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SUMMARY

Biological visual system can efficiently handle optical information within the
retina and visual cortex of the brain, which suggests an alternative approach
for the upgrading of the current low-intelligence, large energy consumption,
and complex circuitry of the artificial vision system for high-performance edge
computing applications. In recent years, retinomorphic machine vision based on
the integration of optoelectronic image sensors and processors has been re-
garded as a promising candidate to improve this phenomenon. This novel intelli-
gent machine vision technology can perform information preprocessing near or
even within the sensor in the front end, thereby reducing the transmission of
redundant raw data and improving the efficiency of the back-end processor for
high-level computing tasks. In this contribution, we try to present a comprehen-
sive review on the recent progress achieved in this emergent field.

INTRODUCTION

In the era of big data and the internet of things, the unprecedented huge amount of information and com-

plex external environment put forward more stringent requirements for developing new-generation multi-

functional artificial intelligence chips (Ham et al., 2021). Given that visual perception is one of the most

important ways to obtain environmental information, the demand for visual information sensing, storage,

and processing function devices with higher speed, greater efficiency, and lower power consumption is

becoming ever more urgent. Although traditional machine vision technology has profoundly changed

the lives of human beings in many fields, it has gradually become clumsy and inadequate, limited by the

von Neumann bottleneck when dealing with complex tasks (Chai, 2020). Therefore, the development of

more intelligent machine vision technology to satisfy the new requirements of the times has become

one of the most important innovation directions in the field of artificial intelligence chips in the post-Moore

era (Waldrop, 2016).

Human visual system is capable of visual information perception and multiple target recognition in com-

plex environments, which inspires the development of biomimetic visual systems with new optoelectronic

devices for high-performance machine vision technology (Abramoff et al., 2010). The main functions of the

human visual system can be divided into two parts: image perception and preprocessing in the human eye

and recognizing, memorizing in the visual center of the cerebral cortex. In recent years, several novel

retinomorphic machine vision architectures have been developed and demonstrate strong vitality by simu-

lating the working mechanism of the human visual system. According to different forms of functional

divisions, heterogeneous and homogeneous integration architectures are the two main paradigms. Both

architectures could perceive and preprocess the image information at the front end, thereby reducing

redundant information and improving the overall recognition efficiency. Compared with traditional

CMOS (complementary metal-oxide-semiconductor)-based machine vision systems, the novel retinomor-

phic optoelectronic devices exhibit obvious performance advantages. It has beendemonstrated that most

energy consumption of traditional machine vision is spent on the redundant information transfer among

the sensor, memory, and processor. Because the raw information can be preprocessed at the front end,

the novel retinomorphic optoelectronic devices have inherent advantages in reducing energy consump-

tion. The energy cost for writing information intomemristors could also be reduced bymore than 100 times.

Yao and Wu et al. demonstrated that the energy consumption of electronic synapses is 1000 times smaller

than the Intel Xeon Phi processor when dealing with similar face recognition tasks (Yao et al., 2017). The

switching time (<10 ns), endurance (105�108), and chip scaling potential (<10 ns) are also superior to those

of the traditional counterparts (Ielmini and Wong, 2018; Milo et al., 2020). Therefore, retinomorphic
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Figure 1. Schematic illustration of the biological visual perception system

Reproduced with permission (Han et al., 2020). Copyright 2020, American Chemical Society.
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optoelectronic devices may provide a new and effective approach for improving information processing

efficiency and energy consumption problems in the era of big data.

Here, we present an overview of the recent advances in retinomorphic machine vision technology from

principle to device. Firstly, the working mechanism of the human visual system and several differences

with artificial retinomorphic devices are discussed. Then, two paradigms, viz. heterogeneous and homoge-

neous integration architectures, will be summarized and discussed in detail. Finally, a brief discussion on

the current challenges and prospects of retinomorphic machine vision is provided.
BIOLOGICAL BASIS OF THE RETINOMORPHIC MACHINE VISION SYSTEM

Human visual system is capable of visual information perception and multiple target recognition in com-

plex environments. It is demonstrated that human visual perception provides more than 80% of the infor-

mation input in the process of human interaction with the surrounding environment and is one of the most

important channels for humans to perceive external objects (Farrow et al., 2013). With the view of applied

clinical anatomy, vision is a collaboration of the eyes and the brain (Shepherd et al., 2013). As shown in Fig-

ure 1, the human visual system mainly consists of the eyeballs, transmission nerve, and visual cortex of the

brain. Light from the environment and external objects enters the crystalline lens through the pupil at the

front of the eyeball, and finally reaches the retina after refraction (Han et al., 2020). In particular, the retina

has a clear hierarchical structure for photoelectric information conversion, preprocessing, and transfer.

There are 5 types of typical retinal cells, namely, ganglion cells, amacrine cells, bipolar cells, horizontal

cells, and photoreceptor cells from outside to inside. During the photoelectric information conversion pro-

cess, photoreceptor cells, namely, cone cells and rod cells, play a leading role in converting light signals

into electrical signals (Hattar et al., 2003). There are more than 100 million rod cells with the same light-sen-

sitive pigment within the human retina, which are dedicated to receiving dim light with high light sensitivity

but can only identify the black or white outlines of objects, especially in night vision. As a comparison,

approximately 7 million cone cells with different red, green, and blue light-sensitive pigments form the ba-

sis of human eye color vision to recognize the high-resolution environment under strong light (Abramoff

et al., 2010). These two photoreceptor cells could efficiently perform the task of converting optical informa-

tion of the environment into action potentials at the ends of axons and transmitting them further back,

