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ABSTRACT

We provide experimental evidence of a replication
enhancer element (REE) within the capsid gene
of tick-borne encephalitis virus (TBEV, genus
Flavivirus). Thermodynamic and phylogenetic
analyses predicted that the REE folds as a long
stable stem–loop (designated SL6), conserved
among all tick-borne flaviviruses (TBFV).
Homologous sequences and potential base pairing
were found in the corresponding regions of
mosquito-borne flaviviruses, but not in more genet-
ically distant flaviviruses. To investigate the role
of SL6, nucleotide substitutions were introduced
which changed a conserved hexanucleotide motif,
the conformation of the terminal loop and the
base-paired dsRNA stacking. Substitutions were
made within a TBEV reverse genetic system and
recovered mutants were compared for plaque
morphology, single-step replication kinetics and
cytopathic effect. The greatest phenotypic
changes were observed in mutants with a
destabilized stem. Point mutations in the conserved
hexanucleotide motif of the terminal loop caused
moderate virus attenuation. However, all mutants
eventually reached the titre of wild-type virus late
post-infection. Thus, although not essential for
growth in tissue culture, the SL6 REE acts to
up-regulate virus replication. We hypothesize that
this modulatory role may be important for TBEV
survival in nature, where the virus circulates by
non-viraemic transmission between infected and
non-infected ticks, during co-feeding on local
rodents.

INTRODUCTION

Tick-borne encephalitis virus (TBEV) is a human
pathogen that causes about 16 000 human cases of
tick-borne encephalitis (TBE) across Europe and Asia
annually (1–3). Taxonomically, TBEV is a species within
the mammalian tick-borne flaviviruses (mTBFV).
Together with the seabird tick-borne flavivirus group
(sTBFV), they comprise one ecological group of
tick-borne flaviviruses (TBFV) within the genus
Flavivirus, family Flaviviridae. Two other ecological
groups within the genus Flavivirus are the mosquito-borne
flaviviruses (MBFV) and flaviviruses with no-known
vector (NKV) (4). A fourth group including Kamiti
River virus (KRV) (5), cell fusion agent virus (CFAV)
(6) and Culex flavivirus (CuFV) (7) have been isolated
only from mosquitoes with no demonstrated capacity to
replicate in mammals and are under consideration by the
ICTV Committee for classification as ‘probably
arthropod-borne viruses’ (PABV).

Flavivirus virions are �50-nm particles with a nucleo-
capsid composed of capsid (C) protein surrounding
a positive-sense single-stranded RNA genome of �11 kb.
The capsid is enclosed in a lipid membrane within which
the viral membrane (M) and envelope (E) proteins are
embedded. The genome encodes a single polyprotein of
approximately 3400 amino acids from which the three
structural (C, M and E) and seven non-structural (NS1,
NS2A, NS2B, NS3, NS4A, NS4B and NS5) proteins are
processed by cellular and viral proteases (8).

Flavivirus genome replication involves synthesis of
a negative-sense template strand by the RNA-dependent
RNA polymerase (RdRp; NS5pol) from which additional
genome-sense strands are transcribed. This process is
controlled by numerous RNA–RNA and RNA–protein
interactions determined by virus RNA sequence motifs
and secondary structures, called cis-acting replication
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elements (CRE), mapped to the 50- and 30-untranslated
regions (UTR) that flank the single open reading frame
(ORF) of the genome (9–15).

The concept of promoter and enhancer function during
replication has been introduced recently in relation to the
flavivirus CREs (16). The promoter has been identified as
a complex of highly conserved interacting RNA structures
recruited from the 50- and 30-UTR to assemble viral
and cellular proteins into a functional RdRp complex.
In evolutionary terms, the 30-UTR of the TBFV group is
formed by four conserved long imperfectly repeated
sequences (LSRs), genetic remnants of which are
revealed in the MBFV, NKV and PABV groups (17).
It has been proposed that the 50-UTR may have evolved
from a trans-terminal duplication of the archival flavivirus
30-UTR (16).

An additional complexity in flavivirus replication is the
presence of replication enhancer elements (REEs) in the
30-UTR that, while not obligatory for replication of
laboratory-maintained viruses, are likely essential for
virus circulation and transmission in nature (16, 18).
Engineered deletions or modifications of the REEs
enable the recovery of viable viruses that are attenuated
as a result of reduced RNA synthesis (10, 19–22). The cu-
mulative effect of several REEs enhances the assembly
of the RdRp complex and is probably critical to the
survival of flaviviruses in nature (23). The REEs identified
for MBFV have become an important target for the
development of a live attenuated vaccine for dengue
virus (24, 25).

The relatively compact nature of the flavivirus genome,
together with constraints imposed by the need to replicate
in vertebrate and invertebrate hosts, means that additional
CRE sequences may be present in parts of the genome
other than the non-coding regions. Indeed, RNA second-
ary structures have been predicted within the coding
region of several flaviviruses (26–28). Here, using bioinfor-
matic and reverse genetic analysis we demonstrate that the
capsid-encoding region of TBEV contains an REE which
we designate SL6 (26, 27). Phylogenetic evidence suggests
that the MBFV group also contains at least a partial
SL6-like structure, though it is absent in the NKV or
PABV groups. The significance of these findings in the
context of flavivirus evolution and adaptation to transmis-
sion is discussed.

