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A B S T R A C T   

Objective: To implement and evaluate machine learning (ML) algorithms for the prediction of COVID-19 diag-
nosis, severity, and fatality and to assess biomarkers potentially associated with these outcomes. 
Material and methods: Serum (n = 96) and plasma (n = 96) samples from patients with COVID-19 (acute, severe 
and fatal illness) from two independent hospitals in China were analyzed by LC-MS. Samples from healthy 
volunteers and from patients with pneumonia caused by other viruses (i.e. negative RT-PCR for COVID-19) were 
used as controls. Seven different ML-based models were built: PLS-DA, ANNDA, XGBoostDA, SIMCA, SVM, LREG 
and KNN. 
Results: The PLS-DA model presented the best performance for both datasets, with accuracy rates to predict the 
diagnosis, severity and fatality of COVID-19 of 93%, 94% and 97%, respectively. Low levels of the metabolites 
ribothymidine, 4-hydroxyphenylacetoylcarnitine and uridine were associated with COVID-19 positivity, whereas 
high levels of N-acetyl-glucosamine-1-phosphate, cysteinylglycine, methyl isobutyrate, L-ornithine and 5,6-dihy-
dro-5-methyluracil were significantly related to greater severity and fatality from COVID-19. 
Conclusion: The PLS-DA model can help to predict SARS-CoV-2 diagnosis, severity and fatality in daily practice. 
Some biomarkers typically increased in COVID-19 patients’ serum or plasma (i.e. ribothymidine, N-acetyl- 
glucosamine-1-phosphate, L-ornithine, 5,6-dihydro-5-methyluracil) should be further evaluated as prognostic 
indicators of the disease.   

1. Introduction 

The COVID-19 outbreak has been met by variable responses across 
countries, especially regarding the adoption of prevention measures. 
Yet, although science has uncovered much about SARS-CoV-2 and made 
unprecedented progress in the development of vaccines, there is still 
great uncertainty as the pandemic continues to evolve (i.e. new active 
cases and deaths reported worldwide), and no globally recognized 
effective treatment is available [1,2]. In this scenario, the implementa-
tion of further sensitive, accurate, low-cost screening and early diag-
nostic approaches is paramount for preventing infections and guiding 
disease stage monitoring [3,4]. 

In recent years, artificial intelligence (AI), including deep learning 
(DL) and machine learning-based (ML) algorithms, has emerged as a 
useful tool to support the decision-making process in healthcare, as well 
as drug discovery and disease diagnosis and monitoring [5–7]. Some 
studies published in the past two years have already employed these 
methods to guide COVID-19 diagnosis (i.e. using chest computed to-
mography scans and X-ray images), to characterize biomarkers of dis-
ease stage, to identify risk factors of disease severity and mortality and to 
forecast future outbreaks [8–12]. A recent systematic review conducted 
by Wang (2021) highlights that AI has the potential to improve existing 
medical and healthcare system efficiency during the COVID-19 
pandemic by additionally assisting with surveillance and public health 
decision-making [27]. 
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However, although several of these ML-based models for the pre-
diction of COVID-19 diagnosis and severity are available in the litera-
ture, limitations to their use in practice still exist. Biomarkers identified 
by these algorithms as potentially associated with the disease vary 
widely due to, among others, high heterogeneity among patients’ clin-
ical profiles (i.e. different populations of regions/countries) and small 
sample sizes (i.e. retrospective single-centre studies), which reduces 
external validity and data generalization [13,14]. Additionally, differ-
ences in sample preparation and analytical techniques, as well the 
increasing number of SARS-CoV-2 variants worldwide, hinder the inte-
gration of more streamlined and effective predictive modelling in this 
field [15–17]. 

Considering the increasing cases of COVID-19 in the past months, 
mainly caused by the rapid spread of the omicron variant [18], along-
side with the limited number of kits to perform real-time PCR tests - as a 
consequence of the growing demand for these products worldwide, the 
aim of this study is to evaluate different ML-based algorithms for the 
prediction of COVID-19 diagnosis, severity and fatality, as well as to 
identify new biomarkers associated with these outcomes, using two 
databases with over 1300 water-soluble and fat-soluble metabolites. 

2. Material and methods 

2.1. Study design and databases 

We evaluated public datasets from two cohorts of patients diagnosed 
with COVID-19 by RT-PCR in China (Wuhan), including mild and severe 
cases and deaths associated with the disease (https://drive.google.co 
m/drive/folders/1R_I_gu5D3SkD_9q_J93HOA9GuKxZiGNG) [19]. 
Blood samples from all diagnosed patients were assessed by 
ultra-efficiency liquid chromatography coupled to mass spectrometry 
(LC-MS). 

The first cohort (Dataset I) refers to samples from COVID-19 patients 
diagnosed in the Wuhan Jinyin Tan Hospital (China) (file name: 
C2_metaboanalyst_input_full.csv) [19]. A series of samples was regis-
tered during the disease course: samples collected from 14 patients with 
mild symptoms at two time points in the study (total of 14 × 2 = 28 
samples), samples from 11 patients with severe symptoms (total of 11 ×
2 = 22 samples) and samples collected at four time points from 9 pa-
tients that died during the study (total of 9 × 4 = 36 samples). Blood 
samples from 10 healthy volunteers with negative RT-PCR tests were 
used as controls. Plasma samples from all these patients were also 
collected and analyzed by ultra-efficiency liquid chromatography (C18 
column) coupled to quadrupole mass spectrometry and electrospray 
source (UPLC-ESI-MS/MS). A total of 431 metabolites (both fat-soluble 
and water-soluble substances) were identified and quantified using an 
in-house hospital database and molecular ion fragmentation profile in 
MS/MS mode. Fragments were compared to data from the international 
public literature/database. This first database, thus, included 96 sam-
ples and 431 variables (metabolites). 

