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Abstract: Microplastics (MPs) (including nanoplastics (NPs)) are pieces of plastic smaller than 5 mm
in size. They are produced by the crushing and decomposition of large waste plastics and widely
distributed in all kinds of ecological environments and even in organisms, so they have been paid
much attention by the public and scientific community. Previously, several studies have reviewed the
sources, occurrence, distribution, and toxicity of MPs in water and soil. By comparison, the review
of atmospheric MPs is inadequate. In particular, there are still significant gaps in the quantitative
analysis of MPs and the mechanisms associated with the toxic effects of inhaled MPs. Thus, this
review summarizes and analyzes the distribution, source, and fate of atmospheric MPs and related
influencing factors. The potential toxic effects of atmospheric MPs on animals and humans are also
reviewed in depth. In addition, the common sampling and analysis methods used in existing studies
are introduced. The aim of this paper is to put forward some feasible suggestions on the research
direction of atmospheric MPs in the future.

Keywords: microplastics; atmosphere; distribution; characteristics; toxicity; quantitative analysis

1. Introduction

A significant number of previous studies have emphasized the ubiquitous presence of
microplastics (MPs) in the oceans [1], freshwater bodies [2,3], and soil [4], along with food
items, drinks [5], seasonings [6], and aquatic organisms (Figure 1). Microplastic pollution
in the environment can be caused by several factors, including landfills [7]; dumping and
application of sewage sludge [8]; fiber shedding of synthetic textiles; transportation (wear
of tires, brakes, road signs, etc.) [9]; and other human activities, including industrial plastic
pellet preproduction [10], plastic mulching and grinding in agricultural [11], fisheries,
and tourism [12]. After being released into the environment through different pathways,
these microplastics experience the process of degradation (physicochemical fragmentation,
chemical aging, biological degradation, etc.) [11] and translocation [13] under different
environmental conditions. Finally, they enter animals and humans through skin contact,
oral ingestion, inhalation, and other ways and continue to get enriched [14]. After entering
the body, microplastics may produce a variety of negative effects, such as decreased growth
rate [15], inflammatory response [16] and oxidative stress [17], and metabolic disorders [18].
In severe cases, they can penetrate organs [19,20], tissues [21], and even cells [22], causing
toxic effects. Because microplastics have a large specific surface area and strong adsorption
capacity, they easily adsorb various inorganic pollutants, such as Cu, Pb, and Cd, [23] and

Nanomaterials 2021, 11, 2747. https://doi.org/10.3390/nano11102747 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://doi.org/10.3390/nano11102747
https://doi.org/10.3390/nano11102747
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11102747
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11102747?type=check_update&version=2


Nanomaterials 2021, 11, 2747 2 of 20

organic pollutants, e.g., PCBs [24], PAHs [18], and polybrominated diphenyl ethers [25].
Even some microplastics themselves contain additives with a certain toxicity, and some
studies have shown that microplastics combined with these pollutants pose a serious threat
to organisms.
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Figure 1. Cycle of microplastic pollution in ecosystems.

MPs in the air have been identified as particulate air pollutants and paid great attention
recently [26]. However, at present, the research on environmental MPs is mainly focused
on the aquatic ecosystem, and the number of studies on atmospheric MPs is limited, which
is a limitation to further understanding the environmental characteristics and negative
effects of atmospheric MPs. The small size of MPs, especially nanoplastics (NPs), facilitates
their emissions into the air [27] and long-distance transportation [28] and can cause adverse
effects on animals and humans through respiratory inhalation [29]. Critical analysis is
urgently needed to open new ways of thinking about atmospheric MPs in the future.

In this review, the research progress on atmospheric MPs in recent years is summa-
rized, including the following: (1) the global distribution of atmospheric MPs and their
influencing factors, (2) the origin and fate of atmospheric MPs, (3) advances in sampling
and analysis of atmospheric MPs, (4) toxicological impacts of MPs in the atmosphere on
animals and humans, and last but not the least (5) the existing gaps in each part and the
corresponding future research directions.

2. The Global Distribution of Atmospheric MPs and Associated Influencing Factors
2.1. Distribution Profile

At present, the relevant studies on the distribution of MPs mainly pay attention to the
water and soil environment and the number of studies about atmospheric MPs is limited
(Table 1). The earliest research on the distribution of atmospheric MPs can be traced back
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to Dris et al. collected and analyzed samples of outdoor air in Paris’s urban areas, where
the concentration of MPs ranged between 29 and 280 items/m2/day. The size of MPs
ranged from 0.1 to 5 mm, and the shapes mainly included fibers and fragments [30]. In
another study, Dris et al. measured that the number of MPs in indoor air in Paris reached
5.4 items/m3, while that in outdoor air in the same area was only 0.9 item/m3, indicating
indoor human activities among the major sources of MPs in indoor settings [31].
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Table 1. Distribution and abundance of plastics in the atmosphere.