which is also the main work of the widely used optical sensors. After the photoelectric information conver-

sion, the scattered electrical signals are integrated into bipolar cells, during which horizontal cells could

regulate the physiological activities of photoreceptor cells within a reasonable range through negative

feedback effect. In other words, the information preprocessing operation of the retina starts with bipolar

cells and horizontal cells. The integrated electrical signals will be transferred to ganglion cells and regu-

lated by amacrine cells, within which the redundant and unstructured visual data will be filtered out and

the refined information is finally transmitted to the visual center of the brain through the optic nerve (Mas-

land, 2012). This fine retinal cell hierarchical structure gives the human eye a variety of functions such as

perception, signal classification and integration, preprocessing, etc.
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Figure 2. The illustration of heterogeneous integration and homogeneous integration machine vision system
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It is noteworthy that the unique information transformation and preprocessing processes of the human

retina in the front end can significantly reduce the burden on the visual cortex of the brain and ultimately

accelerate the cognitive process of optical information (Gollisch and Meister, 2010; Guosong Hong et al.,

2018). The discoveries of neuroscientists about the human visual system greatly inspire researchers to

develop new generations of more intelligent machine vision chips for retinomorphic applications, aiming

both to respond quickly to the complex external environment and combine multiple functions, namely. im-

aging, processing, and storage of visual information in the front end. Nevertheless, there are some differ-

ences between the human visual system and the reported retinomorphic optoelectronic devices in

practical applications. The visual system of the human eye is structurally inverted, i.e., the photoreceptor

cells are at the bottom of the retina and the signal transfer and processing cells receive light stimulation

firstly. This special cell hierarchical architecture is the product of evolution and can help photoreceptor cells

get more nutrients from the retinal base. The practical architectures of artificial retinomorphic optoelec-

tronic devices are contrary to the human eye to get the best photoresponse characteristics, especially in

the heterogeneous integration scheme. The image sensor is generally exposed to light stimuli directly

and the adjacent processor unit is arranged in a parallel manner or beneath it. Moreover, the biological

cones and rod cells work in a complementary way in the human eye, which enables us to have accurate

vision under different lighting conditions. There is generally only one kind of photosensitive mediumwithin

the specific retinomorphic optoelectronic device, and the dynamic photoconductivity can be regulated by

the external field to realize the imaging of the complex environment. The information transfer and process-

ing approach are also different. The functions of different cells within the retina are strictly divided, and the

information transfer is mainly monodirectional from photoreceptor cells to ganglion cells. The input and

output of the signals of artificial counterparts are determined according to the different working modes,

and a single device can perform different functions at different working stages, viz., functional diversity,

especially in the homogeneous integration scheme. Understanding the similarities and differences be-

tween the human visual system and artificial retinomorphic optoelectronic devices will help develop

more intelligent bionic chips.

ADVANCED MACHINE VISION SYSTEM WITH RETINOMORPHIC OPTOELECTRONIC

DEVICES

Depending on whether the optoelectronic image sensors can perform in-situ preprocessing or not, the

advanced machine vision system can be categorized into two families of heterogeneous integration and

homogeneous integration, respectively (Figure 2). In the heterogeneous integration scheme, the image

sensors can sense the visual information in a high fidelity manner, whereas the captured image is pro-

cessed separately and accurately in the near-sensor-integrated neuromorphic computing units. In the
iScience 25, 103729, January 21, 2022 3



Figure 3. Schematics of possible configurations about retinomorphic devices

(A and B) Planar and vertical heterogeneous integration architectures.

(C and D) Photosensitive memristor-based and synaptic transistor-based homogeneous integration architectures.
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homogeneous integration approach, the image sensors can both perform the adaptive visual sensing

functions under varying illuminating conditions and execute the in-situ preprocessing tasks including

denoising, edge enhancement, classification, recognition, etc (Chen et al., 2020; He et al., 2021). With

the capability of in-sensor image preprocessing, the transmission of redundant raw data through the

general von Neumann bottleneck between the front-end sensors and back-end processors will be greatly

reduced, which in turn can significantly improve the efficiency for complex computing tasks (Zhou and

Chai, 2020). Several typical retinomorphic device configurations are shown in Figure 3. For heteroge-

neous integration, planar and vertical series-mode frames of the image sensor and computing unit are

widely used, which achieves the purpose of using light intensity to indirectly regulate the performance

of the adjacent memristors or synaptic transistors (Figures 3A and 3B). It is worth mentioning that the

image sensor must be directly exposed to light to obtain the best light response characteristics.

Compared with the planar counterpart, vertical architecture processes the potential of smaller chip

size, but higher requirements of the integrated process are needed. As for the homogeneous integration

scheme, photosensitive memristors and synaptic transistors are the mainstream of the current research.

From ‘‘in-memory computing’’ to ‘‘in-memory sensing and computing,’’ memristors have achieved

vigorous development in the field of bionic electronics in recent years. The classic photosensitive mem-

ristor mainly consists of three parts: the top transparent electrode (TTE), the photosensitive resistive

layer, and the bottom electrode (BE), which could be integrated into the crossbar array to perform com-

plex tasks (Figure 3C). Compared with photosensitive memristors, the photosensitive channels of synap-

tic transistors are exposed to light directly, which means more ideal regulation effects (Figure 3D).