The second cohort (Dataset II) refers to a sample of 46 patients 
diagnosed with COVID-19 in the Taizhou Hospital (China) (file name: 

C3_metaboanalyst_input_full.csv) [19]. Blood samples from 25 healthy 
volunteers (negative RT-PCR) and from 25 patients with pneumonia 
syndrome but with negative RT-PCR for SARS-CoV-2 were respectively 
used as negative and positive control groups. Serum samples of all pa-
tients were analyzed by UPLC-ESI-MS/MS. This second database 
accounted for 96 samples and 941 metabolites (identified and quantified 
using both ionization modes; ESI- and ESI+). 

2.2. Data preprocessing in ML 

Data preprocessing is an important step for metabolomic data anal-
ysis and refers to the technique of preparing (i.e. cleaning and orga-
nizing) the raw data to make it suitable (i.e. readable) for building and 
training ML-based models [20,21]. 

In this study, both COVID-19 datasets (i.e. diagnosis and disease 
severity) went through different preprocessing methods aiming at 
selecting the one that best fit the data: (i) Imputation: missing data were 
replaced by the median values; (ii) Transformations: absolute value, 
Log10; (iii) Filtering: baseline (specified points), baseline (weighted 
least square), derivative (Savitzky – Golay), smoothing (Savitzky – 
Golay), detrend, generalized least squares weighting (GLSW), orthog-
onal signal correction (OSC) and external parameter orthogonalization 
(EPO); (iv) Normalization: normalize, standard normal variate (SNV) 
and multiplicative scatter correction (MSC-mean); (v) Scaling and 
centering: autoscale, group scale, Log decay scaling, mean center, me-
dian center, multiway center, multiway scale and sqrt mean scale. All 
analyzes were performed in SOLO software (Eigenvector Research). 

2.3. Development of ML-based and prediction models 

In this study, an unsupervised ML-based model (principal component 
analysis - PCA) was initially developed with both datasets aiming at 
identifying the structure of the data and detecting possible anomalous 
samples [22,23] (i.e. exploratory analyses). 

For the prediction of COVID-19 diagnosis (Database II) and disease 
severity and fatality (Database I), several supervised ML-based models 
were used: support vector machine (SVM), discriminant analysis 
(ANNDA), k-nearest neighbours (KNN), artificial neural networks 
discriminant analysis (ANNDA), discriminant analysis by partial least 
squares (PLS-DA), soft independent modelling of class analogy (SIMCA), 
gradient boosted tree discriminant analysis (XGBoostDA) and logistic 
regression discriminant analysis (LREG). For the implementation of 
these classification models, 70% of the data was used for the training set 
(calibration) and the remaining 30% for the test set. 

Sample selection for the training and testing sets was randomly 
performed using the Kennad Stone algorithm [24]. For the imple-
mentation of the models, the classes (groups) of samples from the 
datasets were individually divided into two new subsets (i.e., training 
and test samples), being this last subset (test samples) used to predict 
each specific class. Samples from Database I (Wuhan, Jinyin Tan Hos-
pital, n = 96 samples) were grouped into the following: class 1 – healthy 
(accounting for 10 samples of which 5 were used for training the model 
and the remaining 5 for data prediction); class 2 – death (36 samples of 
which 25 were used for training; 11 for data prediction); class 3 – severe 
COVID-19 (22 samples of which 15 were used for training; 7 for data 
prediction); and class 4 – mild COVID-19 (28 samples; 20 used for 
training and 8 for data prediction). The samples from Database II 
(Taizhou Hospital, n = 96) were categorized into the following classes: 
class 1 – COVID-19 (accounting for 46 samples of which 32 were used for 
training the models and the remaining 14 for data prediction); class 2 – 
healthy (25 samples of which 15 were used for training and 10 for data 
prediction); and class 3 – non-COVID-19 (25 samples; 15 used for 
training and 10 for data prediction). 

The venetian blind cross-validation method was used to select the 
number of latent variables (LVs) of the ML-based models [25]. LVs with 
lower values of cross-validation error, square root of mean 

Abbreviations 

LC-MS liquid chromatography coupled with mass spectrometry 
PLS-DA discriminant analysis by partial least squares 
ANNDA artificial neural networks discriminant analysis 
XGBoostDA gradient boosted tree discriminant analysis 
SIMCA soft independent modelling of class analogy 
SVM support vector machine 
KNN k-nearest neighbours 
LREG logistic regression discriminant analysis  
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cross-validation error (RMSECV) and root mean square error of cali-
bration (RMSEC) were selected. The root of the mean error of prediction 
(RMSEP) was the metric used to assess the predictive capacity of the 
ML-based models; models with smaller RMSEP performed better. 

Model performance was evaluated considering the metrics of accu-
racy, sensitivity, and specificity. These metrics were calculated using the 
following figures of merit: false positive (FP), false negative (FN), true 
positive (TP) and true negative (TN), according to equations (1)–(3). 

​ Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)  

Sensitivity =
TP

TP + FN
(2)  

Specificity =
TN

TN + FP
(3)  

where, FP = false positive; FN = false negative; TP = true positive; TN =
true negative. 

The accuracy of the models was also evaluated considering the area 
under the receiver operating characteristic (ROC) curve (AUC). The 
values of AUC ROC were calculated considering both samples’ datasets 
(i.e., training and test sets). 

