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1Heart and Vascular Center, Semmelweis University, 68 Városmajor St., Budapest 1122, Hungary; 2Argus Cognitive, Inc., 16 Cavendish Ct., Lebanon, NH 03766, USA; and 3Heart
Research Follow-up Program, Cardiology Division, University of Rochester Medical Center, 265 Crittenden Blvd., Box 653, Rochester, NY 14642, USA

Received 7 August 2019; revised 24 October 2019; editorial decision 2 December 2019; accepted 3 December 2019; online publish-ahead-of-print 10 January 2020

Aims Our aim was to develop a machine learning (ML)-based risk stratification system to predict 1-, 2-, 3-, 4-, and 5-
year all-cause mortality from pre-implant parameters of patients undergoing cardiac resynchronization therapy
(CRT).

...................................................................................................................................................................................................
Methods
and results

Multiple ML models were trained on a retrospective database of 1510 patients undergoing CRT implantation to
predict 1- to 5-year all-cause mortality. Thirty-three pre-implant clinical features were selected to train the models.
The best performing model [SEMMELWEIS-CRT score (perSonalizEd assessMent of estiMatEd risk of mortaLity
With machinE learnIng in patientS undergoing CRT implantation)], along with pre-existing scores (Seattle Heart
Failure Model, VALID-CRT, EAARN, ScREEN, and CRT-score), was tested on an independent cohort of 158
patients. There were 805 (53%) deaths in the training cohort and 80 (51%) deaths in the test cohort during the 5-
year follow-up period. Among the trained classifiers, random forest demonstrated the best performance. For the
prediction of 1-, 2-, 3-, 4-, and 5-year mortality, the areas under the receiver operating characteristic curves of the
SEMMELWEIS-CRT score were 0.768 (95% CI: 0.674–0.861; P < 0.001), 0.793 (95% CI: 0.718–0.867; P < 0.001),
0.785 (95% CI: 0.711–0.859; P < 0.001), 0.776 (95% CI: 0.703–0.849; P < 0.001), and 0.803 (95% CI: 0.733–0.872;
P < 0.001), respectively. The discriminative ability of our model was superior to other evaluated scores.

...................................................................................................................................................................................................
Conclusion The SEMMELWEIS-CRT score (available at semmelweiscrtscore.com) exhibited good discriminative capabilities for

the prediction of all-cause death in CRT patients and outperformed the already existing risk scores. By capturing
the non-linear association of predictors, the utilization of ML approaches may facilitate optimal candidate selection
and prognostication of patients undergoing CRT implantation.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Keywords Heart failure • Cardiac resynchronization therapy • Risk stratification • Mortality prediction • Machine
learning • Precision medicine

* Corresponding author. Tel: þ361-458-68-10, Fax: þ361-458-68-17, Email: merkely.study@gmail.com
† These authors are joint first authors.
‡ These authors are joint last authors.

VC The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

European Heart Journal (2020) 41, 1747–1756 CLINICAL RESEARCH
doi:10.1093/eurheartj/ehz902 Arrhythmia/electrophysiology

http://orcid.org/0000-0003-3036-4131
http://orcid.org/0000-0003-2320-6434
http://orcid.org/0000-0003-4346-2515
http://orcid.org/0000-0002-7506-7563
http://orcid.org/0000-0002-7627-5620
http://orcid.org/0000-0002-9852-2768
http://orcid.org/0000-0002-0016-289X
http://orcid.org/0000-0001-6514-0723
http://orcid.org/0000-0001-6647-2623


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
Introduction

Cardiac resynchronization therapy (CRT) is a key component in the
management of symptomatic heart failure with reduced ejection frac-
tion and wide QRS complex.1 Based on the report of the European
Heart Rhythm Association, over 90 CRT implantations per million
population are performed annually in the ESC countries.2 Although
CRT improves mortality, functional capacity, clinical symptoms, and
quality of life in a certain patient subpopulation, not everyone benefits
equally and mortality rates still remain high among these patients.3–7

The recognition of this variability in outcomes has prompted efforts
in the risk stratification of CRT patients based on pre-implant assess-
ments. However, the currently available risk scores have several
shortcomings (e.g. lack of generalizability and impact analyses, omit-
ting routinely assessed, powerful predictors) which hamper their util-
ization in the everyday clinical practice.8 Therefore, more precise and
personalized methods are required. The recent improvements in
computation power and software technologies have led to the flour-
ishing of machine learning (ML), a field of artificial intelligence (AI),
which seems to be a promising tool to meet this compelling demand.9

