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Abstract: The NF-κB transcription factor pathway is a crucial regulator of inflammation and immune
responses. Additionally, aberrant NF-κB signaling has been identified in many types of cancer.
Downstream of key oncogenic pathways, such as RAS, BCR-ABL, and Her2, NF-κB regulates
transcription of target genes that promote cell survival and proliferation, inhibit apoptosis, and
mediate invasion and metastasis. The cancer stem cell model posits that a subset of tumor cells
(cancer stem cells) drive tumor initiation, exhibit resistance to treatment, and promote recurrence
and metastasis. This review examines the evidence for a role for NF-κB signaling in cancer stem
cell biology.
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1. Introduction to NF-κB Signaling

The NF-κB family of transcription factors consists of five members: p65 (RelA), RelB, c-Rel,
p105/p50, and p100/p52. Each of these proteins contains a conserved N-terminal Rel homology
domain which enables nuclear localization, DNA binding, and homo- and heterodimerization.
p65, RelB, and c-Rel feature transcription activation domains as well, while p50 and p52 do not.
The precursors p105 and p100 include ankyrin repeats which are proteolytically cleaved to produce
the active subunits p50 and p52, respectively [1]. NF-κB signaling typically operates through two
major pathways: the canonical and the non-canonical. Activation of the canonical pathway occurs
downstream of many stimuli, including LPS and pro-inflammatory cytokines such as TNF or IL-1.
Under basal conditions, p65-p50 dimers are bound by the inhibitor of κB proteins (IκBs), which
shift the steady state localization of NF-κB to the cytosol, while still allowing nucleocytoplasmic
shuttling [2–5]. Upon activation, the inhibitor of κB kinase (IKK) complex, which consists of the
kinase subunits IKKα and IKKβ plus the regulatory subunit IKKγ (NEMO), phosphorylates IκBα,
leading to its ubiquitination and proteasomal degradation. Loss of IκBα enhances NF-κB nuclear
accumulation and DNA binding, promoting transcription of its target genes, including anti-apoptotic
factors, cytokines such as IL-6, and proliferation factors such as cyclin D1 (Figure 1). One group of
target genes includes negative regulators of NF-κB signaling, such as A20 and IκBα. By producing
these components, NF-κB generates a negative feedback loop to add another dimension of control to
this pathway. The non-canonical pathway is activated through developmental signals such as BAFFR,
CD40, or LTβR. Here, p100 acts like an IκB molecule, holding RelB in the cytoplasm. Non-canonical
signaling leads to stabilization of NF-κB-inducing kinase (NIK). NIK activates IKKα dimers, which
subsequently phosphorylate p100. p100 phosphorylation leads to its cleavage into p52, producing an
active RelB-p52 dimer that moves to the nucleus and regulates transcription (Figure 1) [6].
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Figure 1. NF-κB signaling consists of two main branches: canonical and non-canonical. On the left, 
canonical NF-κB is driven by the IKK complex containing IKKα, β, and γ subunits. Phosphorylation 
of IκBα leads to its degradation, allowing the p65-p50 dimer to accumulate in the nucleus and regulate 
transcription of target genes. On the right, non-canonical NF-κB is driven by IKKα homodimers, 
leading to p100 processing. Here the dimer consists of the RelB and p52 subunits. Canonical and non-
canonical NF-κB subunits regulate expression of distinct and overlapping sets of target genes [7]. 