A VIP (variable importance in projection) graph was built from the 
ML-based model presenting the best performance aiming at identifying 
the ‘top 10’ most important biomarkers for predicting the diagnosis of 
COVID-19 and the ‘top 10’ most important biomarkers for predicting 
disease severity and fatality. A VIP score of an original variable is 
calculated as a weighted sum of the squared correlations between the LV 
of the PLS-DA model and the original variable (e.g. metabolite). The 
number of terms in the sum relies on the number of LV from the PLS-DA 
model that were considered significant for distinguishing the groups 
(classes) of samples. The weights correspond to the percentage variance 
explained by the LV in the PLS-DA model. An original variable with a 
VIP score greater than 1 is considered statistically significant for clas-
sifying groups (e.g. COVID-19 group vs. healthy individuals). See below 

the VIP score calculation equation (4) [26,27].  

VIP2
j =

∑
f wif SSYf J/(SSYtotal expl. F)                                               (4) 

where: wj = PLS-weight value; SSY = percentage of explained Y vari-
ance by each specific latent variable; F = number of latent variables of 
the PLS-DA model; J = number of X variables. 

Analyses were carried out using SOLO (Eigenvector Research) soft-
ware [28] and Metaboanalyst 5.0 web server [29]; results obtained with 
these different tools were qualitatively compared. 

3. Results 

3.1. Exploratory analyses 

Fig. 1 shows the PCA model for both datasets (Dataset I and II). The 
preprocessing methods that best suited the model were a combination of 
imputation using median values, autoscale and GLSW. In both cases, the 
PCA model was able to discriminate all classes of samples. No outlier 
sample was identified. 

3.2. Classification models 

Table 1 shows the performance of the ML-based models built using 
SOLO software. The PLS-DA model showed the most promising results 
(high performance) for predicting the diagnosis, severity, and fatality of 
COVID-19 with higher figures of accuracy, sensitivity, and specificity of 
93%, 94% and 97%, respectively (see ROC curve using samples from 
both training and test sets in Fig. 2. The ROC curves using only the 
training set samples are available in supplementary material - Fig. S1). 
Supplementary Material Figs. S2–S7 show the PLS-DA models for pre-
dicting each class of samples. The remaining ML-based models (ANN, 
ANNDA, XGBoostDA, SIMCA, SVM, LREG and KNN) showed poor per-
formance in this study. 

Figs. 3 and 4 (VIP graphs of the PLS-DA models) depict the most 
promising biomarkers for predicting the diagnosis and severity/fatality 
of COVID-19, respectively. The calculation of the VIP scores of these 

Fig. 1. Exploratory data analysis. (A) PCA model of the Thaizhou hospital patient dataset (blood samples from 46 patients with COVID-19 diagnosed by RT-PCR are 
represented by the red triangles; blood samples from 25 patients with pneumonia syndrome but with negative RT-PCR for SARS-CoV-2 are depicted as blue squares; 
blood samples from 25 healthy volunteers with negative RT-PCR are represented by green circles). (B) PCA model of the Wuhan hospital patient dataset (blood 
samples from 28 patients with mild COVID-19 are represented by the blue color squares; blood samples from 36 patients with COVID-19 are represented by pink 
stars; blood samples from 36 deaths by COVID-19 are depicted as red triangles; blood samples from 10 healthy volunteers negative by RT-PCR are depicted as green 
circles). (C) Graph of leverage versus student residuals for the detection of outlier samples in the Thaizhou hospital patient dataset (sample n. 55 had high leverage 
values but was not considered an outlier as it is within ±2.5 standard deviations of student residuals). (D) Graph of leverage versus student residuals for the detection 
of outlier samples in the Wuhan hospital patient dataset (sample n. 25 had high leverage values but was not considered an outlier as it is within ±2.5 standard 
deviations of student residuals). 
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biomarkers (see equation (4) - material and methods section) included 
two parameters: (i) four LVs selected for the PLS-DA model as they 
presented lower calibration error (RMSEC) and cross-validation 
(RMSECV) values (see Figs. S8–S9 in supplementary material), and (ii) 
and the total variance explained by these four selected LVs, which was 
42.84% for block X and 83.53%% for block Y. 

The VIP graph from the PLS-DA model revealed that the most 
important biomarkers for predicting COVID-19 diagnosis were dibutyl 
sulfosuccinate, ortho-cresol sulphate, beta alanine, 4-vinylguaiacol sul-
phate, 4-hydroxyphenylacetoylcarnitine, ribothymidine, glycer-
ophosphoserine and uridine (see Fig. 5). These three last biomarkers 
were found in extremely low concentrations (decreased by factors of 
two, three and four) in patients diagnosed with COVID-19 when 
compared to negative control samples. 

As for the prediction of COVID-19 severity and fatality, six different 
biomarkers were highlighted in the model as most probably associated 

with these outcomes: cyclohexylamine, methyl isobutyrate, 2-Undeca-
none, cysteinylglycine, N-acetyl-glucosamine-1-phosphate and 5,6- 
dihydro-5-methyluracil were increased by factors of three, four, five, 
six, seven and seven, respectively, in patients with severe COVID-19 
when compared to those with acute disease (see Fig. 6). 

The above mentioned analyzes were also carried out (i.e. re-run) 
using Metaboanalyst 5.0; results are available in supplementary mate-
rial (Figs. S10–S13). In this case, the PCA model was not able to 
distinguish the samples from the three classes (COVID-19, non-COVID- 
19, healthy individuals) using the diagnostic data; the accuracy was 
inferior to 80% (i.e. lower than the one obtained in our study [93–94%] 
using SOLO software). Similarly, although the PCA model of the severity 
data was able to distinguish healthy patients from deaths, it was not able 
to classify the other two groups (mild COVID-19 vs. severe COVID-19). 
The accuracy of this model was of around 80%, lower that the one ob-
tained using SOLO (94%–97%). 

Table 1 
Performance of the seven ML-based models.  

