MRI.

Figure 7. Combined brain tissue and WMH label on FLAIR MRI with several layers demonstrating all labels: Cerebrum
GM, Cerebrum WM, Ventricle, Cerebellum GM, Cerebellum WM, and WMH.

4.1. Performance of Brain Tissue Segmentation

We evaluated the performance of the segmentation by comparing the relative differ-
ence in volume of the results obtained using T1w MRI and its paired FLAIR MRI. However,
the difference in relative volumes was less than 10% for all three models: 0.86 for U-Net,
0.85 for U-Net++, and 0.81 for HighRes3DNet. Considering that a relative difference of
3.4% already existed in the pseudo-labels for FLAIR MRI, we conclude that our method is
sufficient for FLAIR MRI segmentation.

However, we noticed that our segmentation method has a limitation due to the absence
of ground truth. Therefore, in a further study, we would like to evaluate our generated
brain tissue pseudo-labels using radiologists and measuring the Dice overlap score.

4.2. Performance of WMH Segmentation

We compared the Dice overlap between the ground truth and the prediction for each
model. We figured U-Net, with a Dice overlap score of 0.81± 0.07, a precision of 0.88± 0.05,
a recall of 0.80 ± 0.08, and an F1 score of 0.83 ± 0.05, is the most balanced segmentation
architecture of the comparison models.

Even though U-Net++ and HighRes3DNet had lower dice overlap scores compared to
U-Net, as shown in Figure 6, we could still demonstrate that any convolutional network-
based segmentation architecture is qualified for WMH segmentation.

4.3. Clinical Relevance and Application

In clinical practice, the proposed algorithm will be a useful screening tool for the quan-
tification of cortical volume and WMH burden in the elderly with cognitive impairment
using only 2D FLAIR MRIs and without the need for 3D T1 volume MRIs. This will be
beneficial because it is difficult to obtain 3D T1 volume MRIs in the elderly because of the
long scan time and need for a high-performance magnetic resonance machine to obtain
good quality data.
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T2, SWI, and GRE are also known for the difficulty of obtaining brain tissue labels
from these modalities. This is because it is effectively impossible to obtain structural
information from these MRIs without the paired T1w MRI. As mentioned before, there are
many medical segmentation studies based on deep learning, but few considered obtaining
the structural information from any single modality other than T1w MRI.

5. Conclusions

We introduced a semi-supervised learning method for brain tissue segmentation
using only FLAIR MRI. With our brain segmentation results, we demonstrated that our
FLAIR MRI segmentation is just as reliable as segmentation using its paired T1w MRI.
We moreover showed that brain tissue segmentation and WMH segmentation could be
performed from a single FLAIR MRI. Furthermore, the results indicate that our semi-
supervised learning method is not limited to FLAIR MRI but could also be applied to T2,
SWI, and GRE MRIs without the need to obtain brain tissue labels from paired T1w MRIs.
We believe our semi-supervised learning method has the clinical potential of being a key
solution for quantifying cortical volume and WMH burden for WMH analysis using FLAIR
MRI exclusively.
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