Location Year Sample Type MP Type Shape
Concentration
(Item/Particle

Number)
Size Reference

Paris 2014 Urban outdoor air
deposition NA Fiber, fragment 29–280/m2/day 0.1–5 mm [30]

Paris 2014–2015 Urban outdoor air
deposition NA Fiber 110 ± 96/m2/day 0.05–5 mm [32]

Paris 2014–2015 Suburban outdoor air
deposition NA Fiber 53 ± 38/m2/day 0.05–5 mm [32]

Paris 2015 Urban indoor air PA, PP, PE Fiber 0.4–59.4 (5.4)/m3 0.05–3.25 mm [31]

Paris 2015 Urban outdoor air PA, PP, PE Fiber 0.3–1.5 (0.9)/m3 0.05–1.65 mm [31]

Dongguan 2016 Urban outdoor air
deposition PE, PP, PS Fiber, foam,

fragment, film 175–313/m2/day
Minimum: <0.2

mmMaximum: >4.2
mm

[33]

Yantai 2016 Urban outdoor air
deposition PET, PVC, PE, PS Fiber, fragment, film,

foam
2.33 × 1013/160

km2/year
0.05–1 mm [34]

Sakarya 2016–2017 Crowded area outdoor air PA, PUR, PE, PP, PES Fiber, fragment 9067–30,793/L 0.05–0.5 mm [35]

Edinburg 2017 Indoor air of houses NA Fiber 5 ± 33/sample NA [36]

Trent catchment 2017–2018 River catchment air
deposition NA Fiber 2.9–128.42/m2/day NA [37]

Shanghai 2018 Municipal outdoor air
PET, PE, PES, PAN,
PAA, RY, EVA, EP,

ALK

Fiber, fragment,
granule

0–4.18 (1.42 ±
1.42)/m3 23.07–9554.88 µm [38]

Shanghai 2019 Urban outdoor air PET, EP, PE, ALK, RY,
PP, PA, PS

Fiber, fragment,
microbead 0–2 (0.41)/m3 12.35–2191.32 µm [39]

Asaluyeh 2017 Urban and industrial
outdoor air NA Fiber, fragment, film 0.3–1.1/m3 2–100 µm [40]

West Pacific Ocean 2018–2019 Ocean air

PET, PE, PE-PP, PES,
ALK, EP, PA, PAN,
PR, PMA, PP, PS,

PVA, PVC

Fiber, fragment,
granule, microbead

0–1.37 (0.06 ±
0.16)/m3 16.14–2086.69 µm [41]



Nanomaterials 2021, 11, 2747 5 of 20

Table 1. Cont.

Location Year Sample Type MP Type Shape
Concentration
(Item/Particle

Number)
Size Reference

Pyrenees 2017–2018 Remote air deposition PS, PE, PP, PVC, PET Fiber, fragment, film 365 ± 69/m2/day
Minimum: <0.025

mmMaximum: >2.6
mm

[42]

Hamburg 2017–2018 Urban and rural outdoor air
deposition

PE, EVA, PTFE, PVA,
PET Fragment, fiber 136.5–512/m2/day

Minimum: <0.063
mmMaximum: >0.3

mm
[43]

Aarhus 2017 Indoor air of apartments PES, PA, PS, PE, PUR Fragment, fiber 1.7–16.2 (9.3 ±
5.8)/m3 4–398 µm [44]

London 2018 Urban outdoor air
deposition

PAN, PES, PA, PP,
PVC, PE, PET, PS,
PUR, petroleum,

resin, acrylic

Fragment, film,
granule, foam 771 ± 167/m2/day 75–1080 µm [45]

Karimata Strait 2019 Strait air PET Fiber 0–0.8/100 m3 382.15 [46]

Pearl River Estuary 2019 River estuary air PA, PEP, PET, PP Fiber 3–7.7/100 m3 288.2–1117.62 µm [46]

South China Sea 2019 Ocean air PET, PEVA, PP Fiber, fragment 0–3.1/100 m3 286.1–1861.78 µm [46]

East Indian Ocean 2019 Ocean air PAN-AA, PET, PP, PR Fiber, fragment 0–0.8/100 m3 58.591–988.37 µm [46]

Beijing NA Urban outdoor air
deposition NA Fiber

Surface layer: 5.7 ×
10−3/mLRoof: 5.6 ×

10−3/mL
5–200 µm [47]

Alcalá de Henares-
Guadalajara,
Valladolid

2020 Rural and sub-rural PBL air PET, PA, acrylic Fiber
Rural area:

1/sampleSub-rural
area: 3/sample

0–9.8 µm [27]

Guadalajara 2020 Urban PBL air PU, PS, PA, acrylic Fragment, fiber 6/sample NA [27]

Madrid 2020 Urban PBL air PA, PU, PET, PB, PE,
PP Fragment, fiber 12/sample NA [27]

PA: polyamide; PP: polypropylene; PE: polyethylene; PS: polystyrene; PET: polyethylene terephthalate; PVC: polyvinyl chloride; PUR: polyurethane; PES: polyester; PAN: polyacrylonitrile; PAA: poly(N-
methyl acrylamide); RY: rayon; EVA: ethylene vinyl acetate; EP: epoxy resin; ALK: alkyd resin; PR: phenoxy resin; PTFE: Teflon; PVA: polyvinyl acetate; PEVA: poly(ethylene-co-vinyl acetate); PEP:
poly(ethylene-co-propylene); PAN-AA: poly(acrylonitrile-coacrylic acid); PB: polybutadiene; PU: polyurethane; PBL: planetary boundary layer; NA: not available.
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Subsequently, studies on atmospheric MPs have been carried out around the world,
including a dozen countries and regions in Asia [33,34,38,39,47], Europe [36,43,45], and
the Arctic [48]. The survey areas include urban sites, such as municipal areas [38], apart-
ments [31], offices [31], industrial areas [40], terminals [35], and universities [47], as well
as suburbs [32], rural areas [27], mountains [42], straits [46], estuaries [46], oceans [41,46],
glaciers [28], and even the planetary boundary layer (PBL) [27]. These studies suggest that
MPs exist in the atmosphere worldwide, from near the ground level up to 1.5 km high.