Several reports of using ferroelectric materials as gate dielectrics or directly as photosensitive channels

have attracted people’s attention, which could enhance the retention characteristic of the devices after

the stimulation removal (Wang et al., 2018a; Wang and Hu, 2017). More detailed introductions about

different retinomorphic materials and devices are exhibited as follows.
Retinomorphic optoelectronic devices and heterogeneous integration for near-sensor

computing

Briefly, heterogeneous integration is the series-mode frame of the image sensor, information storage, and

computing units to realize optical information perception and preprocessing at the near-stimulus end.

Owing to the separation of different functions, the relatively mature image sensors can be directly compat-

ible with the image processing unit through the ingenious circuit design, thereby realizing optical informa-

tion preprocessing operations at the front end. In recent years, both image sensors and information

processing units have developed rapidly.

Retinomorphic image sensing devices

Converting light stimulus into transmittable electrical signals is the first step for the human visual system

to process information, which is also the main function of various existing image sensors. In principle, mil-

lions of cone cells and rod cells work together to make the human eye have many attributes, such as high
4 iScience 25, 103729, January 21, 2022



Figure 4. Structure and performances of the biomimetic eye

(A) Schematic diagram and optical image of the structure of the artificial eyeball.

(B) Schematic setup of individual pixel measurement.

(C) Working mechanism and band structure of a single sensor unit.

(D) Current-voltage curves under different illuminations.

(E) Illumination-intensity-dependent photocurrent and responsivity of an individual pixel.

(F) Device schematic and transient photoresponse of single-nanowire-based and four-nanowire-based individual pixels.

(G) Schematic and scanning electron microscopy (SEM) image of the Ni microneedle contact to the nanowire array.

Reproduced with permission (Gu et al., 2020). Copyright 2020, Springer Nature.
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sensitivity, high-resolution, low-aberration, wide color gamut and field of view, self-adaptive ability, etc. By

imitating the structure-function relationship of the human eye, scientists have done a lot of research from

the perspective of materials and device structures, within which many works can match or even exceed the

abovementioned functions of the human eye (Chow and Someya, 2020; Lan et al., 2020; Wang et al.,

2020c). However, most researchers are either stuck on the illustration of single device functions, or lack

a complete hardware supporting system to demonstrate the potential of practical applications. It is ur-

gently needed to prepare an artificial retinomorphic sensor system comparable to the human eye through

systematic collaborative innovation. Excitingly, an elaborate humanoid retinomorphic bionic eye based on

the perovskite nanowire was proposed by Fan, which is a significant breakthrough in the field of the bionic

eye in recent decades (Gu et al., 2020). As shown in Figure 4A, the prepared artificial eye completely
iScience 25, 103729, January 21, 2022 5
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mimics the primary structure of the human eye. The front optical lens, ionic liquid, perovskite nanowire

array, and rear liquid metal fibers correspond to the crystalline lens, vitreous, rod cells, and nerve fibers

of the human eye, respectively. The hemispherical aluminum oxide substrate can not only simplify the

preparation process of the perovskite array, increase the density of the photoreceptor, but also give

the artificial eye a wider field of view compared with the traditional planner devices. It is demonstrated

that the density of the prepared perovskite array is as high as 4.63108 cm�2, which is more than four times

the density of the rod cells of the human retina. Higher sensor density means higher image resolution and

the rear design of liquid metal fibers also avoids visual blind spots. Figure 4B exhibits the overall shape

and measurement setup of the artificial eyeball. As shown in Figure 4C, the separation of photogenerated

carriers within the perovskite sensor and the simultaneous redox reaction at the electrode interface pro-

duce ordered and directional moving electrons and ions, respectively, which together constitute the

detectable photocurrent. As shown in Figures 4D and 4E, the effective light intensity response range

covers 0.3 mW cm�2 to 50 mW cm�2 and the maximum responsivity reaches 303.2 mA W�1, which indi-

cates excellent light response characteristics compared with the reported counterparts. Although the

density of perovskite photoreceptors is extremely high, the actual pixel size is limited to the order of mil-

limeters by the minimum size of the signal transmission unit, viz., liquid metal fiber. To further prove the

application potential of the prepared artificial visual system in ultra-high pixel sensing, the photoelectric

properties of single or several perovskite nanowires were investigated through the advanced micro-nano

processing technologies and magnetic field-assisted positioning strategy, which shows distinguishably

stable photocurrents (Figures 4F and 4G). Moreover, the final image sensing effect of the complete op-

tical system, including artificial eye, circuit board, and signal processing terminal, was also successfully

demonstrated. Although there are still several problems to be solved and optimized before actual appli-

cation, such as how to deduce overall process costs, increase pixel density, improve the stability and ser-

vice life of the perovskite-based sensor, optimize the concentration of ionic liquids, etc., this research is of

great significance in inspiring scientists to develop more intelligent retinomorphic sensors and other bi-

onic electronic devices.

Neuromorphic computing devices

Inspired by the development of brain neuroscience, neuromorphic computing is a brand-new computing

model based on the structure of brain nerve circuits and the principle of neural impulse calculation, which is

considered to be an effective way to solve the separation problem of storage and calculation based on von

Neumann architecture (Boybat et al., 2018; Mead, 1990; vonNeumann, 1993). In principle, the physiological

activities of synapses and neurons are stimulated by the primary electronics and these elements work in a

brain-like mode to decouple the above dilemma. Memristors, namely nonlinear memory devices with pro-

grammable resistance states, have become an important component of the construction of artificial neu-

rons and synapses and indicated extensive parallelism and high-efficiency edge computing capabilities

(Wang et al., 2017; Yao et al., 2020; Zidan et al., 2018). Moreover, when the nano-micro-scale memristors

are integrated into the crossbar array, multiply-accumulate calculations could be performed simulta-

neously, viz., executing multiplication and adding operations on each node and column based on

Ohm’s law and Kirchhoff’s law, respectively (Burr et al., 2017; Hu et al., 2018; Zhang et al., 2020). Benefitting

from the potential of ‘‘processing within memory,’’ memristors show a great significance for improving the

information processing capacity at the front end of the hardware, especially in the era of information ex-

plosion (Wang et al., 2018b).