Machine learning refers to a collection of techniques that gives AI
the ability to learn complex rules and to identify patterns from multidi-
mensional datasets, without being explicitly programmed or applying
any a priori assumptions. It has been effectively utilized in many areas
of cardiology such as precision phenotyping, diagnostics, and prognos-
tication including the prediction of hospital readmissions and mortal-
ity.10–12 Although, heart failure patients undergoing CRT implantation
represent another important target population for mortality predic-
tion, only few studies have applied ML to tackle this issue.13–15

Accordingly, our aim was to design and evaluate a ML-based risk
stratification system to predict 1-, 2-, 3-, 4-, and 5-year mortality from
pre-implant parameters of patients undergoing CRT implantation.
We hypothesized that ML can capture high-dimensional, non-linear
relationships among clinical features and a risk stratification system
can be developed that predicts mortality for individual patients more
accurately than the currently available risk scores.

Methods

Study population and protocol
We identified 2282 patients who underwent successful CRT implantation
at the Heart and Vascular Center of Semmelweis University (Budapest,
Hungary) between September 2000 and December 2017. For each of
these patients, pre-implant clinical characteristics such as demographics,
medical history, physical status and vitals, currently applied medical ther-
apy, electrocardiogram, echocardiographic, and laboratory parameters
were extracted retrospectively from electronic medical records and
entered to our structured database.

An additional prospective database of patients undergoing CRT im-
plantation between January 2009 and December 2011 was also utilized.
Patients included in both the retrospective and the prospective databases
were removed from the retrospective database. In this way, the two
cohorts were completely independent and they could be used as training
and test cohorts for ML algorithms.

The study protocol (Supplementary material online, Figure S1) com-
plies with the Declaration of Helsinki and it was approved by the Regional

and Institutional Committee of Science and Research Ethics (approval
No. 161/2019).

Study outcomes
Follow-up data [status (dead or alive), date of death] was obtained for all
patients from the National Health Insurance Database of Hungary. Patients
with shorter than 5-year follow-up duration (614 patients in the retro-
spective and 0 patient in the prospective database) were excluded from all
analyses. The primary endpoint of our study was all-cause mortality.

Feature selection and data pre-processing
Our structured database initially comprised over 100 easily obtainable
clinical variables (so-called features). Firstly, features included in both the
retrospective and the prospective databases were identified (n = 49).
Then, features missing for >40% of cases (n = 16) were excluded. The
final set of input features included 33 pre-implant clinical variables
(Supplementary material online, Table S1).

Missing values were imputed using the mean imputation method which
replaces the missing values of a certain variable with the mean of the avail-
able cases. As the range of different features varied widely and some of
the utilized algorithms required the data to be normalized, Z-score nor-
malization was performed after imputation.

Model development
We used the follow-up data to generate six classes of possible outcomes:
death during the 1st (class 1), the 2nd (class 2), the 3rd (class 3), the 4th
(class 4), the 5th year after CRT implantation (class 5), and no death dur-
ing the first 5 years following the implantation (class 6). The task of ML
algorithms was to predict the probability distribution (i.e. class member-
ship probabilities) of each patient over these classes based on the pre-
implant clinical features.

Model development included trials of several ML classifiers such as lo-
gistic regression, ridge regression, support vector machines, k-nearest
neighbours classifier, gradient boosting classifier, random forest, condi-
tional inference random forest, and multi-layer perceptron. Models were
trained with stratified 10-fold cross-validation on the training cohort and
a grid search approach was used to tune the hyper-parameters of each
ML algorithm (Supplementary material online, Table S2).

The outputs of each model were series of six values representing the
previously defined class membership probabilities (Figure 1A). The sum of
these probabilities is equal to one in each patient. To create binary classi-
fiers, we calculated cumulative class membership probabilities by sum-
ming these values until the given year of follow-up (Figure 1B). The
computed cumulative probabilities were then calibrated using Platt’s scal-
ing and the survival curve could be plotted for each patient (Figure 1C).
The calibration of the model was evaluated using Brier score which is
defined as the mean squared difference between the observed and the
predicted outcome. Expected survival was also calculated from the an-
nual calibrated cumulative probabilities (Figure 1D).