2.2. Influencing Factors
2.2.1. Vertical Concentration Gradient

Similar to other air particle pollutants, the concentration of atmospheric MPs near
the ground is much higher than that at high altitudes due to the influence of gravity [49].
Li et al. also demonstrated this phenomenon by collecting atmospheric plastic particle
deposition on the ground and on the roof of buildings in the urban areas of Beijing, where
the concentration of particles in the former was higher than that in the latter [47]. However,
this does not mean that MPs in the atmosphere are not worth taking seriously. Gonzalez-
Pleiter et al. found MPs in the atmospheric particulate matter samples collected by the
spacecraft in the planetary boundary layer (PBL) [27]. These studies suggest that MPs are
ubiquitous in atmospheric environments, ranging from near the ground to high altitudes.

2.2.2. Meteorological Conditions

Dris et al. found that rainfall affects the sedimentation rate of microplastic fibers in
the atmosphere of Paris. When rainfall is 0–0.2 mm/day, 2–34 items/day are recorded.
When the rainfall reaches 2–5 mm/day, the amount of sediment increases to 11–355
items/day [32]. This indicates that rainfall has a significant effect on the precipitation
behavior of atmospheric MPs. Boucher et al. pointed out that 7% of atmospheric MPs are
transported into the ocean by wind [50], indicating that low-density atmospheric plastic
particles can pollute other ecosystems through the wind as a medium. However, Prata et al.
believe that atmospheric microplastic particles have properties similar to other particulate
pollutants and meteorological factors such as wind, precipitation, and temperature will
have an impact on their concentration changes [49]. These studies indicate that meteo-
rological conditions are a significant factor influencing the distribution characteristics of
atmospheric MPs.

2.2.3. Indoor and Outdoor Atmospheric Settings

Numerous studies have shown that the concentration of MPs in the indoor air environ-
ment is much higher than that in the outdoor within the same area. Dris et al. conducted
a study on the outskirts of Paris in 2015, where they analyzed microplastic fibers in the air
outside and inside apartments and found that these man-made fibers are mostly polypropylene
(PP). Moreover, the fiber concentration in indoor air (0.3–1.5 (0.9) items/m3) was significantly
higher than that in outdoor air (0.4–59.4 (5.4) items/m3) [31]. When the outdoor environment
is crowded enough, the concentration of MPs in the atmosphere can reach very high levels.
Kaya et al. analyzed the concentrations of atmospheric MPs in universities and terminals with
a large population in Sakarya Province, Turkey, in 2016–2017, and found concentrations of
particles as high as 10,495–30,822 particles/L [35]. The high concentration of airborne MPs in
indoor and crowded outdoor environments may be attributed to similar conditions of high
population density and poor particle dispersion capacity.

2.2.4. Regional Environmental Conditions

Varying distribution of atmospheric MPs was observed in different regions. The
concentrations and types of atmospheric MPs in different urban areas have similarities
and differences. Cai et al. analyzed the concentration of MPs (175–313 items/m2/day) in
the urban air of Dongguan in 2016 and found that the content of fibers in the air was the
highest (90.1%), followed by fragments (6.8%), film (2.9%), and foam (0.2%)) [33]. In the
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same year, Zhou et al. carried out a similar investigation in the urban area of Yantai and
found that the concentration of atmospheric MPs was 130–640 particles/m2/day, with a
higher occurrence of fiber (95.05%), followed by fragments (4.04%), film (0.73%), and foam
(0.18%) [34]. The concentration of atmospheric MPs varies in different regions, which may
be influenced by local meteorological conditions, the topography, the urban heat island
effect, and other factors [51]. However, the types of atmospheric MPs in different regions
and urban areas show high similarity. Fibers are observed as the absolute dominant shape for
atmospheric MPs, while fragment, film, and foam MPs appear in significantly low quantities.
It is known that microplastic fibers mainly come from synthetic textiles. Fragments may come
from disposable plastic bags, film may be obtained by breaking thick plastic products, and
foam may come from foamed plastics [33]. It is suggested that the atmospheric MPs in central
urban areas mainly come from the shedding of synthetic textiles.

Atmospheric MP concentrations often differ between urban and suburban areas.
Dris et al. collected and analyzed the deposition from the air in the urban and sub-
urban areas of Paris during 2014–2015, and the concentration of MPs in the former
(110 ± 96/m2/day) was much higher than that in the latter (53 ± 38/m2/day) [32]. The
higher intensity of human activity in urban areas may have contributed to higher concen-
trations of atmospheric MPs. The similarity of occurrence between the two (mainly fiber)
may be due to atmospheric migration that leads to regional homogenization.