Lu et al. have done several pioneering research in the field of using memristor arrays to process complex

information. In 2017, a 32 3 32 WOx memristor array was fabricated and further deduced the application

prospects of sparse coding algorithms in the field of image processing (Sheridan et al., 2017). Moreover, a

more full-featured memristor neuromorphic chip with a memristor crossbar core and several peripheral

control modules was developed, which not only provides a hardware platform for executing a variety of

neural network algorithms but proves the good compatibility of memristor with conventional CMOS de-

vices (Cai et al., 2019). Apart from synaptic simulation, memristors have also made significant progress

in the field of neuronal simulation. Yang et al. proposed a fully memristive neural network based on

NbOx artificial neuron and TaOx artificial synaptic array, which demonstrates the ability in image recogni-

tion (Figure 5A). The NbOx artificial neuron shows several novel neuron behaviors such as spatiotemporal

integration and multiplicative gain modulation (Duan et al., 2020). It is noteworthy that this full-memristor

system is of great significance in expanding the application prospects of memristors in the releasing and

processing of neural signals and inspiring scientists to develop more intelligent bionic electronic systems.
6 iScience 25, 103729, January 21, 2022



Figure 5. Memristors for neuromorphic computing

(A) SEM images of the monolithically integrated memristive neural network.

Reproduced with permission (Duan et al., 2020). Copyright 2020, Springer Nature.

(B) Optical microscope image of the HfSe2-based crossbar array.

(C) Long-term potentiation and depression under positive and negative pulse trains with identical pulse amplitude.

(D) Long-term potentiation and depression under pulse train with nonidentical pulse amplitude.

(E) The mathematical expression of multiply-accumulate operation.

(F) Measured output current mapping under low resistance state conditions.

(G) The corresponding distribution of error between measured and arithmetic results.

Reproduced with permission (Li et al., 2021). Copyright 2021, John Wiley &Sons, Inc.
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Most recently, Ang et al. proposed a HfSe2 based crossbar array to explore the application prospects of

large-area two-dimensional (2D) materials in the field of memristors (Li et al., 2021). As shown in Figures

5B a four-layer device structure was established throughmolecular beam epitaxy and an elaborate thin-film
iScience 25, 103729, January 21, 2022 7
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transfer technology. Owing to the migration effect of the active electrode under the voltage bias, the pre-

pared memristors exhibit excellent resistive switching properties, such as relatively small switching voltage

and excellent cycle durability more than 500 times. Moreover, two typical synaptic properties, viz., long-

term potentiation and depression with excellent symmetry and states retention were also simulated (Fig-

ures 5C and 5D), which benefits to improve the accuracy of image recognition. Furthermore, to demon-

strate the application potential of HfSe2 based crossbar array in multiply-accumulate operations,

several electrical testing and simulation were carried out. Different from traditional software-level simula-

tion, this work truly realizes the verification of the multiply-accumulate function at the hardware level. As

shown in Figures 5E–5G, the output current of the array increased with the input voltage and exhibited

a very small deviation compared with the simulated result, which indicates the potential to perform

complex calculations at the hardware level in an efficient and ultralow-power consumption manner

(8-trillion s�1 W�1).

Heterogeneously integrated machine vision system

Heterogeneous integration architecture of advanced machine vision, viz., combining the optical sensor

unit with the information storage and processing unit, has gradually become an important branch to

improve the efficiency of optical information decoding and processing (Mukhopadhyay et al., 2019;

Zhong et al., 2018). Compared with traditional optical sensors, this integrated architecture could

directly store and process electrical signals near the image sensors, which could reduce the movement

of data and improve the efficiency of image processing (Jang et al., 2021). Generally, when the image

sensors and the memories or synaptic devices are connected in series, the voltage levels of these two

parts will be redistributed under light bias. When the partial voltage bias of memories or synaptic de-

vices reaches the transition threshold, the electrical status of the adjacent sensors will be recorded or

further processed. Because the circuit design of this integration architecture is very simple, retinomor-

phic machine vision systems based on heterogeneous integrations have achieved vigorous

development.

Shen et al. have done pioneering work in solving the problem that optical signals cannot be stored in

the front end (Chen et al., 2018). As shown in Figures 6A and 6B, because of excellent light response

characteristics (Ilight/Idark ratio up to 104) and robust nonvolatile resistive-switching characteristics, In2O3

and Al2O3 were chosen as photosensitive material and resistive switching material, respectively. When

these two units were connected in series and exposed to ultraviolet light, the partial voltage bias of

the image sensor drops sharply, and the memory unit will obtain enough voltage to switch from

the high resistance state to the low resistance state to realize the storage of optical signals. Moreover,

the stored optical signals can be erased by electrical signals, thereby exhibiting multiple information

sensing and storage capabilities. Furthermore, a 10 3 10 flexible visual memory array was prepared,

which demonstrated excellent real-time ultraviolet (UV) distribution detection and long-term storage

capabilities (Figure 6C). However, limited by the accuracy of printing technology, the lateral dimension

of the microwire is greater than 5 mm. A more refined preparation technology is needed to develop

higher density and resolution visual memory arrays, especially for high-quality detection of tiny objects.