Wuhan Hospital dataset (Database I) 

Class Model TP FN TN FP Sensitivity Specificity Accuracy 

Mild COVID-19 ANN 15 13 49 19 0.54 0.72 0.67 
KNN 20 8 53 15 0.71 0.78 0.76 
SVM 23 5 45 23 0.82 0.66 0.71 
PLS-DA 28 0 63 5 1.00 0.93 0.95 
SIMCA 17 11 39 29 0.61 0.57 0.58 
XGboost 25 3 60 8 0.89 0.88 0.89 
LREG 18 10 56 12 0.64 0.82 0.77 

Severe COVID-19 ANN 16 6 65 9 0.73 0.88 0.84 
KNN 15 7 57 17 0.68 0.77 0.75 
SVM 18 4 60 14 0.82 0.81 0.81 
PLS-DA 19 3 71 3 0.86 0.96 0.94 
SIMCA 15 7 41 33 0.68 0.55 0.58 
XGboost 17 5 59 15 0.77 0.80 0.79 
LREG 16 6 66 8 0.73 0.89 0.85 

Deaths by COVID-19 ANN 29 7 50 10 0.81 0.83 0.82 
KNN 24 12 53 7 0.67 0.88 0.80 
SVM 31 5 55 5 0.86 0.92 0.90 
PLS-DA 35 1 58 2 0.97 0.97 0.97 
SIMCA 28 8 43 17 0.78 0.72 0.74 
XGboost 33 3 51 9 0.92 0.85 0.88 
LREG 25 9 46 14 0.69 0.77 0.74 

Healthy (control) ANN 10 0 74 12 1.00 0.86 0.88 
KNN 7 3 67 19 0.70 0.78 0.77 
SVM 9 1 70 16 0.90 0.81 0.82 
PLS-DA 10 0 82 4 1.00 0.95 0.96 
SIMCA 10 0 73 13 1.00 0.85 0.86 
XGboost 10 0 76 10 1.00 0.88 0.90 
LREG 10 0 61 19 1.00 0.71 0.74 

Taizhou Hospital dataset (Database II) 
Class Model TP FN TN FP Sensitivity Specificity Accuracy 
COVID-19 positive ANN 40 6 39 11 0.87 0.78 0.82 

KNN 33 13 40 10 0.72 0.80 0.76 
SVM 41 5 37 13 0.89 0.74 0.81 
PLS-DA 45 1 44 6 0.98 0.88 0.93 
SIMCA 34 12 42 8 0.74 0.84 0.79 
XGboost 39 7 41 9 0.85 0.82 0.83 
LREG 41 5 33 17 0.89 0.66 0.77 

Non-COVID-19 ANN 20 5 59 12 0.80 0.83 0.82 
KNN 14 11 55 16 0.56 0.77 0.72 
SVM 22 3 44 17 0.88 0.62 0.69 
PLS-DA 23 2 64 7 0.92 0.90 0.91 
SIMCA 19 6 42 19 0.76 0.59 0.64 
XGboost 15 10 62 9 0.60 0.87 0.80 
LREG 17 8 49 12 0.68 0.69 0.69 

Healthy (control) ANN 16 9 56 15 0.64 0.79 0.75 
KNN 18 7 63 8 0.72 0.89 0.84 
SVM 16 9 51 20 0.64 0.72 0.70 
PLS-DA 23 2 67 4 0.92 0.94 0.94 
SIMCA 19 6 60 11 0.76 0.85 0.82 
XGboost 21 4 58 13 0.84 0.82 0.82 
LREG 17 8 55 16 0.68 0.77 0.75 

Note: TP = true positive; TN = true negative; FP = false positive; FN = false negative. 
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We also found differences in the identification of biomarkers from 
the PLS-DA models obtained using SOLO vs. Metaboanalyst 5.0 software 
(see Table 2). The analyzes performed in Metaboanalyst 5.0 showed the 
following metabolites in extremely low levels in patients with COVID-19 
compared with those without the disease or healthy volunteers: lino-
leate, palmitate, urea, lactate, carnitine, proline, glycer-
ophosphoethanolamine, stearate, phenylalanine (see Fig. 7). On the 

other hand, the metabolites 6-methylmercaptopurine, dihydrox-
ybenzeneacetic acid, L-phenylalanine, 6-methylmercaptopurine, 4- 
dihydroxybenzeneacetic acid, L-phenylalanine, formylanthranilic acid, 
terephthalic acid and phthalic acid were found in high concentrations in 
patients who died from COVID-19 (see Fig. 8). 

Fig. 2. Area under the ROC curve of PLS-DA model 
performance. Area under the curves (AUC) reflect the 
accuracy of PLS-DA models in predicting patients of 
different COVID-19 classes and healthy volunteers. 
Curves include both sets of samples (training and test 
samples). (A) Thaizhou hospital dataset (dataset II): 
results represent the accuracy in predicting the class 
of patients with COVID-19 diagnosed by RT-PCR 
(AUC = 0.93). (B) Thaizhou hospital dataset (dataset 
II): results represent the accuracy in predicting the 
class of patients with pneumonia syndrome but with 
negative RT-PCR for SARS-CoV-2 (AUC = 0.91). (C) 
Thaizhou hospital dataset (dataset II): results repre-
sent the accuracy in predicting the class of healthy 
volunteers with negative RT-PCR (AUC = 0.94). (D) 
Wuhan hospital dataset (dataset I): results represent 
the accuracy in predicting the class of patients with 
acute COVID-19 (AUC = 0.95). (E) Wuhan hospital 
dataset (dataset I): results represent the accuracy in 
predicting patients with severe COVID-19 (AUC =
0.94). (F) Wuhan hospital dataset (dataset I): results 
represent the accuracy in the classification of deaths 
by COVID-19 (AUC = 0.97).   