MATERIALS AND METHODS

Sequence and structural analysis

Genbank accession numbers for sequences from all four
groups of flaviviruses (TBFV, MBFV, NKV and PABV)
used for in silico analysis are listed in Supplementary
Table S1. RNA nucleotide sequences were aligned using
ClustalX (29) and then edited manually. Nucleotide and
dinucleotide scans and analysis of suppression of
synonymous site variability (SSSV) were determined by
mean pair-wise distance comparison at each codon
within the ORF using the Simmonics 1.6 package
(http://www.picornavirus.org/), as previously described
(30). SSSV was calculated only at aligned codon positions

in which over 40% of sequence comparisons were
synonymous and averaged over a sliding window of
21 codons; consequently, data point are only produced
from codon 11.
RNA secondary structures were predicted using the

MFold 3.2 and DINAMELT packages (http://mfold
.bioinfo.rpi.edu/) with default settings (31, 32).
Phylogenetically conserved RNA structures were
predicted using STRUCTURE_DIST (http://www.
picornavirus.org/) to analyze connect files generated
using hybrid-ss-min from the UNAFold suite of
programs (32).

Cells and viruses

Porcine embryo kidney cells (PS) have been used in
experiments with TBEV strain Vasilchenko (Vs) and its
infectious clone (pGGVs) as described previously (33–35).

Plasmids and site-directed mutagenesis

The construction of the infectious clone pGGVs for Vs
virus and methods of mutagenesis have been described
(34, 36). Briefly, the pGGVs was subcloned into two
plasmids; one, pGGVs660 contained the first 660 nt of
the virus genome and the second pGGVs660–10927
included the remainder. Site-directed mutagenesis was
accomplished by PCR (details of primers are available
on request). Mutated PCR products were cloned into
the pGGVs660 between MluI and EcoRI sites followed
by sequencing.

Recovery of viruses from infectious clone

The recovery of virus from the two plasmids representing
the infectious clone has been described previously (34–36).
Briefly, plasmid pGGVs660 (or mutated derivatives) was
digested with PspAI, dephosphorylated with Shrimp
Alkaline Phosphatase (SAP; USB) and, after heat-
inactivation of SAP, digested with AgeI. Similarly,
pGGVs660–10927 was digested with NotI, dephospho-
rylated and then digested with AgeI. The excised linker
DNA fragments from pGGVs660 and pGGVs660–10927
were removed using MicroSpinTM S-400 columns
(Pharmacia Biotech) and ligated at the AgeI site
generating full-length cDNA which was linearized with
SmaI and used as a template for SP6 transcription (34).
In vitro-synthesized RNA was inoculated intracerebrally
into suckling mice to recover the mutant viruses which
were not passaged further prior to phenotype evaluation
(35). Recovered viruses were amplified by RT–PCR
between nucleotides 1–940 (50-UTR-C-prM region of
the TBEV genome) and 10206–10927 (30-UTR), and
sequenced to validate the presence of the introduced
mutations and to exclude extraneous mutations at the
50-UTR and 30-UTR (36).

Analysis of virus replication cycle and cytopathic effect

For growth curves, monolayers of PS cells in 96-well
plates were infected with viruses at a multiplicity of
infection (moi) of 1 PFU/cell, in quadruplicates. The
inoculum (30 ml) was removed after 1 h, the monolayer
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washed thoroughly and replaced with 200 ml of media con-
taining 2% serum. Media (10 ml) was collected at different
time-points (8, 12, 16 and 24 h post-infection) and stored
frozen at �70�C, before virus quantification by plaque
assay. For cytopathic effect (cpe), PS cell monolayers
were infected in 96-well plates at an moi of 1 PFU/cell,
in quadruplicates, and stained with naphthalene black
after 72 h.

Statistical analysis

Statistical analysis was performed on the data obtained
from the virus growth curve studies and the evaluation
of cpe in PS cells. For growth curves, the data were
plotted to include the standard error of the mean (SEM)
for each data set. At any given time point divergence by at
least 2 SD from the mean, between wild-type and mutant
viruses, was taken as significant. Measurement of cpe was
done visually by three independent evaluators in a ‘blind’
manner. The cpe of viruses were estimated on a scale of
1–4 corresponding to 20–40, 40–60, 60–80 and 80–100%
of monolayer destruction following microscopic examin-
ation. The interevaluator consistency error was verified
using F-test which revealed no one evaluation was
significantly different from that of the others.

RESULTS

In silico analysis of RNA structures in flaviviruses

Previous in silico studies have predicted a stable RNA
structure designated SL6, in the C protein-encoding
region, for a limited number of viruses within the
mTBFV subgroup (16, 26–28). Structural RNA elements
were also revealed in the C region of some MBFV (28)
although their homology to SL6 of TBFV had not been
established. Here, we utilized a variety of independent
structure prediction methods and a much larger sample
of viral sequences to analyze whether or not the SL6-like
structure was conserved throughout the entire genus
Flavivirus.