In addition, although this work solves the problem of perception and storage of optical information in

the front end, the prepared visual memory system cannot perform information preprocessing functions

compared with the human visual system. To solve this problem, Park et al. proposed a similar optical

nerve synapse device using 2D material heterojunctions (Seo et al., 2018). Compared with Shen’s work,

a synaptic transistor was selected to replace the memory unit, which endows the new serial architec-

ture the ability to perform neuromorphic computing by regulating synaptic plasticity in the front end.

As shown in Figures 6D a typical WSe2/h-BN heterojunction was served as the optical-sensing unit and

a specially processed WSe2/h-BN heterojunction with more trapping center was served as the synaptic

device. Different wavelengths of light can make the optical-sensing device in different electrical con-

duction states, thus further regulating the synaptic dynamic properties of the synaptic transistor.

Several typical synaptic properties were successfully demonstrated on the optical nerve synapse device.

Moreover, the prepared WSe2/h-BN heterojunctions were applied to the optical nerve network to

perform colored and color-mixed pattern recognition functions. As shown in Figure 6E, two neural net-

works were established to test the recognition function of mixed color numbers. Compared with the

conventional neural network, the optical-sensing function was added to the new-style optical-neural

network, thus not only reducing the complexity of the peripheral circuit but significantly improving

the recognition rate of the target images.
8 iScience 25, 103729, January 21, 2022



Figure 6. The heterogeneously integrated machine vision system

(A) Schematic illustration of the prepared heterogeneous structure.

(B) Current-voltage characteristics of the single unit and schematic illustration of resistance states between the image sensor and memory device.

(C) Schematic diagram of the image capture and memory process.

Reproduced with permission (Chen et al., 2018). Copyright 2018, John Wiley &Sons, Inc.

(D) Schematic of the human optic nerve system and device structure diagram.

(E) Optical-neural network based on optic-nerve synaptic devices compared with the conventional neural network.

Reproduced with permission (Seo et al., 2018). Copyright 2018, Springer Nature.

ll
OPEN ACCESS

iScience 25, 103729, January 21, 2022 9

iScience
Review



ll
OPEN ACCESS

iScience
Review
Apart from the abovementioned series structure of electronic components with specific functions, the

specially designed analog circuits could be also used as the image perception and processing modules.

In 2020, Labram et al. proposed a simple photosensitive capacitor coupled with a resistor to simulate

the human cognitive ability of dynamic scenes. The prepared analog circuit will output a voltage pulse

only when the light intensity changes, which is consistent with the higher sensitivity of the human eye to

sudden changes of light stimulation (Trujillo Herrera and Labram, 2020). This novel working mode can

greatly reduce the redundant information volume from the source and has broad development prospects

in some specific fields, such as intelligent security, abnormal alarm, etc. Moreover, compared with tradi-

tional circuit design, analog voltage signals were output directly instead of current signals, which could

be accessed by subsequent neuromorphic devices without the need for transimpedance amplifiers. This

work provides a new approach for scientists to simulate the cognitive function of the human eye from

the perspective of analog circuit design.

It is worth mentioning that all these researches mentioned above use a combination of simple components

to achieve the integrated functions of sensing, storing and computing in the front end, which is a critical

step in simulating the main functions of the human visual system. However, the discrete architecture of

the optical nerve synapse does not completely get rid of the shackles of the von Neumann architecture

and indirect information transfer between the optical-sensing device and the synaptic transistor is still

needed. Therefore, it is an urgent demand to develop large-scale integrated all-in-one devices to achieve

a more efficient artificial vision system (Pedretti and Ielmini, 2021; Zidan et al., 2018).
Retinomorphic optoelectronic devices and homogeneous integration for in-sensor

computing

Homogeneous integration, that is, a single device is endowed with multiple functions such as image

perception, storage, and preprocessing (Sebastian et al., 2020; Xia and Yang, 2019). By switching different

working modes, it can perform different functions without outward transfer of information. Heterogeneous

integration represents the development direction of intelligent machine vision technology, which funda-

mentally overcomes the constraints of von Neumann’s bottleneck. In 2019, Chai et al. pioneered the

research in demonstrating the abovementioned ‘all in one’ functions using MoOx-basedmemristors, which

inspires researchers to develop more intelligent machine vision systems (Zhou et al., 2019). In addition to

traditional metal oxide materials, several pioneering homogeneous machine vision technologies based on

emerging materials have also achieved inspiring breakthroughs, within which 2D materials, perovskite ma-

terials, and organic materials attract the most attention.

2D materials-based devices

2D atomic crystals and compound crystals have received great attention from the academic community

since the discovery of graphene (Kang et al., 2020; Novoselov et al., 2016). It will trigger new research

enthusiasm whenever a new type of layered material is found or synthesized, which is because of its strong

light-matter interaction, intrinsic flexibility, as well as external tunability of device potential profile and per-

formance by electrostatic doping, electrochemical regulation, and interface engineering, etc (Kang et al.,

2020; Li et al., 2017; Mennel et al., 2020). In recent years, with the development of micro-nano processing

technology and material synthesis methods, the wafer-level preparation of 2D materials has developed

vigorously, which makes it possible to develop large-scale integrated retinomorphic optoelectronic de-

vices (Claro et al., 2021; Hou et al., 2021; Tong et al., 2019).