However, it appears that not all suburban and remote areas have a low atmospheric
microplastic distribution. Allen et al. collected atmospheric sediments from the Pyre-
nees Mountains in France in 2017–2018 and reported an MP concentration of 365 ± 69
items/m2/day. It was dominated by polystyrene and polyethylene. The occurrence was
fragments (68.0%), film (20.0%), and fiber (12.0%) [42]. Ambrosini et al. collected and
analyzed atmospheric sediment samples from the Forni Glacier in the Alps in 2018, and the
concentration of MPs in the samples was 74.4 ± 28.3 items/kg of sediment. MP polymer
types included polyester (39%), polyethylene (9%), polyamide (9%), and polypropylene
(4%). Fibers accounted for 65.2%, and fragments accounted for 34.8% [52]. It can be seen
that remote areas may also have high concentrations of atmospheric MPs and there are
great differences in the concentrations and types among different regions.

At present, due to large differences, it is still difficult to draw a clear picture of the
regional distribution of atmospheric MPs, to identify the most polluted areas, so it is
necessary to master more methods to study atmospheric MPs.

2.3. Gaps in and Prospective Research on Distribution Characteristics of Atmospheric MPs

From the above-reviewed studies, we found that the current research on the distri-
bution of atmospheric MPs is relatively limited and there is a lack of clear and systematic
studies. To this end, we propose the following for future research:

(1) It is difficult to confirm the extent of MP pollution in the atmosphere around the
world. It is suggested that systematic spatial and temporal studies be conducted on
the distribution of MPs in the atmosphere, to further clarify the concentrations, types,
and occurrence of atmospheric MP pollution in different regions and determine the
sources, distribution, and fate of atmospheric MPs in different regions.

(2) We found that the experimental methods for studying atmospheric MPs in the past
papers were different and no standard methods for collection and characterization of
MPs were validated, which greatly reduced the experimental efficiency. In addition,
the measurement criteria and units used were so varied that it is hard to intuitively
make a comparison with the experimental findings of researchers using different stan-
dards (e.g., there is no way to compare the concentrations of MPs in units of m2/day
and m3/day). It is suggested that the use of more efficient sampling and analysis
methods be unified and the industry standards for measuring MP concentration, type,
and occurrence be standardized.
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3. Sources of Atmospheric MPs
3.1. Sources
3.1.1. Synthetic Textiles

Synthetic textiles are a major source of atmospheric MPs. The output of synthetic
textiles in the world has been growing gradually year by year. Since the annual output
exceeded 60 million tons in 2016, it has been growing steadily by about 6%/year [53]. The
commonly used plastic raw materials in synthetic textiles include fiber with polymers of
polyamide (PA), polypropylene (PP), polyacrylonitrile (PAN), polyester (PET), polyvinyl
formaldehyde (PVDF), polytetrafluoroethylene (PTFE), etc. In the use of synthetic textiles,
fine fibers fall off from the fabric and are released into the air due to grinding and cutting
in the textile industry, as well as wearing, washing, and drying clothes in daily life. It
has been reported that thousands of fibers can be shed from a single gram of PAN fab-
ric [54]. According to a study of De Falco et al., there is a significant correlation between
the shedding of microplastic fibers (MFS) during the wearing of synthetic clothing and
the type of fabric. Taking PES as an example, short silk fabrics release more MFS than
filament fabrics, which may be because short fibers are easier to shed during movement,
friction, and other behaviors. However, knitted garments are more likely to shed MFS than
woven garments, which may be due to the looser arrangement of fabric fibers in knitted
garments [55]. COVID-19 is wreaking havoc around the world, leading to a global surge in
the production and use of masks and protective clothing. Mask and protective clothing
materials are known to include PP, polyethylene (PE), polyurethane (PU), PTFE, PET, and
ethylene side-by-side (ES) polymer plastics [56]. These anti-epidemic fabrics may become
a major source of atmospheric MPs in coming years. In addition, because the inside of a
mask is close to your mouth and nose, the MPs they shed can be easily inhaled.

3.1.2. Transportation

Transportation also contributes a lot to atmospheric MPs, for example, in the form of
wear particles from the tires and brakes of cars as well as from road surfaces and aircraft
tires [9,57]. Existing research suggests that the composition of tire and road wear particles
(TRWPs) is about 50% natural or synthetic polymers, which include a large number of
plastic components, such as styrene–butadiene rubber (SBR). It shows that a great number
of plastic particles enter the surroundings each year because of TRWP emission [58],
accompanied by a certain amount of preservatives, antioxidants, desiccants, plasticizers,
and other additives. According to Wagner et al., road traffic alone produces 1.327 million
tons of TRWPs per year in Europe. These TRWPs can easily pollute the air environment
through direct discharge or resuspension of road dust [59]. The world produces 0.2–5.5 kg
of TRWPs per person per year, of which the contribution to PM10 emissions accounts
for 11%. Moreover, TRWPs make up more than 50% of MP emissions in Denmark and
Norway, as well as about 30% in Germany [60]. In addition, TRWPs are usually emitted
in heterogeneous aggregates with other wear particles present in traffic (brake wear, road
wear, etc.) [61].