To quantify the model’s discriminative capabilities in each year, re-
ceiver operating characteristic (ROC) curve analysis was performed and
area under the curve (AUC) was calculated. The mean AUC of 1-, 2-, 3-,
4-, and 5-year calibrated cumulative probabilities was calculated and it
served as the major metric to assess a model’s performance.

Model testing
The model with the highest mean AUC was selected for further evalu-
ation and it is referenced as the SEMMELWEIS-CRT (perSonalizEd
assessMent of estiMatEd risk of mortaLity With machinE learnIng in
patientS undergoing CRT implantation) score throughout the entire
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..manuscript. To determine whether the model remains accurate when
new data are fed into it, we tested it on the patients of the test cohort.

For each patient in the test cohort, we also computed pre-existing risk
scores (Seattle Heart Failure Model, VALID-CRT, EAARN, ScREEN, and
CRT-score).16–20 Their prediction capabilities were quantified annually
with AUCs and they were compared with SEMMELWEIS-CRT score
using the DeLong test.

Feature importances
To determine the major predictors of all-cause mortality in our patient
population, permutation feature importances were computed from the
final model. Permutation feature importance measures the importance of
an input feature by calculating the increase in the model’s prediction error
after permuting its values. A feature is considered important if shuffling its
values decreases the model’s discriminative capability as the model relies
heavily on that feature for the prediction. A feature is unimportant if shuf-
fling its values leaves the AUC unchanged as in this case the model
ignores the feature for the prediction.

Results

Baseline clinical characteristics
The final training cohort included 1510 patients [66 ± 10 years, 1141
(76%) males] who underwent CRT implantation. A total of 158 CRT

patients [67 ± 10 years, 127 (80%) males] were prospectively
enrolled and entered to the test database. During the 5-year follow-
up period, 805 (53%) patients died in the training cohort and there
were 80 (51%) deaths in the test cohort. Supplementary material on-
line, Table S3 shows the baseline characteristics of both cohorts and
the comparisons between patients who were dead and alive at 5-
year follow-up.

Prediction of all-cause mortality
Among the evaluated ML classifiers, random forest (i.e.
SEMMELWEIS-CRT score) yielded the highest AUCs for the predic-
tion of all-cause mortality at 1-, 2-, 3-, 4-, and 5-year follow-up in the
test cohort (Table 1 and Figure 2). Calibration improved the Brier
scores of the final model (Supplementary material online, Table S5).

Comparison of the SEMMELWEIS-CRT
score with the pre-existing scores
When compared with the pre-existing risk scores, the
SEMMELWEIS-CRT score demonstrated significantly better re-
sponse prediction and greater discrimination of mortality (Table 1).
The CRT-score exhibited the best performance among the pre-
existing risk scores; however, our random forest-based classifier was
still superior to it for the prediction of 5-year outcome. Regarding
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Table 1 Area under the receiver operating characteristic curve of the different scores

1 year 2 years 3 years 4 years 5 years Mean

SEMMELWEIS-CRT 0.768 0.793 0.785 0.776 0.803 0.785

(0.674–0.861) (0.718–0.867) (0.711–0.859) (0.703–0.849) (0.733–0.872)

SHFM20 0.537 0.543 0.539 0.544 0.544 0.541

(0.426–0.647)* (0.445–0.642)* (0.447–0.632)* (0.453–0.635)* (0.454–0.634)*

EAARN18 0.602 0.627 0.653 0.649 0.643 0.635

(0.505–0.699)* (0.539–0.714)* (0.570–0.736)* (0.566–0.731)* (0.560–0.726)*

VALID-CRT16 0.529 0.618 0.638 0.637 0.650 0.614

(0.416–0.643)* (0.523–0.713)* (0.552–0.725)* (0.550–0.724)* (0.564–0.737)*

CRT-score17 0.722 0.743 0.732 0.720 0.693 0.722

(0.637–0.806) (0.667–0.818) (0.657–0.807) (0.644–0.795) (0.615–0.771)*

ScREEN19 0.595 0.555 0.536 0.525 0.549 0.552

(0.516–0.673)* (0.477–0.633)* (0.460–0.612)* (0.449–0.601)* (0.474–0.624)*

*P < 0.05 vs. SEMMELWEIS-CRT, DeLong test. Cell contents are areas under the receiver operating characteristic curves with 95% confidence intervals.
SHFM, Seattle Heart Failure Model.
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the rest of the risk scores, the SEMMELWEIS-CRT score significantly
outperformed them at all of the investigated time points.