The excellent photoelectric response characteristics and inherent persistent photoconductivity (PPC) ef-

fect or retention characteristic regulated by external fields endow 2D materials-based devices image

perception and long-term memory functions (Kallatt et al., 2018; Shih et al., 2017). Because the conduc-

tance state of the 2D material-based transistor channel can be effectively adjusted by external stimuli,

such as light, voltage bias, and magnetic field, the 2D materials-based photoelectric sensor array can

perform an efficient image recognition function in situ when combined with an artificial neural network.

Therefore, developing 2D materials-based optoelectronic devices to simulate the typical functions of

the human visual system has gradually become a research hotspot in recent years (Hou et al., 2021; Tsai

et al., 2021).

In 2020, a BN/WSe2 vertical heterojunction array was fabricated by Miao et al., which successfully simulated

the optical information perception and preprocessing functions of cones and bipolar cells (Wang et al.,
10 iScience 25, 103729, January 21, 2022
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2020a). The photoconduction of the single heterojunction could be regulated by the gate voltage, thus re-

configurable image processing and recognition functions could be demonstrated at the hardware level.

Most recently, Hao et al. proposed a ferroelectric heterojunction based on a-In2Se3/GaSe and the pre-

pared device exhibited excellent photoelectric dual-regulation synaptic characteristics (Guo et al.,

2021). Owing to the intrinsic ferroelectricity of a-In2Se3, logical operation and information storage functions

were also demonstrated, which is a key breakthrough in using ferroelectric 2Dmaterial to improve the func-

tions of artificial retinomorphic devices. However, this work only imitates the main functions of the human

visual system from a single device perspective, and the photoelectric characteristics of the corresponding

crossbar array as well as the demonstration of image recognition based on the artificial neural network are

all simulated results. It is necessary to verify the comprehensive performance of the a-In2Se3/GaSe hetero-

junctions at the integrated hardware level before practical application. To explore the potential of 2D

materials in the construction of neural photoelectric image sensor arrays, a reconfigurable 3 3 3 WSe2
photodiode array was fabricated by Muller et al. (Mennel et al., 2020). The prepared array shows excellent

prospects to perform real-time image perception and processing functions at the nanosecond level. Two

typical paradigms, viz., classifier and autoencoder, were simulated by supervised and unsupervised

learning, respectively. This work indicates the application potential of 2D materials-based photoelectric

sensor arrays in short-latency and high-efficiency visual processing technology. However, an additional

memory unit is needed to store the final processing results, which increases the complexity of the periph-

eral circuit. Appropriate external field regulation strategies or interface engineeringmay help to endow the

device information storage capability. In addition, it is necessary to fabricate a larger array to deduce richer

image processing functions.

To further improve the integration density of phototransistors, explore the application potential of 2D ma-

terials in multifunctional machine vision technology, Ham and Park coreported a 323 32 MoS2-based pho-

totransistor array with the functional complexity reaching an unprecedented level (Jang et al., 2020). As

shown in Figure 7A, the prepared crossbar array simulated the dual functions of the human eye and brain

by switching the two working modes of the crossbar array, viz., sensing and recognition. Firstly, the MoS2-

based phototransistor array was set to sensing mode to capture and store optical images of the environ-

ment because of the excellent photosensitivity of the MoS2 and PPC effect. It is worth mentioning that the

conductance values of all transistors could be read within one second through exquisite external circuit

design. Secondly, external voltage bias was applied to the gate to erase the stored conductance value

of each transistor unit, viz., initializing the entire array. Thirdly, a distinguishable conductance value was as-

signed to each transistor by optical encoding (Figure 7B), thereby a new conductivity matrix was built to

perform image processing and recognition tasks. As shown in Figures 7C 4 different conductance matrices

representing different processing factors, were established to filter the obtained image.Moreover, the pre-

pared transistor array successfully simulated the high-level digital image recognition function by

combining the convolutional neural network (CNN). As shown in Figure 7D, two initialization and re-encod-

ing processes were performed to execute the matrix multiplication function after image capture. The first

mode switch is to obtain the feature maps of the image and the second is to use the array as the fully-con-

nected layer of the neural network to finally identify the digital information. In general, this work has taken a

critical step in the field of high-density integration of 2Dmaterials in the human-like image processing hard-

ware field. There are still several technical issues worthy of further optimization. Firstly, compared with the

image capture process, the complexity and time consumption of the optical encoding process (exceeding

10 min) are significantly increased, which may slow down the overall image processing speed. Moreover,

multiple offline learning procedures in the software are needed to generate the required conductance

values. However, this training process is difficult to expand to big data scenarios, thus limiting the range

of image recognition on the hardware side. Faster encoding and smarter training methods can further

improve the overall performance of the transistor array.

Perovskite materials-based devices

Perovskites have emerged as a rising star in various optoelectronic devices because of their unique crystal

structure and rich physical properties, such as high carrier mobility and photoelectric conversion efficiency,

tunable bandgap, intrinsic ambipolar transport, organic dispersibility, etc. (Kim et al., 2020; Samuel D.

Stranks et al., 2013; Tian et al., 2020) Duan et al. reported a low-temperature solution growth process in

2015, which enables the large-scale preparation of perovskite-based optoelectronic devices (Wang

et al., 2015). Till now, perovskite-based bionic machine vision devices have achieved vigorous

development.
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Figure 7. MoS2-based homogeneous integration machine vision system

(A) Schematic illustrations of the human visual system and the prepared MoS2 crossbar array.

(B) Iterative encoding of four pixels.

(C) Schematic illustration of the image filtering with the 9 3 4 conductance matrix.

(D) Image sensing and recognition process for an example of hand-written digit ‘‘3’’.