Fig. 3. Variable Importance in Projec-
tion graph of the most important bio-
markers for COVID-19 diagnosis (top 
10). X axis represents all analyzed me-
tabolites; Y axis represents the VIP score 
that reflects the importance of each 
metabolite in the prediction of the 
different classes of the samples (COVID- 
19 represented by the red color, non- 
COVID-19 by blue, and healthy volun-
teers in green). The black dashed line 
parallel to the X axis represents the VIP 
score threshold (VIP score threshold = 1). 
Metabolites significantly contributing to 
the prediction of the different classes of 
the samples are above the threshold (VIP 
score> 1); the top 10 biomarkers were 
highlighted in the figure.   
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4. Discussion 

We were able to develop and evaluate the performance of seven 
different ML-based models (ANNDA, PLS-DA, XGBoostDA, SIMCA, SVM, 
LREG and KNN) to predict the diagnosis of COVID-19 as well as disease 
severity and fatality using plasma and serum samples of patients from 
two reference hospitals in China. Over 1300 water-soluble and fat- 
soluble metabolites were assessed. As the course of COVID-19 is 
extremely variable among patients (especially due to emerging SARS- 
Cov-2 mutations and biological variability), the metabolomic profile 
of these cases is also uncertain, thus requiring more robust ML-based 
models [30–32]. 

In our study, the PLS-DA model presented the best performance 
(AUC ROC 87%–97%), with accuracy figures similar to those of other 
ML-based models available in the literature in this field (AUC ROC 70%– 
99%) [33]. The PLS-DA model is currently one of the most commonly 
used ML-based algorithms for analyzing data from metabolomics and 

other omics sciences (e.g. genomics, transcriptomics and proteomics), 
being recommended by experts in the field [34,35]. In fact, a systematic 
review assessing the number of citation of studies published between 
1990 and 2018 and available in Web of Science showed an increase in 
publications citing PLS-DA (n = 2242), while other algorithms (e.g, 
ANN, SVM, RF, logistic regression, deep learning) were less commonly 
mentioned (n = 500) [36]. The main reasons for this include the 
intrinsic characteristics of the PLS-DA, considered a versatile algorithm 
with better predictive and descriptive advantages over other models. A 
recent study performed by Mendes et al. (2019) [35] compared the 
predictive performance of eight ML algorithms (PLS-DA, ANN, 
non-ANN, random forest (RF, radial basis function kernel support vector 
machines (SVM), logistic regression and principal components regres-
sion (PCR)), using 10 clinical metabolomics datasets available in the 
Metabolights and Metabolomics Workbenchre repositories, and re-
ported the PLS-DA as the model with the best performance [35]. 

The PLS-DA is able to forecast highly multivariate data into a space of 

Fig. 4. Variable Importance in Pro-
jection graph of the most important 
biomarkers for COVID-19 severity and 
fatality. X axis represents all analyzed 
metabolites; Y axis represents the VIP 
score that reflects the importance of each 
metabolite in the prediction of the 
different classes of the samples (healthy 
individuals are depicted in blue, mild 
COVID-19 is green, severe COVID-19 is 
in red and death is colored in black). The 
black dashed line parallel to the X axis 
represents the VIP score threshold (VIP 
score threshold = 1). Metabolites signif-
icantly contributing to the prediction of 
the different classes of the samples are 
above the threshold (VIP score> 1); the 
top 10 biomarkers were highlighted in 
the figure.   

Fig. 5. Profile of the top 10 blood biomarkers associated with the diagnosis of COVID-19. Results are grouped according to the classes: healthy (n = 25), non-COVID- 
19 (n = 25) and COVID-19 (n = 46). Boxes indicate the interquartile ranges (median); horizontal lines indicate minimum and maximum values. 
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smaller coordinates called LV (or principal components) that describe 
the variance between input data (e.g. metabolites) and output data (e.g. 
sample class) before regressing to a dependent variable. This allows 
datasets with more variables than samples to be modeled without 
resorting to pre-screening variables (essential for hypothesis-generating 
studies). Additionally, as it considers LV, problems regarding multi-
collinearity between the different metabolites in any biological system 
can be avoided (i.e. LV do not correlate with each other) [35,37]. Once 
optimized, the PLS-DA model can be reduced to a common linear 
regression model, enabling to predict the value of each metabo-
lite/biomarker in the dataset [34,35]. Other ML-based models, 
including multilayer ANN, usually require larger sample sizes to achieve 
a high predictive performance. As a consequence, the number of vari-
ables included in these models is less than the number of samples [5, 
38–41], which is not the scenario of most metabolomic datasets 
[42–44]. In our study, we were able to use a dataset including 180 
samples and 1300 variables. 

Considering the great complexity of metabolomics data and the 
intrinsic properties of this information, missing values, 

heteroscedasticity, poorly informative parameters, and biological vari-
ability are commonplace. Data preprocessing is thus paramount to 
improve the quality of information by transforming the raw data matrix 
into a ‘cleaner’ set [29,45,46]. Several preprocessing strategies are 
available including missing data imputation, filtering, transformations, 
sample-based normalization, metabolite-based normalization, sample 
and metabolite-based and internal standard-based normalization 
[46–48]. This process may be conducted in free online tools such as 
MetaboAnalyst, NOREVA, ANPELA, NormalizeMets, MMEASE e Data 
Analysis [29,46–55]. Another challenge in metabolomic analysis is the 
integration of data from different experiments and the simultaneous 
removal of unwanted biological and experimental variations [55]. 
MMEASE is an online tool that allows merging this data and removing 
the effect of unwanted variations between samples, which increases the 
efficiency of statistical analyzes and leads to more robust and reliable 
results [55]. Data is merged according to the alignment ID for retention 
time (RT) and exact mass (m/z) of a given metabolite considered as a 
reference. If both RT and m/z of the reference metabolite fall within the 
tolerable range, this procedure is automatically applied to the 

Fig. 6. Profile of the top 10 blood biomarkers associated with the COVID-19 severity and fatality. Results are grouped according to the classes: healthy (n = 10), mild 
COVID-19 (n = 28), severe COVID-19 (n = 22) and death (n = 36). Boxes indicate interquartile ranges (median); horizontal lines indicate minimum and 
maximum values. 