Given that NF-κB signaling is tightly intertwined with cytokine production and immune 
responses, it was natural to investigate a role for NF-κB in hematopoietic cells. Germline knockout of 
RelB resulted in mice with myeloid hyperplasia and extramedullary hematopoiesis [8]. Double 
knockout of cRel and RelA produced cells with impaired engraftment and erythropoiesis, along with 
deregulated granulocyte expansion [9], suggesting distinct, yet overlapping roles for different NF-κB 
subunits. Subsequent studies built on these findings to suggest that the level of NF-κB activation was 
tightly regulated in hematopoietic stem cells (HSCs). RelA deletion in HSCs leads to changes in gene 
expression consistent with decreased HSC maintenance and homeostasis with a concomitant increase 
in genes associated with lineage restricted cells [10]. Interestingly, non-canonical NF-κB was also 
found to contribute to HSC self-renewal, both intrinsically and through microenvironment 
interactions [11]. Others have found that activation of NF-κB, either through TLR activation or loss 
of miR-146, actually enhances myeloid differentiation of HSCs [12,13]. A similar paradigm is 
observed in embryonic stem cells, which are reported to have a low level of NF-κB activation. 
Nonetheless, inhibition of NF-κB drives differentiation of these cells [14,15]. Conversely, 
overexpression of p65 enhanced differentiation and loss of pluripotency in embryonic stem cells [16], 
consistent with the need for balanced NF-κB activity. Results in muscle stem cells show decreased 
canonical NF-κB signaling during differentiation, but a late induction of non-canonical NF-κB, 
demonstrating that these pathways can have distinct roles in stem cell biology [17–19]. Taken together, 
these studies illustrate the involvement of NF-κB signaling in the maintenance of a variety of stem 
cells, consistent with much of the literature on NF-κB in cancer stem cells. 

  

Figure 1. NF-κB signaling consists of two main branches: canonical and non-canonical. On the left,
canonical NF-κB is driven by the IKK complex containing IKKα, β, and γ subunits. Phosphorylation of
IκBα leads to its degradation, allowing the p65-p50 dimer to accumulate in the nucleus and regulate
transcription of target genes. On the right, non-canonical NF-κB is driven by IKKα homodimers,
leading to p100 processing. Here the dimer consists of the RelB and p52 subunits. Canonical and
non-canonical NF-κB subunits regulate expression of distinct and overlapping sets of target genes [7].

Given that NF-κB signaling is tightly intertwined with cytokine production and immune
responses, it was natural to investigate a role for NF-κB in hematopoietic cells. Germline knockout
of RelB resulted in mice with myeloid hyperplasia and extramedullary hematopoiesis [8]. Double
knockout of cRel and RelA produced cells with impaired engraftment and erythropoiesis, along with
deregulated granulocyte expansion [9], suggesting distinct, yet overlapping roles for different NF-κB
subunits. Subsequent studies built on these findings to suggest that the level of NF-κB activation was
tightly regulated in hematopoietic stem cells (HSCs). RelA deletion in HSCs leads to changes in gene
expression consistent with decreased HSC maintenance and homeostasis with a concomitant increase
in genes associated with lineage restricted cells [10]. Interestingly, non-canonical NF-κB was also found
to contribute to HSC self-renewal, both intrinsically and through microenvironment interactions [11].
Others have found that activation of NF-κB, either through TLR activation or loss of miR-146, actually
enhances myeloid differentiation of HSCs [12,13]. A similar paradigm is observed in embryonic stem
cells, which are reported to have a low level of NF-κB activation. Nonetheless, inhibition of NF-κB
drives differentiation of these cells [14,15]. Conversely, overexpression of p65 enhanced differentiation
and loss of pluripotency in embryonic stem cells [16], consistent with the need for balanced NF-κB
activity. Results in muscle stem cells show decreased canonical NF-κB signaling during differentiation,
but a late induction of non-canonical NF-κB, demonstrating that these pathways can have distinct
roles in stem cell biology [17–19]. Taken together, these studies illustrate the involvement of NF-κB
signaling in the maintenance of a variety of stem cells, consistent with much of the literature on NF-κB
in cancer stem cells.
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2. NF-κB in Cancer