Reproduced with permission (Jang et al., 2020). Copyright 2020, John Wiley &Sons, Inc.
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Owing to the fixed photosensitivity, traditional silicon-based photoelectric sensors lack high-precision im-

aging capabilities under extreme conditions, such as the excessively bright or dim environment (Fossum

and Hondongwa, 2014). To improve this problem, Liu et al. proposed a self-adaptive retinomorphic system

based on perovskite memristor (Figure 8A), which could perform ‘‘sensor-memory-processor’’ all in one

function and image quality optimization purpose (Chen et al., 2020). As shown in Figures 8B and 8C,

both light and electric bias could regulate the responsivity of the device because of external field-induced

ion migration within the perovskite film. Moreover, a multilayer perceptron neural network (PNN) was es-

tablished to perform instant computation tasks. As shown in Figure 8D, after filtrating the background

noise by the perovskite-based memristor self-adaptively, the overexposed images of the aircraft, vehicle,
12 iScience 25, 103729, January 21, 2022



Figure 8. Perovskite-based homogeneous integration machine vision system

(A) Schematic illustration of the prepared perovskite-based memristor.

(B and C) Regulations of the device photoresponsivity by constant voltage stress.

(D) Spontaneous adaptation of theoverexposed images with experimental dynamics of the spontaneous photoresponsivity relaxation.

Reproduced with permission (Chen et al., 2020). Copyright 2020, John Wiley &Sons, Inc.

(E) Schematic of the CsPbBr3/carbon nanotube-based phototransistor.

(F) Optical micrograph of a 32 3 32 sensor array and the magnified image of an individual sensor unit.

(G) Measured training weight results of a number 8 pattern along with increasing pulse number and light intensity. Reproduced with permission (Zhu et al.,

2021). Copyright 2021, Springer Nature.
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and bird (with similar morphological characteristics) could be distinguished effectively with a maximum of

263% enhanced accuracy. However, the multiply-accumulate operation and neuromorphic computing

functions based on the perovskite memristor array are the results of the simulation, which deserve real

array-level verification before practical application. To explore the application prospects of perovskite in

large-scale integrated photoelectric bionic devices, Sun et al. proposed a 32 3 32 flexible optoelectronic

transistor array based on perovskite quantum dots and carbon nanotubes (Figures 8E and 8F), which com-

bines the functions of the photodetector and synaptic electronic with high responsivity and synaptic plas-

ticity regulation ability (Zhu et al., 2021). As shown in Figure 8G, both the number and intensity of light

pulses can gradually increase the conductivity of the array, which exhibits the human brain-like reinforce-

ment learning function. This is the first demonstration of reinforcement learning by ultra-low light pulses

through a highly integrated physical device array. However, apart from reinforcement learning, forgetting

is also a very important function of the human brain. Using electrical pulses to weaken the captured signal

gradually at the hardware level also deserves further research.

Organic materials-based devices

Compared with other material systems, organic materials provide scientists with an enormous design

platform to create novel molecules to meet specific functional requirements. In recent years, organic ma-

terials-based optoelectronic devices, especially photodetectors and luminescent devices, have developed

vigorously because of tunable optoelectronic properties, low temperature processability, flexible, and

stretchable properties and so on (Chow and Someya, 2020; Sun et al., 2019; Zhang et al., 2018). However,

in the field of intelligent machine vision, most organic optoelectronic devices are dedicated to optoelec-

tronic performance optimization at the single device level, and the exploration of the integrated machine

vision system is insufficient. Although some progress has beenmade in neuromorphic computing based on

organic electronics (van de Burgt et al., 2018), collaborative innovations from image perception, storage to

computing functions to develop new types of human-like vision chips based on organic materials are facing

a more urgent demand.

Excitingly, Zhu et al. reported a novel organic bulk heterojunction (BHJ) transistor array with excellent light

intensity-dependent photoadaptation ability (He et al., 2021). The prepared devices simulate the

transmembrane transport characteristics of Ca2+ and Na+ in the human cell membrane regulated by the

feedforward mechanism. As shown in Figure 9A, there are two kinds of BHJ, viz., poly{2,20-[(2,5-bis(2-hex-
yldecyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl) dithiophene]-5,50-diyl-alt-thiophen-2,5-
diyl} (PDPP3T):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and Poly(3-hexylthiophene-2,5-diyl)

(P3HT):PCBM, separated by two insulating layers, polyvinyl alcohol (PVA), and poly(vinyl-cinnamate)

(PVCN). The upper BHJ is mainly used as the transport layer for photo-generated carriers and the lower

serves as the floating gate to regulate the shielding effect of the bottom gate on the upper channel. It is

worth mentioning that interface engineering is of great significance to affect the overall performance of

the device. Compared with PVCN layer, there are a large number of defect states at the interface of

PVA and lower BHJ, which could capture photo-generated electrons and shield the gate influence to a

certain extent. As shown in Figure 9B, the prepared organic transistor exhibits excellent adaptability within

a large range of light intensity. Moreover, mechanism analysis demonstrates the generation and separation

of excitons and the transport and capture of carriers work together to create the adaptive characteristics of

the device (Figure 9C). Furthermore, a 33 3 flexible organic transistor array was fabricated to verify the im-

age processing capability in the real environment. As shown in Figures 9D–9G, a T-shaped optical pattern

was projected onto the sensor array, which accounts for a T-shaped photocurrent response on the array. In

addition, when the background is overexposed, the transistor array could shield the environment noise and

highlight the real information within 2 s. Compared with the adaptation ability of the human eye, this array

exhibits a faster adaptive speed, which provides a new idea for the construction of the artificial vision sys-

tem. However, this device could only achieve in-situ filtering for strong light information but cannot realize

the image enhancement function under dim conditions. Moreover, a higher-density and higher-resolution

array is needed to improve the image quality and explore more abundant application scenarios.