Table 2 
Biomarkers for predicting the diagnosis and severity/fatality of COVID-19 according to the PLS-DA models from SOLO software vs. and Metaboanalyst 5.0   

Diagnosis of COVID-19 (Dataset II - Thaizou Hospital) COVID-19 severity/fatality (Dataset I - Wuhan Hospital) 

Rank SOLO Metaboanalyst SOLO Metaboanalyst 

1 Dibutyl sulfosuccinate Oleate N-acetyl-glucosamine-1 phosphate 5-Triiodo-L-thyronine 
2 O-cresol sulfate Linoleate Cys-glicine L-Thyroxine 
3 Beta-alanine Palmitate 5,6Dihydro-5-methyluracil 2-Furanmethanol 
4 Sphingosine 1-phosphate Urea Methyl isobutirate 4-Nitrophenol 
5 4-Vinylguaiacol sulfate Lactate 2-Undecanone 6-Methylmercaptopurine 
6 4-Hydroxyphenylacetoylcarnitine Carnitine Pantothenate 4-Dihydroxybenzeneacetic acid 
7 1,2 Dilinoleoyl-GPC (18:2/18:2) Roline L-Ornithine L-phenylalanine 
8 5-Methyluridine Glycerophosphoethanolamine 2,6 Dihydroxypurine L-citruline 
9 Glicerophosphoserine Stearate Cyclohexilamine Formylanthranilic acid 
10 Uridine phenylalanine 7-methyluric acid Phthalic acid  
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metabolites in the chromatograms of the remaining samples from other 
experiments [55]. Another alternative to eliminate problems from the 
batch effect is to use the Z-score method, which transforms the data to 
mean zero and standard deviation of 1, normalizing the distribution of 
analytical signals [49]. In our study, as only spectra data were available 
(RT of metabolites were absent), the MMEASE method was not 
employed. However, the datasets were standardized using the GLSW 
preprocessing method, which calculates a matrix of filters based on the 
differences between groups of samples that somehow should be ‘similar’ 
[28,56]. According to this method, in the case of classification problems, 
similar samples would be those whose data from the same samples were 
analyzed in different instruments or even in different periods [28,56]. In 
our study, we used two databases of patients with COVID-19 from two 
different experiments, whose samples were obtained by two different 
models of LC-MS equipments and time periods [28,56]. 

Methodological procedures for optimizing the processing of metab-
olomics data are better described in the guidelines of NOREVA 
(Normalization and Evaluation of MS-based Metabolomics Data), Nor-
malizeMets, MMEASE, MetaboAnalyst and ANPELA [29,46–55]. Data 
preprocessing is usually performed in five steps: data filtering and 
missing value imputation (S1), quality control samples correction (S2), 
data transformation (S3), data normalization (S4) and performance 
assessment (S5). During S1, filtering focuses on removing uninformative 
features considered as intrinsic properties of the metabolomic data, 
while imputation seeks to replace missing or invalid values arising from 
technical/biological reasons with specific values based on available in-
formation, thus preserving the structure of the dataset, and reducing the 
imprecision or limitation of the analyses. The correction of quality 
control samples (S2) aims to reduce interference from harmful or un-
controllable signals in the metabolomic data to guarantee the stability 
and consistency of the data based on quality control samples. This allows 
to correct problems related to the variation in signal strength, intra- and 

inter-sample variability, and deviations in quality accuracy. In stages S3 
and S4, the transformation and normalization of the metabolomic data 
aims to correct problems of heteroscedasticity and unwanted variations, 
transforming the distribution of asymmetric data into symmetrical ones, 
while preserving the existing variables. Finally, S5 consists on evalu-
ating the performance of the pre-processing data based on five criteria: 
(i) ability to reduce intragroup variation among samples (metric: pooled 
median absolute deviation); (ii) effect on differential metabolic analysis 
(metric: purity); (iii) method’s consistency in markers discovered from 
different datasets (metric: relative weighted consistency); (iv) method’s 
influence on classification accuracy (metric: area under the curve); (v) 
level of correspondence between normalized and reference data (metric: 
log fold changes of the concentrations) [29,46–55]. In our study, the 
above-mentioned steps of data preprocessing were followed (i.e. impu-
tation of missing values and filtering of data by means of GLSW were 
employed [28,57]; data were normalized using autoscale [52]). Median 
imputation is a widely used method in metabolomics, as unlike the 
mean, it is not affected by extreme values (outliers), which preserves the 
structure of the data and provides a more reliable value of the dataset 
[28,52]. Autoscale is an approach based on mean-centering followed by 
the division of each column or variable (e.g. protein or any other 
metabolite) by the column standard deviation, assuming that all me-
tabolites are equally important [28,57]. 

Recent studies using blood or urine samples from patients diagnosed 
with COVID-19 highlighted that some biomarkers predict the severity 
and fatality of the disease. Yao et al. (2020), by using the SVM model, 
found that high levels of neutrophils were associated with more severe 
cases [58], while Patterson et al. (2020), through the random forest 
model, highlighted that an increase in interleukin 6 (IL-6) and 
interferon-gamma (IFN-γ) is related to a worse prognosis [59]. 
Conversely, using SOLO (Eigenvector Research) software we found 
different and new biomarkers potentially associated with the disease 

Fig. 7. Variable Importance in Projection (VIP) graph of the most 
important biomarkers for COVID-19 diagnosis (web server Metaboanalyst 
5.0). The Y axis represents the top 10 most important metabolites in predicting 
COVID-19 diagnosis and the X axis represents the VIP score that reflects the 
importance of each metabolite in the prediction of the different classes of the 
samples (COVID-19, non-COVID-19, and healthy volunteers). The change from 
blue to red color is proportional to the increase in the intensity of the 
biomarker signal. 