Most important predictors of mortality
as assessed with machine learning
Leading predictors of all-cause mortality are presented on Figure 3
and the full list of feature importances is provided as Supplementary
material online, Table S6. Older age, higher serum levels of creatinine,
lower values of left ventricular ejection fraction, serum sodium,
haemoglobin concentration, and glomerular filtration rate were asso-
ciated with higher predicted probability of all-cause mortality
(Figure 4). However, as random forest captures complex high-level
interactions among a multitude of variables, it is challenging to deter-
mine the effect of a single feature on the predicted probability of
mortality and these individual relationships should be interpreted
with caution.

Machine learning-based risk stratification
Based on the predicted probability of death, patients were split into
four quartiles at each year of follow-up. As depicted by Kaplan–Meier
curves, there was significant difference in the distribution of events
across the quartiles at all years and a graded increase in event rates
could be observed while moving from the 2nd quartile through the
4th quartile (Figure 5). At 1-year follow-up, being categorized to the
4th quartile was associated with a more than 7-fold increased risk of
death compared with those in the 1st quartile (Table 2). At 2-, 3-, 4-,
and 5-year follow-up, patients in 3rd and 4th quartiles exhibited a sig-
nificantly increased risk of mortality compared with those in the 1st
quartile (Table 2). The expected survival of patients was monoton-
ously decreasing from the 1st through the 4th quartile in each year
(Supplementary material online, Table S7).

Discussion

In the present study, we developed and tested a ML-based risk strati-
fication tool to predict all-cause mortality of CRT patients during a 5-
year follow-up period (Take home figure). Among the evaluated ML
classifiers, random forest demonstrated the best performance; there-
fore, this algorithm was used to create the SEMMELWEIS-CRT score.
With an average AUC over 0.700, the SEMMELWEIS-CRT score sig-
nificantly outperformed the other currently available risk scores. We
also developed an online calculator (available at semmelweiscrtscor-
e.com) to enable a convenient, interactive, and personalized calcula-
tion of predicted mortality in patients undergoing CRT implantation.

Importance of risk assessment in
patients undergoing cardiac
resynchronization therapy implantation
Cardiac resynchronization therapy induces reverse left ventricular
remodelling and improves outcomes in a certain subgroup of heart
failure patients.2,21 Despite these well-known beneficial effects, indi-
vidual outcomes vary substantially. In the past years, several studies
have investigated predictors that contribute to this variation and nu-
merous prognostic models have been developed by combining mul-
tiple risk factors.16–19 However, these currently available risk scores

have shortcomings and physicians are still reluctant to use them in
daily clinical practice.8

The major limitation is the insufficient reliability and ineffective-
ness for risk assessment at the individual patient level as outcome
estimates have been extrapolated from large clinical trials.
Although, these scores offer general guidance and they are effect-
ive at predicting outcomes at the population level, there remains a
significant gap in the capability to predict outcomes for an individ-
ual patient.23 On the other hand, individual prognostication
remains essential to develop appropriate personalized treatment
plans and to make critical medical decisions based on life expect-
ancy. These facts emphasize the need for more precise assess-
ment through capturing the complex underlying interactions of
predictors. With the SEMMELWEIS-CRT score, we intended to
develop a more personalized approach for the risk assessment of
patients undergoing CRT implantation.

Risk stratification with machine learning
Simultaneously interpreting the myriad risk predictors in an individual
patient is challenging for clinicians. As a vast number of clinical varia-
bles associated with mortality needs to be considered, the complex-
ity of assessment increases, making it more difficult for clinicians to
draw an overall conclusion regarding risk in an individual patient.
Moreover, the potential influence of complex and hidden interactions
between several weaker predictors is often overlooked. In this study,
we demonstrated that ML is capable to overcome these challenges
by leveraging complex higher-level interactions among a multitude of