2.1. NF-κB Activation in Cancer

In addition to its roles in the innate immune system and inflammatory signaling, the NF-κB
pathway has been extensively tied to cancer biology. The discovery of v-rel, the oncoprotein in an
avian Rev-T virus responsible for reticuloendotheliosis, and its identification as the homolog of c-rel
provided the first link between cancer and NF-κB [20,21]. Early efforts showed that NF-κB is activated
downstream of oncogenic RAS and BCR-ABL, where it promotes the oncogenic phenotype [22–24].
Inhibition of NF-κB in oncogenic RAS+ cells leads to apoptosis, consistent with a role for NF-κB in
driving an anti-apoptotic, pro-survival phenotype [25]. Many studies demonstrate that NF-κB and its
target genes are upregulated in the majority of cancers—including both hematological malignancies
and solid tumors. More recently, NF-κB has been shown to be activated downstream of loss of tumor
suppressors such as p53, VHL, and PTEN [26–34]. While early efforts focused on analysis of canonical
NF-κB signaling in cancer, recent studies indicate that non-canonical NF-κB signaling can also be found
activated in different cancers [35–41]. Expression of the superrepressor form of IκBα (serines 32/36
mutated to alanines, preventing phosphorylation and degradation and leading to decreased NF-κB
activity; IκBα-SR) and genetic deletion of IKKβ or RelA in RAS-driven lung tumor and melanoma
models strongly suppressed tumor growth [42–44].

Once activated, NF-κB regulates a wide variety of target genes that overlap heavily with the
hallmarks of cancer [45]. Proliferation is one of the most basic characteristics of a cancer cell and NF-κB
is involved through regulation of CyclinD1, Cyclin E, and c-Myc. NF-κB promotes survival and inhibits
apoptosis through several mechanisms [46]. These include transcriptional regulation of the cellular
inhibitor of apoptosis (cIAPs) 1, 2 and XIAP, as well as Bcl-2 and Bcl-xL [47–49]. Perhaps, as expected,
NF-κB regulates a number of cytokines that contribute to tumor-promoting inflammation such as:
TNFα, IL-1, IL6, MCP1, COX2, and iNOS. Other NF-κB targets contribute to epithelial-mesenchymal
transition (vimentin, Twist), remodeling the extracellular matrix through induction of angiogenesis
(IL8, VEGF), and promotion of invasion and metastasis (MMP2, MMP9, uPA) [50].

The studies described above led to efforts to determine if human tumors feature genetic alterations
in IKK/NF-κB components. Somewhat surprisingly, such mutations are not common. However, the
level of coverage provided by next-generation sequencing has found examples of NF-κB-associated
mutations in a low percentage of cancers, predominately hematological malignancies. Amplifications of
c-rel, IKKβ, IKKγ, and the related kinase IKKε have been identified primarily in lymphomas and breast
cancer [51–53]. Rearrangements of the NFKB2 locus (gene name for the p100 subunit) that lead to loss of
the inhibitory IκB-like domain and increased p52 production are found in some B cell lymphomas [54].
C11orf95-RELA fusions have been described as driver events in ependymomas [55], while monoallelic
deletions of IκBα were identified in a subset of glioblastoma [56]. Mutations in upstream proteins that
lead to aberrant, constitutive NF-κB activation have been identified. For example, in certain subtypes
of lymphoma, translocations can affect MALT1 and BCL10, while CARD11 features a variety of point
mutations. All three of these proteins interact to form a complex that drives NF-κB activation [57].
Growth factor receptors, including EGFR and Her2, are frequently overexpressed in cancer and activate
similar pathways, including NF-κB [58,59].

IKK exhibits NF-κB-independent functions that promote growth and survival functions important
to a variety of cancer cells. For example, IKKα and IKKβ promote mTOR activation, via kinase
activity [60–63]. Another example is that IKKα was found to phosphorylate the CDK inhibitor p27
downstream of Her2 to promote cancer stem cell self-renewal [64]. IKKβwas reported to phosphorylate
the tumor suppressor p53 to promote its instability [65].