In silico analysis of SL6 in the TBFV subgroup

It was found that the overall folding of the first 333 nt of
TBFV was highly conserved among several members of
the mTBFV subgroup (16, 26–28), with six stable SLs
(enumerated 1–6 in Figure 1A). This analysis was
extended to investigate the conservation of SL6 in the
larger group of distantly related mTBFV, sTBFV and
KADV (37). A nucleotide alignment of the C region was
generated and optimized by the introduction of numerous
gaps (Supplementary Figure S1A); it shows that divergent
RFV, GGYV and KSIV (distant virus species of the
mTBFV) maintained homology in the SL6 region.
However, some nucleotide perturbations in the SL6
region were observed between mTBFV, sTBFV (MEAV,
TYUV and SREV) and KADV proving that the region
between the initiation codon and SL6 had evolved with
frame shifts as we previously demonstrated (16). We con-
ducted MFold analysis to investigate the presence of
SL6-like structures in the distantly related mTBFV

(RFV, GGYV and KSIV), sTBFV and KADV groups
(Figure 1B).

Despite sequence divergence, all viruses in the mTBFV
group formed similar SL6-like structures when the 333 nt
or a longer nucleotide region (up to 1000 nt) was used
for MFold analysis (data not shown). The SL6-like
folds contained a remarkably high number of co-variant
and semi-covariant substitutions which maintained
the general conformation across divergent viruses
(Figure 1B). The minimum free energy dG of folding for
SL6 varied between �32.3 and �17.2 kcal/mol with RFV
and LIV/GGYV as extremes in this range. Although
KADV had a shorter SL6 compared with other TBFVs,
the energy of folding was �17.32 kcal/mol, within the
range found for mTBFV.

In comparison to SL6 of the mTBFV, the SL6 of
sTBFV was shorter and less stable, with a dG in the
range �12.5 to �10.6 kcal/mol (Figure 1B). However,
the SL6-like structures of sTBFVs were observed as
elements of longer and branched RNA conformations
(data not shown).

A smaller terminal loop was revealed in the KFDV/
AHFV and KSIV sequences resulting in the formation
of the tetraloop U(GCCA)A (Figure 1B). The presence
of U:A as a loop-closing base pair has been shown to
decrease tetraloop stability considerably; in combination
with some intraloop sequences this results in intermo-
lecular tensions that prevent the folded tetraloop from
achieving a global thermodynamic minimum (38,39).
Thus, despite the MFold-mediated predictions, a
tetraloop may not form for KFDV/AHFV and KSIV or
at least not be sufficiently stable for biologically significant
(RNA–RNA or RNA–protein) interactions.

The conservation of a UGCCAA hexanucleotide motif
in the terminal loop of SL6 in all the divergent TBFVs was
striking. Both TYUV and KADV showed one substitution
in the hexanucleotide UGCCUA; TYUV has also lost the
first nucleotide (Supplementary Figure S1A).

In the minus-sense orientation, the conservation of an
SL6-like structure was not as robust as in the positive-
sense. Although most of the TBFVs formed a structure
in the minus-sense RNA, the number of hydrogen bonds,
the lengths of the stems and free minimal energy of folding
varied significantly even between closely related viruses
(data not shown). Consequently, the formation of SL6
is likely to be biologically significant only in the
positive-sense RNA.

Structure predictions correlated with evidence for SSSV
in TBFV genomes (Figure 2). A remarkable drop in SSSV
was observed in the SL6 region between positions 209 and
254 of the Vs sequence. The most extreme drop in vari-
ability was observed in a window centred on position 221
within the apical stem of SL6. The levels of SSSV within
the remainder of the structural protein-encoding region
(positions 295–2435) were higher than the upstream
portion. Similarly, high levels of SSSV were observed
across the non-structural portion of the genome between
positions 322 and 2425 (data not shown).

We excluded the possibility that SSSV in the C-coding
region was due to codon bias by analyzing nucleotide
composition at each position within the codons.
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Figure 1. Conservation of SL6 among the TBFVs. (A) MFold-simulated RNA secondary structure (stable stem loops numerated 1–6) between
nucleotides 1–333 of the Vs virus genome. The 50-CYCL, initiation AUG codon and conserved hexanucleotide UGCCAA are outlined. (B)
Comparison of SL6 between TBFV species. Numeration in brackets corresponds to SL6 numbered from the start codon of each virus (abbreviated
in Table S1). Free energy dG values of folding are shown in kcal/mol. Covariant and semi-covariant substitutions are underlined on Vs virus.

Continued
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No unusual variation of G/C or purine/pyrimidine com-
position was observed at the third codon position or at
positions one or two of the codon (not shown). Likewise,
we analyzed the dinucleotide composition at all three
possible positions. Although there was a general
under-representation of CpG and UpA, and over-
representation of CpA and UpG, there was no correlation
between areas of SSSV and regions of unusual dinucleo-
tide frequencies (data not shown). These results indicated
that evolutionary constraints restrict nucleotide variation
within the 50-coding regions of flavivirus genomes.
The phylogenetic conservation of thermodynamically

stable RNA structures across all TBFV group
ORFs was further analyzed using the program
STRUCTURE_DIST (Figure 2) (40). This method
quantifies phylogenetically concordant structures pre-
dicted using the widely accepted MFold or UNAFold
algorithms, which can then be aligned and overlaid with
SSSV results (31,32). Analysis of the entire ORF showed

the most striking evidence for conserved base-pairing
between the initiation codon at position 133 and
position 318, after which a large drop in the frequency
of base-paired nucleotides was observed. Within this
region SL6 was predicted to be the most significant struc-
ture, with conserved pairing between 209 and 254 centred
on a region with a conserved lack of base pairing between
positions 228 to 236, representing the unpaired apical
loop of SL6. The base-paired stem of SL6 contained
conserved short single-stranded regions between positions
218–220 and nucleotides 244 and 245 consistent with
the unpaired bulge, either side of the paired stem. This
corresponds exactly to the position and structure of SL6
predicted by MFold (Figure 1 and Supplementary
Figure S1A).