Age at CRT
Implanta�on

LVEF

Height

Type of
Atrial Fibrilla�on

Gender

QRS
morphology

NYHA

Glomerular
Filtra�on Rate

Haemoglobin
Concentra�on

Serum
Sodium

Allopurinol

-1.5

-2.0

0.02

-2.5

-1.0

Weight

Figure 3 The 12 most important predictors of all-cause mortality
as assessed by the SEMMELWEIS-CRT score. The importance of
each feature was quantified by calculating the decrease in the mod-
el’s performance (area under the receiver operating characteristic
curve) after permuting its values (permutation feature importances
method). The higher its value, the more important the feature is. As
the values of feature importances were spread over a wide range
(more orders of magnitude), base-10 logarithmic transformation
was performed to facilitate plotting. CRT, cardiac resynchronization
therapy; LVEF, left ventricular ejection fraction; NYHA, New York
Heart Failure Association functional class.
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clinical features. Accordingly, our model exhibited improved discrim-
ination and predictive range with respect to all-cause mortality com-
pared with the pre-existing risk scores. Moreover, the
SEMMELWEIS-CRT score was capable of identifying patients with ro-
bustly increased risk of all-cause mortality (4th quartile) during the
entire follow-up period.

With the increasing availability of enormous electronic datasets,
ML algorithms have emerged as highly effective methods for medical
prediction problems, with the potential to augment risk stratifica-
tion.9 By making no a priori assumptions about causative factors, ML
enables an agnostic exploration of all available data for non-linear pat-
terns that may predict a particular individual’s risk, i.e. personalized
risk stratification.

Our evaluation of ML algorithms was rigorous, including trials of
numerous different classifiers within a wide hyper-parameter space.
Among the evaluated algorithms, the best performing model was the

random forest classifier which is consistent with previous studies
using ML to predict clinical endpoints.13,24–26

There are various risk models available for the risk assessment of
patients from the entire heart failure spectrum.20,27 However, in our
analysis, we focused exclusively on CRT recipients and we generated
models that recognize patterns in the clinical characteristics of this spe-
cific subset of heart failure patients. Moreover, many of the pre-existing
scores provide risk estimates for only a distinct time interval. In contrast,
our goal was to build a model that could assess the risk of mortality an-
nually from 1 to 5 years. Recently, Kalscheur et al.13 have developed a
ML-based risk assessment tool and their model exhibited comparable
discriminative capabilities to ours. However, their model was limited to
predict 1-year outcomes, while the SEMMELWEIS-CRT score offers
prediction of mortality risk at 1-, 2-, 3-, 4-, and 5-year follow-up.

Ideally, ML models, such as the one developed in the present study,
will be integrated into electronic medical record systems and they
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Figure 4 Effect of the nine most important continuous features on the calibrated cumulative probability of mortality in the test cohort. Annual
probabilities of each patient are marked with different colours (five dots per patient on each plot): 1-year (blue), 2-year (orange), 3-year (green), 4-
year (red), and 5-year (purple) calibrated cumulative probabilities. Second order polynomial trendlines are fitted to each year’s probabilities. EF, ejec-
tion fraction; GFR, glomerular filtration rate.
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will operate in the background providing real-time, personalized risk
assessment based on the electronically available clinical features.
Consequently, clinicians do not have to calculate a patient’s risk
manually that may enhance the model’s feasibility in clinical practice.
Another potential benefit of ML algorithms is the capability to

assimilate new data in real-time to continuously improve its own pre-
dictive accuracy.

The SEMMELWEIS-CRT score uses 33 clinical variables. Majority
of them are routinely assessed during the management of heart fail-
ure; therefore, they are readily available from electronic medical
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Figure 5 Survival analysis of the quartiles. Based on the predicted probability of death, patients were split into four quartiles at each year of follow-
up. The survival of the quartiles was visualized on Kaplan–Meier curves and log-rank test was performed for comparison.

....................................................................................................................................................................................................................

Table 2 Hazard ratios of all-cause mortality in different quartiles

1 year 2 years 3 years 4 years 5 years

2nd vs. 1st quartile 1.89 5.55 2.18 1.81 1.40

(0.55–6.45) (1.22–25.35) (0.44–3.36) (0.717–4.60) (0.59–3.33)

P = 0.301 P = 0.010 P = 0.142 P = 0.203 P = 0.439

3rd vs. 1st quartile 1.56 7.30 4.18 2.88 3.75

(0.44–5.52) (1.65–32.37) (1.55–11.28) (1.20–6.90) (1.75–8.04)

P = 0.487 P < 0.001 P = 0.002 P = 0.012 P < 0.001

4th vs. 1st quartile 7.92 21.55 10.59 8.16 6.71

(2.72–23.07) (5.10–91.06) (4.07–27.56) (3.56–18.72) (3.17–14.21)

P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001

Patients were split (repeatedly) into four quartiles based on the predicted probably of death in each year. As the quartiles in each year might contain different set of
patients, row-wise evaluation of hazard ratios should be avoided. Cell contents are hazard ratios (95% confidence interval) with P-values calculated using Cox proportional-haz-
ards models.
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.records. Moreover, our model was designed in a way to tolerate
moderate number of missing parameters, however, with special
regards to the most important features, high percentage of missing
values may reduce the reliability of the prediction.