3.1.3. Dust

The concentration of MPs in ambient dust is very high, both in deposited dust and in
suspended dust. In terms of deposited MP particles, the distribution of MPs of different
shapes and sizes is very uneven under the influence of external forces (natural or human
activities), and they are easily suspended in the atmospheric environment due to external
forces. However, the form of MPs in floating dust is mainly fine fibers. Compared with
other types of plastics, the lower-density characteristics of MPs facilitate their suspension
in air [40]. Liu et al. studied and analyzed indoor and outdoor dust samples from 39 cities
in China and found that PET majorly contributes to the content of MPs in indoor dust.
This may be because indoor MPs are mainly derived from synthetic fabrics and PET is the
main component of polyester in commonly used synthetic fabrics, which are easy to use,
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wash, and dry. Secondly, polycarbonate (PC), which is widely used in electronic equipment,
hardware, and food packaging, can also easily fall off and enter the atmosphere [62,63].

3.1.4. Other Small Sources

Atmospheric MPs are also likely to come from the degradation of large plastics, such
as building materials and synthetic furniture; landfills; synthetic particles from gardening;
and industrial and other emissions-related activities. However, compared with the major
sources of MPs such as synthetic textiles, transportation, and dust, the actual contribution
of these sources to atmospheric MPs may be very small and remains in the stage of idea
and speculation, without the availability of data [32,33,38].

3.1.5. Gaps in and Prospective Research on the Sources of Atmospheric MPs

From the above series of articles, it is found that the current articles on the sources of
atmospheric MPs are mostly focused on synthetic textiles, transportation, dust deposition,
and resuscitation, while other sources are often ignored, and the contribution of these
sources to atmospheric MPs cannot be quantified. Detailed data on their pollution concen-
trations, types, and occurrence are scarce. In the analysis of the sources of atmospheric
MPs in many pieces of literature, the proportion of unknown sources in the experimental
results is relatively high, indicating that there is still a considerable part of atmospheric MP
sources that is unclear. In addition, many research methods to identify the origin remain
in the characterization and chemical composition analysis. To this end, we propose the
following for future research:

(1) Continue to optimize the methods and tools for atmospheric MP characterization and
component analysis and identification to more clearly identify the sources of MPs and
avoid unclear and inaccurate source identification caused by rough differentiation.

(2) Establish a pollution source localization method suitable for atmospheric MPs, which
can trace the source more accurately than characterization or component analysis.

3.2. Transportation and Fate of Atmospheric MPs
3.2.1. Migration

Under certain conditions, MPs in the air can migrate to other ecological environments
(soil, water, etc.). Their behavior, transportation, concentration, and deposition are affected
by various factors, such as vertical pollution concentration gradient (VPCG) [64,65], me-
teorological conditions (rainfall, precipitation, temperature, humidity, wind (occurrence,
velocity, duration, intensity, and direction), etc.) [39,42,43,66], population density, human
activities [32,39], urban topography, thermal cycling [51,64], local elevation, and geographi-
cal environment [39]. Some researchers have found that MPs travel long distances in the
air. For example, MPs are found in extremely remote areas and even in the snow and ice of
high-altitude glaciers. It is speculated that MPs cause cross-border and global pollution
through air and wind currents [27,28].

3.2.2. Inhalation

Since the MP concentration indoors is much higher than that outdoors, atmospheric
MPs enter the body through human inhalation [31]. Indoor air is an essential source
of human exposure to airborne MPs because people stay indoors for longer periods and
dispersing machines are less capable of removing plastic particles [49]. Factors affecting MP
behavior and transmission in indoor air are ventilation, airflow, and room spacing [67]. The
concentration of MP particles indoors is higher than that outdoors, which may be influenced
by textiles, furniture, building materials, and human activities [31]. Compared with MPs
in other environments, MPs indoors are more easily inhaled directly and continuously and
cause health risks [49,53].

One of the earliest criteria for determining airborne MPs is 0.3–1.5 particle/m3 out-
doors and 0.4–56.5 particles per cubic meter indoors (33% polymer) [31]. According to
statistics, each person inhales between 26 and 130 MP particles from the air per day [49].
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Based upon air samples taken from mannequins, men who exercise lightly can expect to
inhale 272 particles/day [44]. Estimates vary depending on sampling methods and space
use factors.

3.2.3. Gaps in and Prospective Research on the Destinations of Atmospheric MPs

Based on the above discussion, the studies on the fate of MPs in the atmosphere
are limited. So far, only limited studies have traced the atmospheric migration paths of
MPs; therefore, it is nearly impossible to quantify the various environmental factors and
human activities affecting the behavior and transmission of atmospheric MPs. Further, the
quantification and characterization of atmospheric MPs in different parts of the human
body and associated health impacts is challenging. To this end, we propose the following
for future research:

(1) Further explore the factors affecting the fate of atmospheric MPs and understand the
different destinations of MPs in the atmospheric environment under different conditions.

(2) Establish a spatial model and related software suitable for integrating the diffusion
and migration trajectories of atmospheric MPs and the pollutants adsorbed by them.

(3) Investigate the difference in the quantities and proportions of MPs absorbed by people
in different areas and under different conditions in the same area as well as body
burden and associated risks of atmospheric MPs.