In silico prediction of SL6 in the MBFV group

An annotated nucleotide alignment of the C-coding region
between TBFV and three MBFV groups (JEV, DENV

Figure 1. Continued.
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Figure 2. Phylogenetic conservation of RNA structures in the TBFV and MBFV groups across the 50-UTR and structural protein coding regions.
Black lines represent SSSV for TBFV, DENV, JEV and YFV. Gray filled bars represent phylogenetic conservation of base pairing from a
STRUCTURE_DIST pair-wise comparison of connect files generated by MFold.
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and YFV) was constructed based on a previously
presented alignment (16) but modified to include newly
sequenced distantly related mTBFV, sTBFV and KADV
isolates (Supplementary Figure S1A). The C protein
TBFV/MBFV alignment (available on request) was used
to anchor the divergent nucleotide sequences. The
annotations include the 50-CYCL of MBFV, an 8-nt
long cyclisation domain highly conserved between all
MBFVs (16). The 50-CYCL interacts with a complemen-
tary sequence 30-CYCL in the 30-UTR to form a dsRNA
panhandle, a vital element of the replication promoter that
initiates viral RNA synthesis (16). For the TBFV the 21-nt
long 50-CYCL is located in the 50UTR (i.e. outside the
alignment in Supplementary Figure S1A; highlighted in
Figure 1A). The 50-CYCL for MBFV mapped to the
capsid gene and, among the TBFV, aligns optimally
with a region that is identified only in TUYV
(Supplementary Figure S1A).
Nucleotide sequence homology was observed between

the TBFVs and MBFVs particularly in the SL6 region of
some JEV group viruses. For example, WNV was
observed to share both the stem and loop sequences of
TBFV SL6 (Supplementary Figure S1A). It is of note
that the SL6-like region of MBFV maps directly down-
stream of the highly conserved 50CYCL (Supplementary
Figure S1A).
MFold was used to test the ability of these regions to

form SL6-like structures within each MBFV group and
the stem and loop elements of these SL6-like structures
were superimposed onto the TBFV/MBFV alignment
(Supplementary Figure S1A). This comparison revealed
that structures predicted within each MBFV group show
not only sequence but also structural homology with SL6
of the TBFV group. This alignment was further annotated
with RNA structures predicted by the ALIDOT-based
analysis of entire flavivirus genomes of 11 000 nt (28),
i.e. JE2, JE3 and JE4 for JEV; DV2 and DV3 for
DENV and YF4 for YFV (Supplementary Figure S1A).
For all MBFVs with the exception of YFV the
MFold predictions were somewhat different from those
made using ALIDOT, most likely due to the shorter
length of the regions (60–80 nt) used for the MFold
analysis. Additional statistical methods, SSSV and
STRUCTURE_DIST were used to assess the conserva-
tion of the SL6 homologous structures for each of the
major MBFV groups (Figure 2).
For the JEV group the mean SSSV between positions

117–358 (start codon at position 97) was consistent with
ALIDOT-predicted RNA structures JE2, JE3 and
JE4 (Supplementary Figure S1A) (28). However, the
SL6-like structure for the JEV group was clearly predicted
by STRUCTURE_DIST analysis (brown box in
Supplementary Figure S1A), in accordance with MFold
and alignment analysis.
For the DENV subgroup, a marked region of SSSV was

revealed in the C-coding region between positions 155–257
(start codon at position 95) when compared with the rest
of the structural coding region (Figure 2), consistent with
RNA structure DV3 previously predicted between
nucleotides 163–183 (28) (Supplementary Figure S1A).
Both ALIDOT-predicted DV2 and DV4 (28) fall

immediately either side of the region of maximum SSSV
suggesting that they are less conserved than DV3
(Supplementary Figure S1A). STRUCTURE_DIST also
predicts the formation of the DV2 and DV3 but not the
SL6-like structure (Supplementary Figure S1A and
Figure 2). However, a truncated SL6-like structure was
predicted to form in all DENV serotypes, albeit at a sub-
optimal energy level, when the SL6-like region was folded
independently from neighboring regions that form more
stable overlapping structures (Supplementary Figure
S1A). Taken together, these data indicate that the
DENV SL6-like structure was the least stable conform-
ation among the MBFVs, potentially preventing its
prediction by statistical approaches used here and
elsewhere (28). Despite this, the short-stem region of
putative DENV SL6-like structures is highly conserved
within the DENV group (DENV serotypes 1–4) and also
between DENV and JEV (Supplementary Figure S1A)
suggesting that a linear or conformational signal at this
location might have some functionality.

A similar restriction in SSSV was observed in the YFV
C-coding region, with maximum SSSV corresponding to
the ALIDOT-predicted structure YF4 (Figure 2) (28).
Among the MBFVs, only the YFV SL6-like structure
was predicted by both thermodynamic and phylogenetic
methods.

In summary, a proximally truncated SL6-like structure
was predicted in all MBFV groups, although it was less
stable in the DENV group, particularly the DENV3
serotype.