We also identified the most important predictors of all-cause mor-
tality in this patient cohort. Many of these features have been
described previously as influencing CRT outcomes, such as advanced
age, male gender, non-left bundle branch block QRS morphology,
history of or present atrial fibrillation at implantation, impaired renal
function, and increased comorbidity burden.28–30 However, it is chal-
lenging to assess the independent impact of each variable on the pre-
dicted risk of mortality as ML models capture higher dimensional,
non-linear interactions among features.

Future perspectives
The observed high efficacy of our random forest model suggests that
ML should be integrated into the individual risk assessment of
patients undergoing CRT implantation. We foresee that the role of
ML-based prognostic risk scores will become increasingly relevant in

the near future and structured, dense databases in combination with
state-of-the-art analytic approaches will pave the way to precision
cardiovascular medicine.

Limitations
This study has several strengths and limitations to be acknowledged.
To ensure the generalizability of our model, we trained our models
with 10-fold cross-validation on a large database and we performed
additional testing of the final model on an independent cohort of
patients. However, our study represents results from a single centre;
therefore, the SEMMELWEIS-CRT score should be validated in ex-
ternal centres to confirm its generalizability. Our score requires a
broad spectrum of input variables that might discourage clinicians
from its utilization at first glance. Thus, we designed our score in a
way to tolerate missing values, nevertheless, it might be less reliable
with a large number of missing variables. In spite of including estab-
lished predictors of mortality in the final model, some relevant input
features were excluded during model development due to the pro-
portion of missing values. Inclusion of the omitted parameters (e.g.

SEMMELWEIS-CRT score
perSonalizEd assessMent of es�MatEd risk of mortaLity With machinE learnIng in pa�entS undergoing CRT implanta�on
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History Vitals ECG Laboratory
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Heart Failure Pa�ents Undergoing CRT Implanta�on
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Machine Learning (Random Forest) -
Based Mortality Predic�on

WebCalculator is available at
semmelweiscrtscore.com
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Take home figure Using commonly available pre-implant clinical variables, the machine learning-based SEMMELWEIS-CRT score (available at
semmelweiscrtscore.com) can effectively predict all-cause mortality of patients undergoing cardiac resynchronization therapy. AUC, area under the
receiver operating characteristic curve; CRT, cardiac resynchronization therapy; ECG, electrocardiogram.
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.
other comorbidities) might further improve the predictive capabil-
ities of our model. Besides missing values, the relatively long-time
course of retrospective data collection bears inherent limitations also
regarding the changes in the guideline directed medical therapy.
Another major limitation of risk score models is the lack of impact
analyses to determine how the utilization of the models improves pa-
tient care and outcomes. Accordingly, future investigations should
target the identification of treatment plans that specifically fit different
levels of risk assessed by the SEMMELWEIS-CRT score. As the appli-
cation of ML depends on the robustness of the database, practical
use of our model in patient care would require careful and structured
collection of data. However, this issue will resolve soon as large and
structured databases are becoming widely available. Moreover, our
model could be linked with electronic medical record systems to
automatically calculate risk score obviating the manual computation
of patients’ risk and potentially increasing the model’s use in clinical
practice.

Conclusions

Using commonly available clinical variables, we developed and tested
a random forest-based risk stratification system, the SEMMELWEIS-
CRT score to effectively predict all-cause mortality in patients under-
going CRT implantation. Our ML-based risk assessment tool outper-
formed the pre-existing conventional risk scores. By capturing the
non-linear association of predictors, the SEMMELWEIS-CRT score
effectively outlined patient subgroups at high risk for mid- and long-
term mortality. Therefore, the integration of these approaches into
daily clinical practice may facilitate optimal candidate selection and
prognostication of patients undergoing CRT implantation.
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Supplementary material is available at European Heart Journal online.
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