4. Toxic Effects

After the body inhales MPs, they enter the lungs along the trachea, enter the blood
vessels through migration, and then spread through the circulatory system throughout the
body, causing various degrees of toxic effects on the cells, tissues, organs, and systems of
the body (Figure 2) [19,68–70].
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4.1. Inhalational-Based Toxicity

MPs and NPs in the air mainly enter animals and humans through inhalation and first
contact with the respiratory system. Due to the clearance mechanisms of the respiratory
barriers (such as the nasal cavity, trachea, the bronchus, and alveolar macrophages), a
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considerable proportion of these plastic particles cannot enter the body and form deposi-
tion, and the deposition coefficient is mainly affected by the particle size, density, etc. [49].
Smaller nanoparticles (<2.5 µm) can avoid the clearance mechanism and penetrate the
lung and respiratory barrier [19,68–70]. Macrophages can deposit plastic particles in the
respiratory system, remove these from the respiratory system, or help them migrate in
the respiratory system and allow them to enter the circulatory system, leading to dust
metastasis. Further, the presence of MPs and NPs in the respiratory system and their
large surface area can also lead to the release of chemokines that affect the migration of
macrophages, resulting in particle overload [68]. The influx and inflammation of neu-
trophils associated with polystyrene granules (64 nm) in rat lungs, as well as the expression
of pro-inflammatory genes in epithelial cells, are caused by granule-induced oxidation [71].
Due to the large specific surface area of MPs, a large number of oxidizing substances (such
as metals) will be adsorbed on the surface of MPs, which may produce excessive reac-
tive oxygen species and lead to excessive antioxidant reaction in vivo, namely oxidative
stress [72,73].

There are only a few pieces of research on the toxic effects of atmospheric MPs on
animals and humans. Inhalation of MPs has the most significant toxic effects on the respi-
ratory system. Studies have shown that PVC prepared by emulsion polymerization (2 mm)
has significant cytotoxic and hemolytic effects on rat and human lung cells in vitro [74].
Xu et al. 2002 [74] evaluated the toxic effects of PS-NPs on human alveolar epithelial
cells and found that PS-NPs can rapidly internalize into cells; significantly reduce cell
viability; affect cell cycle and apoptosis, as well as related gene transcription and protein
expression; and promote inflammatory response. The smaller the diameter, the faster the
corresponding velocity. Lim et al., using metabonomics to investigate the toxic effects of
PS-NPs on bronchial epithelial cells, found that nanoparticles interfere with cell energy
metabolism, accompanied by oxidative stress, and mediate the increase of intermediate
metabolites to reduce cell resistance to toxicity [75]. Dong et al. found that PS-MPs can
induce cytotoxicity and inflammation in human lung epithelium by inducing reactive
oxygen species formation. Low concentrations of PS-MPs disrupt the lung barrier, while
high concentrations of PS-MPs also induce decreased levels of α 1-antitrypsin, which in-
creases the risk of chronic obstructive pulmonary disease [76]. Paget et al. explored particle
internalization and cell damage after aminated PS-NPs acted on human lung epithelial cells
and macrophages. Cells in the experimental group showed high glutathione depletion,
excessive reactive oxygen species, and significant DNA damage. It is suggested that micro-
and nanoplastics may exhibit strong genotoxicity when absorbed and internalized by the
respiratory system [77]. In in vitro experiments, seven functional groups with different
charges were added to an aminated PS-NPs and eight PS-NPs, including the original
particles, were sent into different rats by pharyngeal aspiration. Most of the particles were
phagocytized by alveolar macrophages and showed different acute lung inflammation.
The particle potential showed excellent correlation with pneumonia-related parameters,
indicating that surface charge is a key factor affecting lung inflammation induced by micro-
and nanoplastics [78].

Respiratory lesions have been found in workers exposed to synthetic textiles, fusing,
vinyl chloride, or PVC, which is quite different from the general population [79–83]. Inhaled
MPs and NPs are not easily cleared by the human lungs, and they may stay in the lungs
for a considerable period, which can cause an inflammatory response in the lungs [53]. It is
reported that artificial glass fiber can cause DNA damage, which can induce cancer [84]. In
short, Inhaling MPs can have toxic effects on animals and humans.

4.2. Other Toxic Effects

The inhaled MPs can also have negative effects on other systems of the body, such as
diffusion or translocation. In vivo experiments have confirmed that microplastic particles
can enter the circulatory system through the migration of macrophages after inhalation [68].
MPs in the circulation system may cause inflammation, vascular occlusion [85], and other
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blood toxicity [86]. In vitro experiments showed that polystyrene nanoparticles cause
red blood cell (RBC) aggregation, while polypropylene particles increase hemolysis [87].
Inhaled MPs may enter the gastrointestinal tract by clearing upper respiratory tract cilia [53].
MPs entering the digestive system may alter the permeability of intestinal epithelial cells
and cause changes in microbial composition [88]. Recent reports have found that after
maternal lung exposure to NPs, the plastics can enter the placenta and the fetus through
translocation and get deposited in the fetal liver, kidney, nervous system, and circulatory
system. [21]. There is little research on the toxic effects of atmospheric MPs on systems
other than the respiratory system, and more research must be done to explore their effects
on animals and humans.