Fig. 8. Variable Importance in Projection (VIP) graph of the most 
important biomarkers for COVID-19 severity/fatality (web server Metab-
oanalyst 5.0). The Y axis represents the top 10 most important metabolites in 
predicting the severity of COVID-19 and the X axis represents the VIP score that 
reflects the importance of each metabolite in the prediction of the different 
classes of the samples (death, severe COVID-19, mild COVID-19, healthy in-
dividuals). The change from blue to red color is proportional to the increase in 
the intensity of the biomarker signal. 
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course. High levels of ribothymidine, 4-hydroxyphenylacetoylcarnitine 
and uridine were associated with COVID-19 positivity, whereas high 
levels of N-acetyl-glucosamine-1-phosphate, cysteinylglycine, methyl 
isobutyrate, ornithine and 5,6-dihydro-5-methyluracil were related to 
COVID-19 severity and fatality. Differences among study findings may 
be due the different samples (i.e. type of sample, origin), the multifac-
torial pathophysiological course of the disease [60] that has not yet been 
fully elucidated [61,62], as well as the different analytical method-
s/models employed by the authors. Regarding this last, we also found 
that the analyzes conducted in SOLO software resulted in models with 
higher predictive performance compared to those from in Metab-
oanalyst 5.0 and identified different biomarkers for COVID-19 diagnosis 
and severity/fatality prediction (see qualitative comparison in Table 2). 
This may be due the differences on the preprocessing methods. While 
SOLO enables the combination of autoscale and GLSW, the Metab-
oanalyst 5.0 applies only this first approach, meaning that GLSW was, in 
this case, a determinant factor for obtaining more robust models. 
Although SOLO is not a free software, it allows the selection of different 
preprocessing strategies, providing further autonomy to the analysts, 
which should be considered when developing ML-based studies. 

Currently, COVID-19 is broadly considered a viral respiratory and 
vascular illness. Yet, it can affect other major organs such as those of the 
gastrointestinal tract and the hepatobiliary, cardiovascular, renal, and 
central nervous systems. Recent evidence shows that SARS-CoV-2 can 
cause dysbiosis in the faecal microbiota and modify the oral and respi-
ratory tract microbiome, leading to changes in the levels of several 
microbial metabolites in the blood or in their metabolic pathways 
[63–65]. Although evidence on the matter is still scarce, it has been 
reported that microbiota is responsible for around 50% of all blood 
metabolites [65], which raises questions about its role on multifactorial 
diseases, such as COVID-19 [63]. 

Li et al. (2019), by evaluating the nasopharyngeal microbiota profile 
of patients with COVID-19, found that positive samples were signifi-
cantly enriched with the signature of two bacterial taxa (Cutibacterium 
and Lentimonas) and had a lower abundance of other bacterial taxa, 
including Prevotellaceae. The latter is a family of the phylum Bacter-
oidetes commonly found in the oral and faecal microbiota, recently 
associated with the metabolite ribothymidine (methylated nucleoside), 
which was increased in COVID-19-positive samples in our study. When 
overexpressed, these proteins actively contribute to the severity of 
pneumonia and pneumonia-like symptoms and are thus potential bio-
markers for disease diagnosis and severity [66,67]. Similarly, high levels 
of 2-undecanone, a long-chain volatile organic compound usually pro-
duced during hospital-acquired bacterial infections caused by Pseudo-
monas aeruginosa [68,69], may be associated with severe cases of 
respiratory infections, including COVID-19. This substance can be found 
in patients with cystic fibrosis [70]. In fact, pulmonary fibrosis is a 
serious complication of some viral pneumonias, often leading to dysp-
noea and impaired lung function. Patients with confirmed COVID-19 
were found to have different degrees of pulmonary fibrosis at and 
after hospital discharge [71]. Sphingosine 1-phosphate (a product of 
membrane sphingolipid metabolism or secreted from cells), acts through 
G protein-coupled receptors and regulates immune cell trafficking, 
diverse immunological processes and fibrosis [72]. The pathway of this 
metabolite is implicated in normal pulmonary vasculature function; it 
appears to be impaired in acute lung dysfunction, while it is induced 
during chronic fibrosis. Further studies on the alteration of levels of this 
compound in COVID-19 are needed to elucidate its role in infection. 

Another microbial metabolite, now associated with oral bacteria 
causing caries and periodontitis (e.g. Porphyromonas gingivalis, Prevotella 
sp. and Tannerella forsythia), is methyl isobutyrate [73]. Metagenomic 
analyses of patients infected with SARS-CoV-2 demonstrated high reads 
of cariogenic and periodontopathic bacteria, endorsing the notion of a 
connection between the oral microbiome and COVID-19 complications 
[73]. We also found high levels of cyclohexylamine (a potential carci-
nogenic compound eliminated in the urine) in patients with severe 

COVID-19. This probably occurs due to another dysbiosis caused by 
SARS-CoV-2, which allows the hyperproliferation of intestinal bacteria 
that metabolize cyclamate (an artificial sweetener still used in some food 
categories in China) [74,75]. Other compounds that are commonly 
found in foods and manufactured products (e.g. tobacco smoke) are the 
cresols (xenobiotics). O-cresol and 4-vinylguaiacol are converted to 
sulphates through phase II metabolism (i.e. a joint process between the 
microbiome and the host), and eliminated through the urine [76]. Pre-
vious studies demonstrated low levels of o-cresol sulphate and 4-vinyl-
guaiacol sulphate in COVID-19 patients, which can be due to the high 
rates of urinary elimination of these metabolites (e.g. possible kidney 
damage caused by the disease) [77]. 