CHALLENGES AND OUTLOOK

By simulating the working principles of the human visual system, retinomorphic machine vision technology

based on newmaterials, mechanisms, and architectures has achieved vigorous development in the artificial

intelligence era (Cho et al., 2021; Wang et al., 2020b). In this contribution, we systematically summarized

two typical retinomorphic optoelectronic device paradigms, viz., heterogeneous and homogeneous
14 iScience 25, 103729, January 21, 2022



Figure 9. Organic material-based homogeneous integration machine vision system

(A) Schematic illustration of the prepared BHJ organic transistor.

(B) Real-time photoresponse of an organic transistor to various stimuli luminance.

(C) Mechanism analysis of the optical response and adaptive process.

(D and E) Conceptual designs of the organic transistor array in the dark and bright background.

(F) Optical image of a flexible 3 3 3 organic transistor array.

(G) Resulting current mapping of the organic transistor array under different conditions.

Reproduced with permission (He et al., 2021). Copyright 2021, Springer Nature.
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integration architectures. Although much encouraging progress has been achieved, there remain chal-

lenges and opportunities in front of researchers.

At the material level, the development of large-scale, high-quality, and low-cost thin-film preparation tech-

nology is still an urgent problem to be solved, especially for 2D materials and perovskite materials (Lin

et al., 2020; Liu et al., 2020; Zavabeti et al., 2020). Although several reported 2D materials have grown at

the wafer scale, most of such attempts are still in the exploratory stage. Moreover, because the several re-

ported 2D material transfer technologies are inefficient and the technical requirements for the operators

are very high, it is imminent to prepare high-quality and large-size 2D materials directly on the selected

substrate (Wang et al., 2021). In terms of improving the environmental stability of perovskites, appropriate

protection strategies, viz., physical encapsulation and chemical passivation are necessary (Gao et al., 2020;

Lv et al., 2019). The former tends to protect the devices from eroding by water and oxygen, whereas the

latter is dedicated to passivating the internal defects of the perovskites. However, the reported protection

effects are still limited, more reliable and efficient approaches are needed to further expand their applica-

tion prospects. For organic materials, the quality of organic films prepared with diverse process parameters

is significantly different because of the inherent weak intermolecular interaction and disordered molecular

entanglement manner, which accounts for cycle to cycle (C2C) and device-to-device (D2D) variations, such

as threshold voltage, write/erase speed, number of states, state retention time, durability, etc (van de Burgt

et al., 2018). Although several groups have devoted to improving the uniformity of the film through molec-

ular planarization, the related research is still in its infancy (Zhang et al., 2021). Furthermore, different

material systems have different compatibility with micro-nano processing technology, which deserves in-

depth research for both academia and industry.

At the device level, more in-depth research about the physical mechanisms behind device performances

and CMOS compatible integration strategies are necessary to purposefully improve overall performances

before practical application. For image sensor units, optimizing device structure and energy level matching

diagrams are effective approaches to improve the photoelectric conversion efficiency. Interface engineer-

ing also deserves more attention, which has a strong impact on the capture and transfer of carriers (Graetzel

et al., 2012; Zhou et al., 2014). For memristor-based retinomorphic optoelectronic devices, the on-off of the

conductive filament generally accounts for memristive switching. The movement of electrons or ions is

random, which causes the inherent variability and instability of device conductance, especially in low con-

ductivity regimes (Xia and Yang, 2019). Moreover, some researches only focus on whether the conductance

of the synaptic device can be regulated with the pulse while ignoring the necessary nonvolatility of each

conductivity state, which is indeed a key element for in-memory computing. Under the premise of accu-

rately characterizing thememristivemechanism of the device, developing novel strategies to precisely con-

trol the internal ion transport engineering to improve the uniformity and reliability of the devices is still the

main research direction in the future. Furthermore, solving the cross-talk problem of the memristor

crossbar array is another difficulty. The existing transistor and selector technologies cannot be perfectly

compatible with the memristor system without loss of performance, thus developing more refined periph-

eral control circuits is of great significance (Shi et al., 2020). It is worth mentioning that different material

systems have different compatibility with the current CMOS-based micro-nano processing technology,

which deserves in-depth research for both academia and industry.

In terms of two different integrated architectures, homogeneous integration has broader application pros-

pects in the future. Although the functional separation mode of the heterogeneous architecture is benefi-

cial to improving the performance of the independent unit, the infamous von Neumann’s bottleneck still

remains. High-throughput data transfer between the image sensor unit and front-end information storage

and preprocessing module is bound to weaken the comprehensive performance of the device. However,

homogeneous integration also faces huge challenges. More efficient device integration structures (not

limited to crossbar arrays) and more complete external circuit servo systems will give a full play to its

functions.

For applications, intelligent machine vision technology requires more consideration of complex and

changeable environmental factors, such as different light intensities, the similarity between the back-

ground and the observed entity, and fast capture of moving objects, etc. Many influencing factors are diffi-

cult to be simulated in the laboratory and can only be verified through practical applications. Therefore, a

more stringent device performance evaluation system is needed to guide the development of the industry.
16 iScience 25, 103729, January 21, 2022
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In addition, although the current artificial neural networks could solve simple image processing problems,

their efficiency decreases while energy consumption increases when facing complex tasks. To further simu-

late the way that the human brain works, more efficient neural network architectures are necessary.
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