2.2. Chronic Inflammation as a Precursor to Cancer

Another line of research linking NF-κB with oncogenesis examines the connection between
chronic inflammation and tumor development. The microenvironment surrounding a tumor includes
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fibroblasts, infiltrating immune cells, extracellular matrix proteins, and cytokines that interact with
the tumor cells. In a mouse model of colitis-associated colon cancer with targeted IKKβ deletion in
either the epithelial or myeloid compartments, NF-κB mediated survival of intestinal epithelial cells,
while NF-κB activation in myeloid cells drove production of growth factors that promoted tumor
proliferation [66]. In a model of hepatocellular carcinoma driven by treatment with the carcinogen
diethylnitrosamine (DEN), NF-κB is again activated in the myeloid compartment, this time to drive IL6
production and subsequent STAT3 activation in the hepatocytes [67]. Interestingly, this model shows
that deletion of IKKβ or IKKγ actually leads to enhanced tumor development. The liver initially shows
more cell death following DEN treatment, however, because hepatocytes are highly regenerative, the
cell death triggers proliferation of the remaining cells [68]. It is thought that a cycle of injury, cell death,
and proliferation drives tumor formation in this model [69]. NF-κB was shown to be activated in
cancer-associated fibroblasts promoting the expression of inflammatory cytokines, although the role of
this response in promoting tumorigenesis is controversial [70–72]. Work examining tumor-associated
macrophages has shown that NF-κB signaling maintains a tumor-promoting, immunosuppressive (or
M2) phenotype and inhibits a tumor-suppressing (or M1) phenotype [73,74]. Taken together, these
studies start to describe a complex microenvironment with multiple cell types interacting to drive
tumorigenesis and place NF-κB as a central mediator between these various components.

3. Cancer Stem Cells

Given the connections between the NF-κB pathway and the earliest events in oncogenesis, it
follows that NF-κB signaling would be important in the tumor initiating cells. The cancer stem
cell (CSC) model has been proposed to describe the cells which are responsible for tumor initiation.
This phenomenon was first described in acute myeloid leukemia (AML), where cells from patients
were transplanted into NOD/SCID mice and monitored for engraftment. Results from that study
demonstrated that the CD34+ CD38´ population of cells caused disease more frequently and at lower
cell numbers than CD34´ cells [75]. Subsequent to these findings, CSCs have been described in many
solid tumors including those of the brain, prostate, breast, colon, and pancreas [76–81]. In addition to
being responsible for primary tumor formation, CSCs are also generally thought to drive metastasis
and exhibit increased resistance to radiation and chemotherapy. Due to their stem-like characteristics,
these cells are also capable of differentiation into multiple lineages, which accounts for some of the
heterogeneity seen in tumors [82]. While CSCs are frequently depicted at the top of a hierarchically
arranged tumor, there is evidence that plasticity allows for the conversion of bulk tumor cells into
CSCs [83].

Several assays allow for the study of CSCs. In vitro experiments focus on sphere formation under
stem cell permissive conditions, such as serum-free media supplemented with essential growth factors
and low-adherence plates. Ideally, these experiments are performed at limiting dilutions to best
assess self-renewal from single cells. Additionally, in vivo assessments of tumor formation remain the
gold standard for true CSC function, again preferably performed under limiting dilutions [84–87].
Frequently, prospective CSCs can be isolated from the bulk of the tumor cells based on one or more
markers, either through the use of magnetic beads or fluorescence-activated cell sorting. Many markers
have been proposed to distinguish CSCs from other tumor cells. While no individual marker is perfect,
a few of the most commonly used markers include CD133, CD44 and EpCAM [76,78,79,81,88,89]. Once
isolated, the populations can be compared in a number of phenotypic assays to dissect the differences
between the cell types. Proliferation, survival, and gene expression analyses are commonly measured.

3.1. NF-κB Activation in CSCs

One of the earliest examples of NF-κB involvement in CSCs came from primary AML samples,
where the CD34+ cells showed enhanced NF-κB DNA binding that was not seen in regular
hematopoietic stem cells [90]. Since that initial report, elevated or constitutive NF-κB activity has been
seen in many tumor types. Prostate CSCs were found to express higher levels of acetylated and total