4.3. Joint Toxic Effects

MPs usually contain various additives, e.g., catalysts (organotin), flame retardants,
polybrominated diphenyl ethers [89], antioxidants (nonylphenol), antibacterial agents
(triclosan), and plasticizers (phthalate PAEs) [90]). All of them are harmful to animals
and humans. In addition, MPs adsorb many inorganic pollutants in the environment, e.g.,
Au [16] and Cu [91], and organic pollutants, e.g., polycyclic aromatic hydrocarbons [18]
and polychlorinated biphenyls [92]. These pollutants are mutagenic and carcinogenic sub-
stances that are widely present in the environment. In addition, many plastic monomers
themselves (polystyrene (PS), polyvinyl chloride (PVC), etc.) have mutagenic and car-
cinogenic toxic effects on animals and humans [93]. Exposure of animals and humans
to additives or adsorbents in these plastic particles results in combined toxicity (Table 2).
MPs in the atmosphere are most likely to combine with other pollutants in atmospheric
environments (such as POPs and Cu) and serve as carriers for the long-distance transport
of these pollutants in the atmosphere [53]. Some articles have studied the negative effects
of MPs combined with these pollutants on animals and the human body, such as a series
of oxidative stress [16], inflammatory reaction [91], and metabolic disorders [18]. There
is a risk of mutation and carcinogenesis [94]. Most of these studies have involved oral
ingestion or in vitro studies. However, there are few studies on the toxicity mechanism of
these binding substances after they enter animals and humans through inhalation, and
more experimental data are needed.

Table 2. Toxic effects of chemicals in microplastics or nanoplastics on animals.

Classification Chemicals Affected Species Resulting Toxicity Reference

Ingredient

C6H6 Human Mutagenic risk [94]

C6H5OH Human Mutagenic risk [94]

BD Human Cancer risk [94]

VCM Human Cancer risk [94]

Adsorption

Au Danio rerio
Embryo:
1© Oxidative stress
2© Inflammation

[16]

CBz Mytilus galloprovincialis
Larva:
Excessive oxidation of digestive
glands

[95]

Cu Danio rerio Inflammation [91]

PAHs Danio rerio Metabolic disorders [18]

PCBs Human Neurotoxicity [92]

Dyestuff Pyrene Mytilus galloprovincialis

1© Immune responses
2© Lysosomal compartment

dysfunction
3© Peroxisome dysfunction
4© Antioxidant system disruption
5© Neurotoxic effects

[96]



Nanomaterials 2021, 11, 2747 13 of 20

Table 2. Cont.

Classification Chemicals Affected Species Resulting Toxicity Reference

Flame retardants PBDEs Human

1© Thyroid homeostasis disruption
2© Neurotoxicity
3© Reproductive changes
4© Cancer risk

[89]

Paint coat TiO2 Caenorhabditis elegan Oxidative stress [97]

Plasticizer

BPA

Danio rerio Neurotoxicity [98]

Rat Estrogen disorder [99]

Human

1© Enzyme abnormality and
damage of the liver
2© Pancreatic cell dysfunction
3© Thyroid hormone disorder
4© Promotion of obesity
5© Cardiovascular disease
6© Low insulin levels

[99]

DEHP, MEHP Rat Inhibition of estrogen levels [90]

PAEs Human

1© Increased risk of cardiovascular
disease
2© Reproductive system

disruption

[90]

BD: butadiene; VCM: vinyl chloride monomer; CBz: carbamazepine; PAHs: polycyclic aromatic hydrocarbons; PCBs: polychlorinated
biphenyls; PBDEs: polybrominated diphenyl ethers; BPA: bisphenol A; DEHP: dioctyl phthalate; MEHP: mono(2-ethylhexyl) phthalate;
PAEs: phthalic acid esters.

4.4. Gaps in and Prospective Research on the Toxic Effects of Atmospheric MPs on Animals
and Humans

In conclusion, studies on the quantitative analysis and toxicity mechanism of atmo-
spheric MPs inhaled by animals or humans are scarce and these aspects need to be further
studied. To this end, we propose the following for future research:

(1) In vivo experiments should be conducted to explore the different negative effects of
MPs or NPs with different physical or chemical properties (such as different types,
sizes, occurrences, crystallinity, and surface charge) on animal and human health after
inhalation. An animal model should be established to study the movement trajectory
and deposition proportion of and harmful substances released by atmospheric MPs
in the body.

(2) To better understand the harmful additive impact of atmospheric MPs adsorbed with
other pollutants as a pollutant internalization carrier, more research into the toxic
additive effect of the two is required.

5. Existing Analytical Methods and Gaps in Measuring Atmospheric MPs

There are two main sampling methods for atmospheric MPs commonly used. One
way is to collect the passive fallout from the atmosphere and filter it. The depositions in
the atmosphere are collected through a non-plastic funnel (such as stainless steel or glass)
the pipe of which drops into a glass collection bottle below. MPs can then be easily filtered
out of the sediment [32,33,42,43]. Another method is active pump sampling and filtration,
mainly through a set of pumping and filtration system, in which air is collected through
the pump unit and then filtered through the filter to retain the plastic particles [31,38,40].
After the sample is collected, different efficient quantitative analysis methods can be used
to analyze the types and sizes of particles (Table 3).
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Table 3. Outstanding methods for the analysis of microplastics and nanoplastics in the atmospheric environment.