In silico prediction of SL6 in the NKV and PABV groups

In contrast to TBFV and MBFV, the NKV and PABV
groups are not arboviruses and their replication is limited
to only one natural host, i.e. rodents/bats (NKV) or
mosquitoes (PABV). The high nucleotide divergence
(Supplementary Figure S1B and S1C) and limited
number of complete published sequences for members of
the NKV and PABV groups precluded the use of both
phylogenetic and thermodynamic approaches to RNA
structure prediction. When MFold analysis was per-
formed with available sequences, no thermodynamically
stable RNA structures were observed in the region corres-
ponding to the TBFV SL6 region. However, an SL6-like
structure, with a similar apical loop CCAA motif was
observed in KRV (PABV), upstream of the analogous
TBFV SL6.

Experimental evidence supporting the predicted
structure lSL6

Strategy of mutagenesis on stem–loop 6. Initial design of
mutations focused on synonymous codon positions.
However, in all but a few instances, this was limited due
to the distinctive sequence organization of the apical loop
and base paired stem. The first and third codons of the
conserved MPN tripeptide (loop region) are limited in
respect of variation; M could not be changed and N has
two possible silent variations both of which are outside the
apical loop (Figure 3). Consequently, when mutating the
terminal loop sequence UGCCAAAU, silent substitutions

7040 Nucleic Acids Research, 2011, Vol. 39, No. 16

http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr237/DC1


could only be introduced into the P codon. Similar
difficulties were encountered with mutagenesis of the
stem, in which the vast majority of possible synonymous
and non-synonymous mutations resulted in no significant
conformational changes. The MFold-simulated folding of
numerous SL6-mutants revealed a high level of evolution-
ary ‘protection’ of SL6 against spontaneous single
mutations (not shown) and provides additional evidence
for the maintenance of SL6 functionality.

In order to resolve the difficulties with design of muta-
tions, three different approaches were adopted (Figure 3).
First, we introduced all possible silent substitutions, to
target the conserved hexanucleotide and the stem
(mutants C12, C13, C14, C16 and C33). Second, we
introduced mutations (C10, C15, C17, C19 and C34)
that mimicked ‘natural’ amino acid substitutions
observed in this region of other mTBFV spp. Third,
as a control for mutations that changed amino acids we
also introduced compensatory substitutions encoding the
same mutated amino acids while restoring the SL6 struc-
ture. Accordingly, mutations R32, S31, N28, V39, V39 and
P28 were designed as controls for non-synonymous
mutants C22, C23, C27 and C34 (Figure 3).

The predicted impact of each substitution (Figure 3) on
the secondary structure of SL6 is shown in Figure 4. The
plaque characteristics, cpe and growth dynamics of each
mutant compared with those of original pGGVs virus
(Table 1 and Figure 5). Single-step growth curves
revealed differences of �1 log10 between the mutants
early after infection (12–16 h p.i.) which were reproducible
and statistically significant (Figure 5).
To exclude the effect of spontaneous mutations in the

50- and 30-UTRs which contain TBFV promoter and
enhancer elements (16) that might compensate for the
effect of the SL6-mutations, rescued virus was not
passaged prior to phenotype evaluation and key regions
of the genome (1–940 and 10206–10927) were sequenced
following recovery of each SL6-mutated virus. Only the
intended substitutions were present, with no reversions or
other compensatory mutations were observed. The effect
of each mutation (reduction from large wild-type plaques
of the pGGVs virus to medium, small or pin pointed) was
scored if the SL6-mutated strain contained >90% of
plaques with the altered morphology. The presence of
a minor plaque population (between 1 and 10%) was con-
sidered as the inevitable result of the variation inherent

T   R   Q   S   R   V   Q   M   P   N   G   L   V   L   M   R  
14533362452632822902
||||||||

TBEV    L40361     ACG CGU CAA UCC AGA GUC CAA AUG CCA AAU GGA CUC GUG UUG AUG CGC TRQSRVQMPNGLVLMR TBEV
C10                ... ... ... ... ... ... ... ... ... ..G ... ... ... ... ... ... .........K...... C10 
C11                ... ... ... ... ... ... ... ... ... ..C ... ... ... ... ... ... ................ C11 
C12                ... ... ... ... ... ... ... ... ..G ... ... ... ... ... ....... ................ C12 
C13                ... ... ... ... ... ... ... ... ..C ... ... ... ... ... ... ... ................ C13 
C14                ... ... ... ... ... ... ... ... ..U ... ... ... ... ... ... ... ................ C14 
C15                ... ... ... ... ... ... ... U.. ... ... ... ... ... ... ... ... .......L........ C15 
C16                ... ... ... ... ... ... ..G ... ... ... ... ... ... ... ... ... ................ C16
C17                ... ... ... ... ... ... .C. ... ... ..G ... ... ... ... ... ... ......P..K...... C17 
C19                ... ... ... ... ... ... ... C.C ... ... ... ... ... ... ... ... .......L........ C19 
C21                ... ... ... ... ... ... ..U ... ... ... ... ... ... ... ... ... ......H......... C21 
C22                ... ... ... ... ... ... AGG ... ... ... ... ... ... ... ... ... ......R......... C22 
R32 ... ... ... ... ... ... .G. ... ... ..C ... ... ... ... ... ... ......R......... R32
C23      ... ... ... ... ... UCA ... ... ... ... ... ... ... ... ... ... .....S.......... C23 
S31 ... ... ... ... ... AG. ... ... ... ... ..C U.G ... ... ... ... .....S.......... S31
C27                ... ... A.U ... ... ... ... ... ... ... ... ... ... ... ... ... ..N............. C27 
N28V39 ... ... A.C ... ... ... ... ... ... ... ... ... ... G.U ... ... ..N..........V.. N28V
V39 ... ... ... ... ... ... ... ... ... ... ... ... ... G.U ... ... .............V.. V39
C33                ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... A.G ................ C33 
C34                ... ... .CC ... ... ... ... ... ... ... ... ... ... C.C ... ... ..P............. C34 
P28 ... ... .C. ... ... ... ... ... ... ... ... ... ... ... ... ... ..P............. P28