Cells 2016, 5, 16 5 of 19

p65, as well as a decrease in IκBα expression when compared to parental tumors [91]. In glioblastoma,
CSCs exhibited increased nuclear localization of p65 as compared with cells cultured under monolayer
conditions [92]. Tumorsphere-forming cells showed increased phosphorylation of p65, again consistent
with elevated NF-κB signaling in this population of cells. In that study, inhibition of NF-κB reduced
self-renewal and blocked xenograft tumor growth using a limiting dilution approach [93]. In addition
to direct evidence of preferential NF-κB activation in CSC subsets of tumors, several groups have taken
an unbiased approach of profiling gene expression and defining CSC-associated signatures. This has
revealed an inflammatory signature, which can frequently be tightly associated with NF-κB regulation,
in a variety of tumors such as glioblastoma, breast, prostate, and ovarian cancers [94–99].

Perhaps not surprisingly, some of the same oncoproteins previously mentioned to activate NF-κB
also participate in the CSC subpopulations of tumors. In mouse models of Her2-driven breast cancer,
both canonical and non-canonical NF-κB pathways contribute to stemness and tumor formation.
Expression of IκBα-SR impaired the formation of luminal epithelial tumors. Use of an NF-κB-GFP
reporter allele localized activation to the luminal progenitors [100]. Another analysis of IκBα-SR in
a Her2 mouse model found changes in a gene signature associated with stem cells, then specifically
showed NF-κB-dependent changes in the specific stem cell factors Nanog and Sox2 (Figure 2) [101].
Knock-in of a kinase dead IKKα led to decreased self-renewal and senescence under mammary stem
cell culture conditions [102]. In the Her2 breast cancer model, IKKαwas found to phosphorylate p27
leading to its nuclear export and promoting CSC proliferation and expansion [64]. One of the canonical
alterations that occurs during colorectal tumorigenesis is loss of APC. Myant and colleagues found that
APC loss drives RAC1 activity to mediate ROS production and NF-κB activation, ultimately leading to
an expansion of Lgr5+ CSCs [103].
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Figure 2. This diagram summarizes the various levels of NF-κB signaling in cancer stem cells. Both
extracellular and intracellular sources of NF-κB activation are seen at the top. Either alone or in
cooperation with other signaling pathways, NF-κB mediates a wide variety of transcriptional targets,
which fall into several major categories such as cytokines and EMT factors. Ultimately, these targets
mediate important aspects of CSC biology, including self-renewal, proliferation, and metastasis.
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3.2. Connections between NF-κB Signaling, Cytokines, and CSCs

Signaling from toll-like receptors (TLRs) is known to drive traditional NF-κB activation in an
inflammatory setting. In ovarian CSCs, TLR2-MyD88-driven NF-κB activity regulates expression of the
stem cell associated genes CD44, Sox2 and Nanog [104]. TLR9 drives the propagation and self-renewal
of androgen-independent prostate CSCs, largely through the co-activation of the NF-κB and STAT3
pathways, which in turn regulate expression of the crucial stem cell transcription factors NKX3.1 and
KLF4 [105]. Numerous cytokines have also been associated with supporting CSC maintenance in
an NF-κB-dependent manner. Chronic myeloid leukemia (CML) stem cells produce higher levels
of TNFα than normal hematopoietic stem cells. Canonical NF-κB activation positively regulates
expression of IL-3 and granulocyte/macrophage colony-stimulating factor common β-chain receptor
(CSF2RB) to promote proliferation and survival of CML stem cells [106]. Similar findings in a mouse
model of acute myeloid leukemia (AML) described a feedback loop between TNFα and NF-κB,
confirmed by correlations in patient samples [107]. TNFα treatment of MCF7 breast cancer cells
increased their mammosphere-forming capacity through upregulation of NF-κB and subsequently
Slug (Figure 2) [108]. In colorectal cancer, levels of prostaglandin E2 (PGE2) correlated with CSC
markers in human tumor samples. Treatment of either a genetic or xenograft mouse model with PGE2

led to CSC expansion through upregulation of several signaling pathways including NF-κB [109].
In glioblastoma, IL-17 receptor was found to be co-expressed with multiple CSC markers, including
CD133, Nestin, and Sox2, as well as a source of NF-κB activation [110].