Methods Tools Medium Plastic
Components

Optimal
Size Advantages Disadvantages References

Spectral
analysis

FT-IR Water, oil,
air RY, PE, PET, PAA >20 µm

1© It does not destroy the sample.
2© Pretreatment is simple.
3© The type of plastic particles can be determined.

It is difficult to identify the types of plastic particles
that are aged or have contaminated surfaces. [100–103]

RM Water, air

PA, PC, PE, PP,
PS, PET, PVC,

PMP, PCL,
PMMA

0.5–20 µm

1© It does not destroy the sample.
2© It supports nano-sample imaging.
3© It supports low sample amount identification.
4© It is environmentally friendly.

1© The measurement time is long.
2© Fluorescence interference is easy to produce.
3© The signal-to-noise ratio is low.
4© The use of laser as the light source leads to

background emission and sample degradation.

[104–108]

Thermal
analysis

TGA-
DSC NA PE, PP, etc. NA

1© The operation is simple.
2© Less sample is required (1–20 mg).
3© Accuracy is high.

1© It is difficult to distinguish the polymers with
similar transition temperatures.
2© It is difficult to identify copolymers.
3© The samples are destroyed.
4© It cannot identify the morphology, size, and

quantity of the plastic particles.

[108–112]

Py-GC-
MS NA

PA, PC, PE, PS,
PP, rubber, PET,

PVC, PMMA
NA

1© Less sample is required (5–200 µg).
2© The microplastic type and weight and additives can be

identified simultaneously without pretreatment.
3© The accuracy is high.
4© It recognizes copolymers.

1© The samples are destroyed.
2© It cannot identify the morphology, size, and

quantity of the plastic particles.

[110–115]

TED-GC-
MS NA PA, PE, PP, PS,

PET NA It involves simple pretreatment and operation. [108,110,112,116]

Other an-
alytical

methods

SEM-
EDS Majority Majority ≥1 nm

1© Imaging is at the nanoscale.
2© Elements can be identified

1© It is expensive.
2© Work efficiency is low. [108,110,112,117,118]

MS Majority Majority ≥1 nm
It can identify the structure, molecular weight, degree of
polymerization, functional group, and end group
structure of the plastic particles.

Different samples require different ionizing
reagents (poor applicability). [108,119,120]

XPS Majority Majority >10 nm It can identify elemental composition and content,
chemical state, molecular structure, and chemical bonds. It cannot identify the nanoplastic types definitely. [121,122]

RMR Water, oil Majority >50 µm
1© The cost is low.
2© It is convenient for real-time field detection.

1© It is only used to detect the concentration.
2© It requires specific calibration samples. [123]

FT-IR: Fourier-transform infrared spectroscopy; RM: Raman spectroscopy; TGA-DSC: thermogravimetric analysis-differential scanning calorimeter; Py-GC-MS: pyrolysis gas chromatography-mass spectrum;
TED-GC-MS: thermal desorption gas chromatography-mass spectrum; SEM-EDS: scanning electron microscope-energy dispersive spectrometer; MS: mass spectrometry; XPS: X-ray photoelectron spectroscopy;
RMR: resonance microwave reflectometry. RY: rayon; PE: polyethylene; PET: polyethylene terephthalate; PAA: polyacrylic acid; PA: polyamide; PC: polycarbonate; PP: polypropylene; PS: polystyrene; PVC:
polyvinyl chloride; PMP: polymethylpentene; PCL: polycaprolactone; PMMA: polymethylmethacrylate; NA: not available.
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Although a set of primary collection and analysis methods has been established,
there are still many limitations and deficiencies. The above methods can only identify
some common types of plastic particles at the ground level or near the ground level [27].
Moreover, it is difficult to accurately identify the size of the nanoplastics or the types
of particles adsorbed by organic matter on their surfaces [101,103,104]. To this end, we
propose the following for future research:

(1) To further develop and research some efficient methods and instruments. On the
one hand, a great number of MPs should be sampled and accurately identified in a
short period. On the other hand, we should be able to further identify more types of
plastics and plastics of smaller sizes through microfiltration and various pollutants
adsorbed on them.

(2) To develop a set of uniform standard methods for sampling and identification. For this,
scientific data generated in different regions for atmospheric MPs should be compared.

6. Conclusions

MPs have been well studied in marine and freshwater environments, but MPs in the
atmosphere have received little attention from researchers and society. Microplastics in
the atmosphere enter the body mainly through inhalation and further systemic exposure,
causing toxic reactions and disorders in various organs and systems and even posing a
potential risk of cancer to animals and humans.

Due to the lack of practical methods for detection and analysis, we are still unable
to gain a more detailed understanding of the global distribution, sources, and fate of
atmospheric MPs, let alone further elucidate the mechanisms of toxic action of atmospheric
MPs on animals and humans. We suggest that the scientific community conduct in-depth
research on atmospheric MPs in the future, especially to explore relevant sampling and
detection methods and establish a common industry standard. Further quantitative analysis
of atmospheric MPs of different types and properties will be conducted to explore the
toxicity mechanism and additive effect of their combination with other pollutants through
in vivo experiments.
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