TBEV SIB AF527415  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ................ TBEV
TBEV FE  DQ989336  ... ... ... ..G ..G ... ... ... ... ... ... ... ... ... ... ... ................ TBEV
TBEV FE  AB049401  ... ... ... ..U ..G ... ... ... ... ... ... ... ... ... ... ... ................ TBEV
TBEV WE  AB062063  ... ... ... ..U ..G ... .G. ... ... ..C ... ... ... ... ... ... ......R......... TBEV
TBEV WE  M77799 ... ... ... C.. ... ... ... ... ... ... ..G ..U ... ... ... ... ...P............ TBEV
TBEV WE  U39292 ... ... ... C.. ... ... ... ... ... ... ..G ... ... ... ... ... ...P............ TBEV
LIV    NC_001809   ... ... ... ..U ... ... ... ... ... ... ... ..G ... ... ... ... ................ LIV 
LGTV   NC_003690   ... ... ..G .UG C.G ... ... ... ... ... ... ..U ..A C.. ... ... ...AV.........L. LGTV
OHFV      005062   ... ... ... CG. GUG ... ... ... ... ... ... ..A ... ... .A. ... ...L............ OHFV
POWV      L06436   U.. ..A .C. G.A .CG AG. .C. ... ... ..G ..C U.. ... C.. UC. ... S.PAUSP..K.F..S. POWV
KFDV      X74111   ... ... ... GGA CC. .G. .G. U.. ... ..C ..U ..G ..A ... ... ... ...GPGRL........ KFDV
ALKV   NC_004355 ... ... ... GGA CC. .G. .G. U.. ... ... ... ..G ... ... ... ... ...GPGRL........ ALKV

A B

Figure 3. Site-directed mutagenesis of SL6. Nucleotide (A) and amino acid (B) alignments of SL6 sequences within C gene of mTBFV and mutants
produced from the infectious clone of TBEV. Viruses are specified in Supplementary Table S1. Sequence of Vs virus is on the top; nucleotide and
amino acid substitutions are shown by letters. The conserved hexanucleotide UGCCAA is underlined. SL6 region is located between nucleotides
209 and 254 and amino acids 26–41 of the Vs virus genome. Unpaired terminal loop of SL6 is highlighted by a gray box.
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in all RNA viruses, the consequence of a high error rate in
the virus RdRp (41).

Sequence changes in the apical loop of SL6. In mutants
C12, C13, C14, C16 and C19 substitutions within the
apical loop changed the nucleotide sequence without
altering the overall conformation (Figures 3 and 4).
Four of these mutations C12, C13, C14 and C19 were
introduced into the conserved hexanucleotide UGCCAA.
Silent mutations C12, C13 and C14 changed plaque
morphology; the C13 and C14 mutants that contain
purine-to-pyrimidine substitutions also showed reduced

growth characteristics and cpe (Table 1 and Figure 5).
Silent substitution C16, located outside the conserved
hexanucleotide in SL6, did not affect the virus phenotype.

Two purines were changed for two pyrimidines
in mutant C19, one in the conserved hexanucleotide.
This mutant was highly attenuated in cell culture
producing no cpe and a small turbid plaque phenotype
(Figures 3–5 and Table 1). These two purine–pyrimidine
substitutions resulted in the amino acid substitution
M33!L that mimicked the corresponding natural amino
acid in KFDV and AHFV (Figure 3). Nevertheless,
M33!L, mutant C15, produced by different nucleotide

Figure 4. Effect of point mutations on SL6 conformation as predicted by MFold. Point mutations are shown in circles. Names of the mutants are
indicated on the top. Free dG energy of folding is indicated underneath each structure.
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substitutions had only a moderate effect on virus replica-
tion (below). Therefore, the biological consequences of
mutation C19 may be attributed, at least partially, to the
nucleotide substitutions.

Conformational changes to the apical loop of
SL6. Mutations C10, C11, C15, C21, C22 and C23
changed the shape of the loop and base-paired stem
within SL6 (Figure 4). Replication of mutant C10 (with
an enlarged loop and shortened stem) and C17 (restored

wild type conformation due to the second compensatory
mutation) was delayed in the early stage of the infection
cycle; C17 caused slightly reduced cpe but the plaque
morphology of both was equivalent to that of the
parental pGGVs virus (Figure 5 and Table 1).
The minor phenotypic changes resulting from these muta-
tions could be explained by the accompanying amino acid
substitutions N35!K and Q32!P imitating POWV
(Figure 3). However, a silent substitution A234!G that
also enlarged the apical loop of mutant C11 (Figure 4)