While several cytokines drive NF-κB signaling, NF-κB also controls the expression of a variety of
other cytokines, particularly IL-6 and IL-8, which are heavily associated with CSC function. Iliopoulous
and colleagues studied an inducible model of transformation by Src in mammary epithelial cells
that led to rapid secretion of IL-6 and increased NF-κB activation. NF-κB positively regulates
Lin28 transcription, which in turn decreases the level of let-7 microRNA. As IL-6 is one target of
this microRNA, IL-6 expression increases even further, creating a positive feedback loop driving
transformation and CSC expansion [111,112]. Interestingly, let-7 also targets KRas, and decreased
levels of let-7 have been shown to drive mammosphere formation and size through Ras-NF-κB and
Ras-MAPK-ERK pathways [113]. In basal-like breast cancer, NF-κB inhibition decreases mammosphere
formation, but addition of exogenous IL-6 or IL-1β rescues the defect [93]. In CML, increased
levels of IL-6 drive CML progenitors into the myeloid lineage, sustaining CML development [114].
IL-6, IL-8, and MCP1 similarly contribute to the survival and self-renewal of glioblastoma CSCs
(Figure 2) [110,115].

3.3. Interactions between NF-κB and the Tumor Microenvironment

Given the close association between NF-κB and cytokines, it reasonably follows that NF-κB plays
a role in modulating the microenvironment. CSCs are thought to occupy certain niches within tumors,
much like their normal stem cell counterparts. For example in glioblastoma, CSCs have been localized
to a perivascular niche, populated by an abundance of proliferating stromal and endothelial cells that
support the growth of CSCs specifically [116,117]. As previously mentioned, preferential expression of
IL-17 receptor is seen on glioblastoma CSCs. Relatedly, in ovarian cancer, macrophages and CD4+ T
cells produce IL-17 to drive self-renewal of CSCs in vitro and tumor formation in vivo in an NF-κB- and
p38-dependent manner [118]. Interestingly, there is evidence for CSCs promoting angiogenesis through
secretion of endothelial factors like VEGF and IL-8 or through direct transdifferentiation [80,119–121].
Osteopontin is an oncoprotein that signals through integrins as well as CD44 family receptors, which
have been used as a CSC marker in several tumor types. Hepatocellular carcinoma stem cells exhibit
enhanced expression of osteopontin which drives a transcriptional cascade from NF-κB activation to
HIF1α to BMI1 expression [122]. Periostin (POSTN) is a component of the extracellular matrix that has
been identified in the niche of both normal and cancer stem cells. Generally thought to be produced by
stromal fibroblasts, POSTN promotes metastasis to the lung in a breast cancer model by supporting
the growth and expansion of CSCs [123]. Another group found that in vitro breast CSCs express
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higher levels of POSTN than their non-CSC counterparts. POSTN drives an ERK-NF-κB signaling axis,
driving production of IL-6 and IL-8, which in turn contribute to CSC maintenance through STAT3
activation [124]. Breast cancer also exhibits a circuit of progestin-driven RANKL (receptor activator
of NF-κB ligand) expression, leading to NF-κB activation. Deletion of the RANKL receptor RANK
decreases the CD49fhi-CSC population and tumor incidence (Figure 2) [125].