COVID-19 might also negatively impact body weight and nutritional 
status [78]. This may occur due to loss of appetite and reduced nutrient 
intake, patients’ fear and stress regarding the disease and metabolic 
alterations in caused by the infection. For instance, the metabolite 
4-hydroxyphenylacetoylcarnitine, found to be increased in patients with 
COVID-19 in our study, belongs to tyrosine metabolism and has been 
previously associated with overweight in patients with metabolic syn-
drome. Other studies also reported an increase in inflammation and 
serum levels of leptin in COVID-19 patients as in other infectious dis-
eases that can contribute to anorexia [79–81]. These metabolites should 
be further investigated as potential biomarkers of viral infection 
severity. 

Another important metabolite is uridine, a pyrimidine nucleotide for 
RNA synthesis that is associated with glucose homeostasis, lipid and 
amino acid metabolism, regulation of glycogen synthesis and lipid 
deposition [82]. During its catabolism, uridine is converted into 
β-alanine, followed by secretion to the brain and muscle tissues. 
Beta-alanine and histidine are components of carnosine, a molecule with 
proven anti-inflammatory, antioxidant and anti-glycating effects [83]. In 
our first model, levels of beta-alanine were found to be low in COVID-19 
patients, while those of uridine were high. This may indicate inhibition 
of uridine catabolism during the course of the infection. A recent study 
found a significantly low ratio of arginine/ornithine among adults and 
children infected with SARS-Cov-2. Ornithine and citrulline are amino 
acids resulting from the breakdown of arginine by the arginase enzyme. 
The depletion of these substances may contribute to endothelial 
dysfunction, T-cell dysregulation and coagulopathies that are commonly 
observed in COVID-19 [84]. The high level of ornithine in COVID-19 
patients that was reported in our study may indicate increased activity 
of the arginase enzyme. 

N-acetyl-glucosamine-1-phosphate (GlcNAc-1-P) is a substrate of the 
biosynthetic pathway of hexosamines, converted by the enzyme UDP- 
GlcNAc pyrophosphorylase into UDP-GlcNAc (this metabolite can use 
the O-glycosylation route). This conversion is an important step in the 
production of cytokines during influenza virus infection, as demon-
strated in vivo models (murine models) [85]. Researchers believe that 
inhibition of the hexosamine pathway is a mechanism used by respira-
tory viruses, including SARS-Cov-2, to infect host cells [86,87]. The 
elevated level of GlcNAc-1-P in patients with severe COVID-19 reveals a 
potential modification of the hexosamine biosynthetic pathway. Addi-
tionally, as GlcNAc-1-P is an intracellular component, its presence in the 
plasma indicates the existence of cellular damage. SARS-CoV-2 infection 
leads to pyroptosis, which is usually more prevalent in severe cases. 
More than half of hospitalized COVID-19 patients present high levels of 
lactate dehydrogenase, another marker of cell damage [88,89]. Regu-
lators of oxidative stress such as cysteinylglycine, an intermediate 
metabolite in the glutathione metabolic pathway, have also been asso-
ciated to cell damage in viral diseases. High levels of oxidized cys-
teinylglycine were reported in HIV-infected individuals and also related 
to a higher risk of lung damage in COVID-19, probably due increased 
oxidative stress [90,91]. Other metabolites such as 5,6-dihydro-5-me-
thyluracil (dihydrothymine), an intermediate breakdown product of 
thymine, may act as markers of DNA damage [92]. We found that the 
levels of this substance were high in patients with severe COVID-19, but 
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recent studies demonstrated that the spike protein from SARS-CoV-2 can 
inhibit repair of damaged DNA [93]. Other metabolites identified at 
extremely low levels in patients with COVID-19 (e.g. linoleate, palmi-
tate, urea, lactate, carnitine) when using the Metaboanalyst 5.0 soft-
ware, or those found at high levels in patients who died from the disease 
(e.g. 6-methylmercaptopurine, L-phenylalanine, terephthalic acid) 
should also be further evaluated. 

Our study has some limitations. Although we used approximately 
1300 different biomarkers for model training and validation, these may 
not accurately represent the universe of metabolites available in the 
blood. Yet, it was possible to obtain models with high performance 
(accuracy >90%) for the prediction of diagnosis, severity and fatality of 
COVID-19 that can be used in daily practice. Seven different ML-based 
models grounded in data from two different sets from China were 
built in our study; however, other datasets and algorithms may lead to 
different findings. 

5. Conclusion 

In this study, seven different ML-based algorithms (PLS-DA, KNN, 
XGboost, SVM, ANN, SIMCA and LREG) were built to predict the diag-
nosis, severity and fatality of COVID-19 using two different databases. 
The PLS-DA model presented the best performance, with an accuracy of 
approximately 93%. This model can aid in the early diagnosis of COVID- 
19 and guide disease management with additional interventions tailored 
to daily practice. Finally, some of the biomarkers associated with the 
diagnosis and prognosis of COVID-19 found in the sample set of our 
study (i.e. 5,6-dihydro-5-methyluracil, cysteinylglycine, ribothymidine, 
sphingosine 1-phosphate, cyclohexylamine, uridine and ornithine) have 
previously been mentioned in the scientific literature, which reinforces 
their role in infection. Conversely, we reported for the first-time addi-
tional biomarkers (i.e. N-acetyl-glucosamine-1-phosphate and 4-hydrox-
yphenylacetoylcarnitine) that should be evaluated further as prognostic 
indicators of COVID-19. 
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