Table 1. Affect of mutations within the SL6 on TBEV phenotype

Plaque size for each mutant was defined as large (5–6mm), medium (3–4mm), small (1–2mm) or pinpointed (>1mm). Some plaques, in comparison
with parent Vs virus, were described as turbid. The cpe produced by each mutant in comparison to the wild-type virus was evaluated on a scale of 0–
4 where 0 indicates no cpe and 4 is maximum cpe (i.e. 80% cell lysis as observed for the control pGGVs virus) in five repeated experiments, each in
quadruplicates. Nt/AA* - Nucleotide/amino acid substitutions.
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caused similar biological effects; it did not affect virus
plaque size or level of cpe, but reduced virus replication
rate early after infection (Figure 5 and Table 1).
Mutation C15, which shortened the apical loop

(Figure 4), did not affect virus growth but changed the
plaque morphology and delayed the development of cpe
(Table 1 and Figure 5). The C15 mutation altered the
amino acid M33!L, which imitates the KFDV/AHFV
group (Figure 3), potentially contributing to the
observed biological effect. Mutation C21 that reduced
the apical loop size (Figure 4) interfering with exposure
of the hexanucleotide, also had a moderate affect on virus
growth although the accompanying effect of amino acid
substitution Q32!H (Figure 3) cannot be excluded
(Table 1 and Figure 5).
Mutant C22 contained three substitutions that consid-

erably increased the size of the apical loop thus shortening

the base paired stem. Three nucleotide substitutions
present in mutant C23 had the opposite affect in shrinking
the apical loop (Figures 4). Both C22 and C23 had altered
growth dynamics, plaque morphology and cpe (Table 1
and Figure 5). The nucleotide substitutions of both led
to amino acid substitutions Q32!R and V31!S, respect-
ively. To exclude their influence on virus growth, counter-
part ‘control’ mutants R32 and S31 were analyzed, with the
same amino acid substitutions but without alteration of
the SL6 conformation (Figures 3 and 4). Both of these
control mutants exhibited wild-type plaque morphology
and cpe characteristics (Table 1).

Substitutions in the stem of SL6. Three mutants were
designed to investigate the influence of SL6 stem length.
Most attempts to design synonymous substitutions had
little effect on the stem folding conformation. Only silent

Figure 5. Affect of mutations within SL6 on TBEV replication kinetics, measured by growth curves over time. The PS cells were infected with
control pGGVs (solid line) and SL6-mutant virus (dashed lines) at an moi 1 PFU/cell and supernatant medium was collected at time-points 8, 12, 16
and 24 h post-infection (axis x). The virus titres (log10PFU/ml; axis y) were estimated by plaque assay. Each curve represents the average value of
virus titre estimated in four parallel experiments, repeated twice. Error bars represent 2 SD from the mean.
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mutant C33 (C253!A and C255!G) exhibited a signifi-
cantly shortened duplex stem, with a corresponding
elevated level of dG folding energy. These positions are
highly conserved among the mTBFV (Figure 3) and, as
expected, had a profound effect on virus replication; C33
displayed pinpoint plaques, reduced growth characteristics
and almost no cpe (Table 1 and Figure 5).

Two other mutants C27 and C34 had shortened stems
due to the formation of a large internal bulge (Figure 4),
and exhibited profoundly altered biological characteristics
(Table 1 and Figure 5). However, C27 and C34 included
amino acid substitutions Q28!N and Q28!P, respective-
ly, the latter resembling POWV (Figure 3). To rule out the
amino acid change as influential, two mutants were
designed as a control for C27; double mutant N28V39

and single mutant V39, neither of which affected SL6
conformation (Figure 4). Similarly mutant P28, a control
for C34, contained the same amino acid substitution
Q28!P but maintained SL6 conformation (Figures 3
and 4). All three control mutants, N28V39, V39 and P28,

displayed wild-type large plaque phenotype and cpe
(Table 1).

DISCUSSION

In a previous study using MFold-simulated RNA struc-
tures for a limited number of mTBFV species, we
predicted the existence of SL6 in the C-coding region of
TBFV. A conserved hexanucleotide UGCCAA in the
apical loop and compensatory mutations in the duplex
stem of the SL6 implied the formation of the stable
RNA structure in ORF of the TBFV genomes (26,27).
However, contradicting these findings a deletion within
the C-coding region, which included SL6, did not
prevent recovery of viable, albeit attenuated, TBEV (42).
In this study, we employed a variety of complementary
phylogenetic and thermodynamic methods to examine
the evolutionary conservation of SL6 using a much
larger sample of significantly divergent TBFVs, including
new members of the mTBFV, sTBFV and Kadam sub-
groups (37). The viruses in the other ecological groups,
namely MBFV, NKV and PABV were also included in
this analysis to trace the evolution of SL6 throughout
the entire genus Flavivirus. In addition, we used a
reverse genetic system (34,36) to engineer TBEV strains
with mutated SL6 to reveal the biological significance of
this structure.