3.4. Contributions by the NF-κB Pathway to Invasion and Metastasis

In addition to creating the proper niche for CSC survival and expansion, NF-κB also contributes
to the invasive and metastatic capabilities of CSCs. This can occur through further modulation
of the extracellular environment or through cell-intrinsic changes like epithelial-mesenchymal
transition (EMT) which has been linked to CSC characteristics [126]. Work by several groups has
shown NF-κB-mediated regulation of critical EMT factors including Snail [127,128], Slug [129,130],
ZEB1/2 [131], and Twist1 [132–136] (reviewed in [137]). TNFα leads to NF-κB-dependent stabilization
of Snail and transcriptional upregulation of Twist1, both of which enhanced invasion in vitro and
metastasis in vivo [138,139]. Inhibition of NF-κB led to a reversal of EMT in mammary epithelial cells
and decreased metastasis in an in vivo model [140]. In breast cancer, overexpression of RANK drives
EMT and expansion of the CD44+/CD24´ CSC population, ultimately leading to increased tumor
growth and a substantially higher number of metastases [141]. Another study found overexpression
of AXL in breast cancer stem cells; inhibition of AXL decreased NF-κB activity, expression of
EMT-associated genes, invasion, and tumor formation [142]. In non-small cell lung cancer (NSCLC),
Kumar and colleagues induced EMT through dual treatment with TNFα and TGF-β. The associated
EMT transcription factors Twist1, Slug, and ZEB2 were upregulated in an NF-κB-dependent manner,
followed by increases in multiple stem cell factors: KLF4, SOX2, POU5F1, MYCN, and KIT [130].
Subsequent studies found that NF-κB-mediated upregulation of Activin was required in order to
maintain the mesenchymal phenotype of NSCLC CSCs [143]. There is also evidence that signaling
through the NF-κB pathway and CXCR4 maintains stemness and promotes migration [144–147]. NF-κB
has also been found to regulate the expression of matrix metalloproteinases (MMPs), which can degrade
components of the extracellular matrix to increase invasion of tumor cells. Specifically, NF-κB directly
regulates transcription of MMP9 [148–150], while indirectly increasing MMP2 activity [151–153].
Ovarian CSCs upregulate MMP9 expression to enable invasion and metastasis downstream of
CCL5-NF-κB signaling [154]. NF-κB has also been shown to regulate VEGF and IL-8, which promote
tumor formation and angiogenesis [155].

NF-κB frequently cooperates with additional signaling pathways to mediate these oncogenic
effects. Coordinated activity between NF-κB and STAT3 has been previously mentioned in this review.
Concurrent constitutive signaling from NF-κB and STAT3 in glioblastoma CSCs regulates expression
of a set of genes (NOTCH1, HES5, JAG1, NUMBL, DTX3, DVL3, and RBPJ) that drive activation of
Notch signaling, a third CSC-associated pathway (Figure 2) [92]. Another experiment, suggesting an
important interaction between the CSCs and the bulk tumor cells, found that NF-κB activity in the
non-CSCs upregulates JAG1 to stimulate Notch signaling in proximal breast CSCs [156].

The majority of the findings discussed here have focused on the canonical NF-κB pathway,
particularly the p65 subunit. However, there is also evidence that the non-canonical pathway
contributes to CSC phenotypes. In breast cancer, knockdown of IKKα, p100/p52, or RelB all produced
a decrease in mammosphere formation [93]. Eva1, found to be overexpressed in glioblastoma CSCs,
drives NIK stabilization and p100 processing, potentially by promoting ubiquitination and degradation
of TRAF2 and cIAP [157]. RelB has been described as an oncogenic driver in mesenchymal glioma,
regulating Olig2 expression and promoting tumor growth and invasion [39].

4. NF-κB as a Therapeutic Target

Given the extensive ties between NF-κB signaling and cancer biology, there has naturally been an
interest in targeting the pathway therapeutically. In several of the studies previously mentioned, either
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knockdown of pathway components or targeted inhibitors produced a decrease in stem cell phenotypes
in vitro as well as decreased tumor growth and/or metastasis in vivo. A combination of idarubicin
and MG132, a proteasome inhibitor, induced cell death in AML stem cells, partially through NF-κB
inhibition [158]. While proteasome inhibition will impact several pathways in a cell, NF-κB inhibition
is a well-established effect of MG132 treatment as it blocks IκBα degradation, reducing NF-κB nuclear
localization and DNA binding. The same group went on to identify the compound parthenolide as
selectively inducing apoptosis in leukemia stem cells as opposed to normal hematopoietic stem cells,
through a mechanism of increased reactive oxygen species, p53 activation, and NF-κB inhibition [159].
A subsequent in silico screen for additional drugs with specificity towards AML stem cells identified
two other compounds, celastrol and 4-hydroxy-2-nonenal, and once again they found NF-κB inhibition
to be part of the mechanism of action [160]. Parthenolide has also shown preferential activity in
breast CSCs compared to the bulk tumor cells [161]. Use of SN50, a peptide inhibitor that blocks
nuclear import of NF-κB and other transcription factors, decreases the sphere formation ability and
tumorigenic capacity of glioma CSCs [162]. Others have found that inhibition of NF-κB promotes more
rapid differentiation and progression to senescence in glioblastoma CSCs [163].