Thermodynamic and phylogenetic analysis of large
sequence data sets indicated that all TBFVs including
even the distantly related mTBFV, KADV and sTBFV
form an SL6-like structure with an exposed conserved
hexanucleotide although the molecular details of the
predicted stem–loop varied among the mTBFV, sTBFV
and KADV subgroups (Figure 1B). In similar manner,
an SL6-like structure has been predicted for MBFV
although with less stability in comparison to SL6 in
TBFV. Two other flavivirus groups NKV and PABV
demonstrated no significant sequence homology with the
TBFV SL6 region although the genome of KRV (PABV
group) formed a thermodynamically stable structure in

close vicinity to the TBFV SL6 with a similar terminal
loop motif CCAA (TBFV—UGCCAA) (Supplementary
Figure S1).
To test the biological significance of SL6 in the TBFV

group we engineered 21 mutant viruses with point muta-
tions that altered the linear sequence of the unpaired
apical loop or destabilized the base-paired stem.
Substitutions within the conserved hexanucleotide loop
down-regulated virus growth kinetics whereas changes in
the terminal loop outside the hexanucleotide sequence did
not alter the observed phenotype. The most significant
changes of virus phenotype resulted from substitutions
that distorted the stem of SL6; mutations that influenced
the length or stability of the stem resulted in the recovery
of viruses that formed small and/or turbid plaques.
Increasing or decreasing the size of the apical loop had a
minor biological effect on virus replication although this
could also be interpreted as an effect of the altered stem
length. However, the changes in replication kinetics from
all modifications of SL6 were moderate and manifested
themselves predominantly during the early stage of the
virus replication cycle (Table 1).
Previous analysis of RNA secondary structure across

the Flavivirus genus led to the concept of promoter and
enhancer elements that initiate assembly of the virus poly-
merase complex (16–18,23,27,43,44). Enhancers were
identified as RNA structures that individually produce
only small biological effects on virus replication.
However, the significance of enhancers as targets for the
attenuation of flaviviruses to engineer live vaccines is
evident from the example of dengue virus (24,25).
Moreover, sequence and structural conservation of
flavivirus enhancers is consistent with a role as key
players in virus survival in the natural environment. We
previously proposed that the cumulative action of several
enhancer elements could contribute significantly to the
overall rate of assembly of polymerase complexes,
thereby enhancing virus survival across a range of
natural hosts (17,18,23,27,43,44). In this respect, the pre-
sented experimental data indicate that SL6 belongs to the
category of REEs, i.e. RNA structures that accelerate the
replication of viruses (45–56). This eliminates the apparent
contradictions between extremely high levels of SL6 con-
servation across divergent TBFV virus species and the re-
dundancy of this element for the replication of
laboratory-maintained TBEV strains (45–56). However,
the specific mechanism by which SL6 functions to
enhance virus replication remains to be elucidated.
It has recently been demonstrated that a short but

highly conserved RNA hairpin (sHP) localized in the
30-UTR of DENV2 RNA regulates the transition from a
circular (required for the initiation of RNA replication) to
linear RNA form during the progress of viral RNA syn-
thesis (57). The SL6-like structure of MBFV is localized
immediately downstream of the 50-CYCL (i.e. within the
capsid gene, Supplementary Figure S1A) suggesting it
could also contribute to genome circularization. It is
possible that in accord with the 30 sHP (highly conserved
throughout the genus Flavivirus), it contributes to the
unpairing of the 50–30-CYCL panhandle, to promote
RNA elongation on the linear template. In contrast, the
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50-CYCL of TBFV is mapped to the 50-UTR (i.e. upstream
of the capsid gene, Figure 1A) and therefore other tenta-
tive functions of the TBFV SL6 are not excluded, such as
enhancing virus translation, RNA replication or playing
a role in regulation between these processes; the possibility
of a kissing-loop enhancer of genome circularization was
previously discussed (17,18,23,27,43,44).
The C protein of flaviviruses is highly basic at the

N-terminus, specifically binding virus genomic RNA
during encapsidation and plausibly acting as an RNA
chaperone as shown for other viruses (58). The sequence
of SL6 within the C coding region localizes to the junction
of the positively charged domain and a following hydro-
phobic domain that interacts with the virus envelope
proteins during assembly (42). It is possible that additional
synonymous codon flexibility may be accommodated in
this region due to the requirement to conserve the
charge or hydrophobic characteristics of the domain,
rather than any specific amino acid sequence.
Although our studies provide support for the REE role

of SL6 in TBEV it is unclear if SL6-like structures of
MBFV act similarly as functionally significant REE.
However, the remarkable resemblance of the WNV
SL6-like structure to TBFV SL6 suggests that it might
serve a similar function, at least in one virus group.
However, a final conclusion for the MBFV and also for
the more distant NKV or PABV groups is not possible
ahead of further functional studies.
Being arboviruses, MBFVs and TBFVs are adapted for

transmission between distantly related vertebrate hosts
and invertebrate vectors. The requirement to adapt to
different molecular environments might result in the evo-
lution of enhancer elements essential for virus replication
in one host while being redundant in another. This could
explain the contradiction between strict conservation
of the different flavivirus enhancers and their apparent
redundancy in laboratory systems, which are largely based
on mammalian cells (17,18,23,27,43,44). Mutations in
SL6 described here have demonstrated its enhancer
properties in mammalian cells and it will be interesting
to evaluate SL6 enhancer activity in ticks, the major
host for maintenance of the TBFV group in the environ-
ment (59–61).
In conclusion, bioinformatic analysis demonstrated the

presence of a conserved RNA secondary structure in the C
coding region of the divergent TBFV group. Disruption of
this structure compromised virus replication implying
an REE function for SL6. By homology with the
TBFVs, SL6-like structures were observed in the
genomes of some MBFVs and plausibly indicate a
similar role as replication enhancers. Future studies
using sub-genomic replicons will allow direct measure-
ment of the influence of these sequences on RNA replica-
tion and on interaction with viral and host proteins.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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