The activated B-cell subset of diffuse large B-cell lymphoma (DLBCL) has shown a distinct
dependence on NF-κB signaling. Standard treatment for lymphoma patients includes rituximab, a
monoclonal antibody against CD20. While this drug has many effects, one aspect includes inhibition
of NF-κB signaling to induce apoptosis [164]. More recently, ibrutinib, a BTK inhibitor, has been found
to improve patient outcome in clinical trials. While this drug does not specifically target IKK, BTK
represents a key intermediate between B cell receptor and NF-κB, and ibrutinib treatment decreases
NF-κB signaling [165]. Previously discussed studies have found an impact of IKK/NF-κB inhibition
on tumor growth. While these efforts didn’t specifically analyze CSC effects, if CSCs are primarily
driving tumor initiation, we could interpret these results as having some effect on the CSC population.
Direct IKKβ inhibitors showed efficacy in a mutant KRas, p53-null model of lung cancer [166,167].
In addition to inhibitors targeting the kinase activity, the NF-κB pathway can be inhibited by peptides
encompassing the NEMO-binding domain (NBD) that block association of the IKK catalytic subunits
with NEMO/IKKγ. Recently, use of an NBD peptide slowed tumor growth in both a human glioma
xenograft and a genetic mouse model of glioma [168]. The NBD peptide has also shown efficacy in a
canine model of DLBCL [169,170].

NF-κB signaling also has ties to mediating resistance to radiation and chemotherapy, so there
could be utility in combining NF-κB inhibition with traditional cancer therapies. Early work found
that expression of IκBα-SR sensitized cancer cells to ionizing radiation, daunorubicin, and CPT-11
(a topoisomerase inhibitor) [171–173]. More recently, use of NF-κB inhibitors in combination with
temozolomide, adriamycin, or radiation has shown increased apoptosis in glioblastoma cells [174–176].
Doxorubicin-resistant glioblastoma stem cells upregulated expression of MDR1 through a PI3K-NF-κB
pathway [177]. In another study, KRas-NF-κB signaling mediated resistance to EGFR inhibitors in
CSCs [178]. Upregulation of IRAK1 drives NF-κB activation and cytokine production, leading to
CSC enrichment and paclitaxel resistance in breast cancer [179]. Taken together, these results suggest
that not only could NF-κB inhibition be an effective treatment against CSCs, but it could also restore
sensitivity to other therapeutic options.

5. Conclusions

The NF-κB pathway is integrated into many critical aspects of tumor biology. Its function in
inflammation and immune responses often sets the stage for tumor development. Expression of
several potent oncoproteins, including mutant RAS and BCR-ABL, leads to NF-κB activation early
in tumorigenesis. Here, we have detailed crucial roles and contributions of NF-κB in cancer stem
cells, which are driving tumor initiation, recurrence, and metastasis. NF-κB regulation of critical target
genes—prominently including IAPs, cytokines, and EMT transcription factors—drive CSC phenotypes.
In addition to direct NF-κB effects, there is also cooperation between other crucial CSC-associated
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pathways, such as STAT3, Notch, and TGF-β. Future work will need to determine if therapeutic
targeting of the NF-κB pathway impacts tumor growth at the level of the cancer stem cells.
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EGFR epidermal growth factor receptor
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IκBα nuclear factor of κ light polypeptide gene enhancer in B-Cells inhibitor, α
IKK inhibitor of κB kinase
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NIK NF-κB-inducing kinase
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STAT signal transducer and activator of transcription
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